SELF-AFFINE SETS IN ANALYTIC CURVES AND ALGEBRAIC
SURFACES

DE-JUN FENG AND ANTTI KAENMAKI

ABSTRACT. We characterize analytic curves that contain non-trivial self-affine sets. We

also prove that compact algebraic surfaces cannot contain non-trivial self-affine sets.

1. INTRODUCTION

Self-similar and self-affine sets are among the most typical and important fractal objects;
see e.g. [2]. They can be generated by the so-called iterated function systems; see Section 2.
Although these sets can be very irregular as one expects, they often have very rigid geometric

structure.

It is not surprising that typical non-flat smooth manifolds do not contain any non-trivial
self-similar or self-affine set. For instance, circles are such examples. To see this, suppose to
the contrary that a circle C' contains a non-trivial self-affine set E. Let f be a contractive
affine map in the defining iterated function system of E. Then f(E) C E and thus f(F)
is contained in both C' and f(C'). However, since f(C') is an ellipse with diameter strictly
smaller than that of C| the intersection of f(C') and C contains at most two points. This is

a contradiction since f(F) is an infinite set.

The above general phenomena was first clarified by Mattila [6] in the self-similar case.
He proved that a self-similar set F satisfying the open set condition either lies on an m-
dimensional affine subspace or H!(E N M) = 0 for every m-dimensional C'-submanifold of
R"™. Here t is the Hausdorff dimension of E and #H' is the t-dimensional Hausdorff measure.
This result was later generalized to self-conformal sets in [4, 5, 7]. As a related work, Bandt
and Kravchenko [1] showed that if E is a self-similar set which spans R” and x € E, then

there does not exist a tangent hyperplane of E at x.

As an easy consequence of the result of Mattila or that of Bandt and Kravchenko, an
analytic planar curve does not contain any non-trivial self-similar set unless it is a straight

line segment. In a private communication, Mattila asked which kind of analytic planar curves
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can contain a non-trivial self-affine set. The main purpose of this article is to answer this

question.

We first remark that any closed parabolic arc is a self-affine set. This interesting fact was
first pointed out by Bandt and Kravchenko [1]. In that paper, they considered self-affine
planar curves consisting of two pieces £ = fi(E) U fo(E). They showed that if a certain
condition on the eigenvalues of f; and f5 holds, then the curve E is differentiable at all except
for countably many points. They also introduced a stronger condition on the eigenvalues
which guarantees the curve E to be continuously differentiable. This result implies that there
exist many continuously differentiable self-affine curves. However, Bandt and Kravchenko
furthermore showed that self-affine curves cannot be very smooth: the only simple C?

self-affine planar curves are parabolic arcs and straight lines.

In our main result, instead of curves that are itself self-affine, we consider general self-affine

sets and examine when they can be contained in an analytic curve.

Theorem A. An analytic curve in R", n > 2, which cannot be embedded in a hyperplane
contains a non-trivial self-affine set if and only if it is an affine image of n: [c,d] — R",
n(t) = (t,t%,...,t"), for some c < d.

The above result gives a complete answer to the question of Mattila: the only analytic
planar curves that contain non-trivial self-affine sets are parabolic arcs and straight line
segments. As explained by Mattila, the question is related to the study of singular integrals
and self-similar sets in Heisenberg groups. In such groups, self-similar sets are self-affine in
the Euclidean metric. From the singular integral theory point of view, it is thus important

to understand when a self-affine set is contained in an analytic manifold.

Concerning manifolds, we study an analogue of Mattila’s question. We examine which
kind of algebraic surfaces can contain self-affine sets. Our result shows that this cannot

happen on compact surfaces.

Theorem B. A compact algebraic surface does not contain non-trivial self-affine sets.

It is easy to see that non-compact surfaces, such as paraboloids, can contain non-trivial
self-affine sets; see Example 4.1. To finish the article, we introduce in Proposition 4.3 a

sufficient condition for the inclusion of a self-affine set in an algebraic surface.

2. PRELIMINARIES

In this section, we introduce the basic concepts to be used throughout in the article. A

mapping f: R" — R™ is affine if f(x) = Tx + ¢ for all x € R", where T is a n X n matrix
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and ¢ € R". The matrix 7T is called a linear part of f. It is easy to see that an affine
map is invertible if and only if its linear part is non-singular. A mapping f: R* — R" is
strictly contractive if |f(x) — f(y)| < |x — y| for all z,y € R™. Note that an affine mapping
f is strictly contractive if and only if its linear part 7" has operator norm ||T'|| strictly less
than 1. A non-empty compact set £ C R" is called self-affine if £ = Ule fi(E), where
{fi}i_, is an affine iterated function system (IFS), i.e. a finite collection of strictly contractive
invertible affine maps f;: R™ — R"; see [3]. Moreover, F is called self-similar if all the f;’s

are similitudes. We say that a self-affine set is non-trivial if it is not a singleton.

If @ < b, then a non-constant continuous function ~v: [a,b] — R" is called a curve. We
denote the set y([a, b]) C R™ by Img() and refer to it also as a curve. By saying that a curve
v contains a set A we obviously mean that A C Img(7y). A curve v is simple if v(s) # ()
for a < s <t <b. Wesay that a curve v: [a,b] = R™, y(t) = (x1(¢), ..., z,(t)), is analytic if
x;: [a,b] — R is continuous on [a, b] and real analytic on (a,b) for all i € {1,...,n}. Recall
that a function is real analytic on an open set U C R if, at any point ¢t € U, it can be
represented by a convergent power series on some interval of positive radius centered at
t. Similarly, if z;’s are C* functions for some k € N, then the curve v is called C* curve.
The k-th derivative of a C* curve 7 is y®(t) = (mgk) (t),... Lz (t)). If f: R" — R™ is an
invertible affine mapping and 7: [a,b] — R" is a curve, then f o~ is the affine image of the

curve.

Let P: R® — R be a non-constant polynomial with real coefficients. The set
S(P)={x eR": P(z) =0}

is called an algebraic surface. The degree of P, denoted by deg(P), is the highest degree of
its terms, when P is expressed in canonical form. The degree of a term is the sum of the

exponents of the variables that appear in it.

3. SELF-AFFINE SETS AND ANALYTIC CURVES

In this section, we prove Theorem A. Our arguments are inspired by the proof of [1,
Theorem 3(i)]. We will first show that an affine image of n: [c,d] — R", n(t) = (¢,¢2,...,t"),

contains a non-trivial self-affine set. This follows immediately from the following lemma.

Lemma 3.1. If n: [c,d] — R", n(t) = (¢,t*,...,t"), then Img(n) is a non-trivial self-affine
set for all c < d.

Proof. Let
0 < A< (2"/nmax{(2lc|+ 1), (Jc| + |d| + )"} < 1
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and choose ty,...,t; € [¢,d] with £ € N such that the self-similar set of {z + Az —c)+t;}*_,
(L

is [c,d]. Write ¢;,; = ( )(% — ¢)*=7 and observe that

(= (= 5)) = Souslr = (=)

forall ke {1,...,n},ie{l,...,¢}, and t € R.

Defining for each i € {1,... ¢} a lower-triangular matrix by
)\Ci,l,l 0 0
2 2
A Ci2.1 A Ci2.2 0
3 3 3
T, = | Meiza ANciza Aciss ,
)\nci,n,l Anci,n,Q )\nci,n,3 e )\nci,n,n

we see, by the choice of A and the fact that ¢; € [¢, d], that

k k
k\ |t
T < max E )\kCi = n  max g )\k( ) -

‘k_j
k e{l,..,n} 4 ke{l,...,
Jj=1

k
<+/n max p N (k)(|t |+ || + 1)F < )\\/_ max (|tl-| + le| + 1)*2F < 1.

kef{l,..., j kef{l,...,
Therefore, the affine map f;: R® — R" defined by
filzy, ... xy) = Ti(x, ..., ) —Ti<c—— (c— —) e (c— —) )

is contractive and satisfies

ey =i e B (o= o (- 4))
t;

Z(A(t—(—x» (1= (e %))2»-'-7”(“(0—%))”)
= (A= )+ £ (M= )+ £ (A= )+ 1))

for all t € [c,d]. Hence the self-affine set of {f;}¢_, is the curve Img(n). O

Let us next focus on the opposite claim.

Theorem 3.2. If an analytic curve which cannot be embedded in a hyperplane contains a
non-trivial self-affine set, then it is an affine image of n: [c,d] — R"™, n(t) = (¢t,t%,...,t"),

for some ¢ < d.

Proof. Let 7: [a,b] — R"™ be an analytic curve such that Img(+) is not contained in a
hyperplane. Suppose that E is a non-trivial self-affine set of an affine IFS {f;}‘_, such that
E C Img(y). Let S be the semigroup generated by fi,..., f, under composition.
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By analyticity and the assumption that Img(~y) is not contained in a hyperplane, without
loss of generality, we may assume that £ C v((a,b)) and v/(¢) # 0 for all ¢t € (a,b). Since
(a,b) has a countable cover of open intervals I; such that v(/;) has no intersection points, we
have £ C |J, £ N~(1;) and therefore, by the Baire Category Theorem, there exists i and an
open set U such that ) 2 ENU C EN~(l;). Since ENU contains a non-trivial self-affine

set, we see that no generality is lost if we assume the curve v to be simple.
Fix ¢ € § and write
o(x) = M(x — x0) + o (3.1)
for all x € R™, where xy € R" is the fixed point of ¢ and M is an n X n invertible matrix.

Note that zy € E. Since E C v((a, b)) there exists ty € (a,b) such that xy = v(ty). Hence

we may rewrite (3.1) as
pla) = M(z —~(to)) + 7(to)- (3.2)

Since E is non-trivial, there exists a sequence (t;);en of distinct numbers in (a, b) such that
ti =ty as © — oo and 7(t;) € E for all i € N. Furthermore, since ¢(F) C E C v((a,b)), we
see that p(y(t;)) € Img(y) and therefore, for each i € N there exists ¢, € (a,b) such that

p(y(t:) = () (3.3)

Recalling that ~ is simple and ¢(7(to)) = v(to), we see that t, — tq as i — co. By (3.1) and
(3.3), we have
M(y(t:) — (b)) = o((t:)) — ¥(to) = 7(t) — ¥(to) (3-4)

and therefore,

M(v(ti) - 'y(to>> _ () =)t —to

ti — to th—ty  ti—ty

Letting i — oo, we have
M~/ (to) = M (to), (3.5)
where A = lim;_,o. (¢, — to)/(t; — to) # 0 by the invertibility of M.

Let J be an invertible matrix such that
J Y (te) = (1,0,...,0)

and
A 0 - 0
JMr=| 0 7
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is a real canonical Jordan form of M. Write A = J 'MJ and recall that if \; is a real

eigenvalue of M, then

Ao 100 0
Ao 1 0
0 N\ 0 O
Ai = . )
0O 0 0 --- X\ 1
0o 0 0 - 0 N\
and if \; is a non-real eigenvalue of M with real part a; and imaginary part b;, then
¢ I 0 -~ 0 0
o ¢ I -~ 0 0
0O o ¢; --- 0 0
Ai = . . . . . . )
o o o0 --- C I
o 0 0 -~ 0 G

where

, . 1
C; = a b and [ = 0 .

Note that by (3.5), we have A\; = A € R. Observe also that, by (3.4), it holds that
AT (v(t) = (ko) = T (7(#) — 7(to)) (3.6)
for all + € N.
Defining 7: [a, b] — R™ by
() = T ((t) = 1(to)),

we clearly have ¥(t9) = 0 and 7'(ty) = (1,0,...,0). Write 3(¢) = (Z1(t),...,T,(t)). Since
7 (to) = 1 # 0, the inverse #; ' exists and is analytic on (—¢,¢) for some £ > 0. To simplify
notation, let us denote #;' by ¢ and its parameters by #;. Therefore, ) can be considered

to be an analytic function of Z; on (—e¢,¢) for all k € {2,...,n}. Note that

for all k € {2,...,n} and Zo, ..., T, are not constant functions. Indeed, if &} was a constant
for some k, then, by the fact that each z is a linear combination of x4, ..., x,, the curve v

would be contained in a hyperplane in R". Let n: (—¢,&) — R"™ be defined by
7](5&1) = ('%173%2(@1)7"'7%”(571))' (37)

The goal of the proof is to show that the curve n is of the claimed form.
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Let us next collect three facts related to the above defined setting.
Fact 1. Write A = (aij)lgingn and let Y = Z?:l aljij. Then
A(Z1,Toy .., Zn) = (Y, 22(Y), ..., Z,(Y)) (3.8)

for all 7; € (—¢,¢).

Proof. By (3.6), the equality (3.8) holds for infinitely many different values of Z;. By
analyticity, (3.8) holds on the whole interval (—¢,¢). |

The next fact concerns the shape of the matrix A.

Fact 2. The matrix A is diagonal. In other words, all the block matrices A; have dimension
1.

Proof. Let us first show that A; has dimension 1. Suppose to the contrary that d; =

dim(A;) > 1. Since the eigenvalue associated to 4; is A € R, we have

1
0 A
A = :
1
0 A
By Fact 1, we see that
AT, (1) = Tg, (AT + To). (3.9)

Notice that there exist integers ps,...,p, > 2 and reals cs,...,c, # 0 such that for each
ke{2,...,n}

jk(il) = Ck(i'l)pk + O(ffl) (310)
as ; — 0. Plugging (3.10) into (3.9), and comparing the coefficients of Taylor series in &
on both sides, we get

/\Cd1 = Cq, APd1

which implies that p;, = 1, a contradiction. Hence we have dim(A;) = 1 and therefore
Y = A\z;.

Let us next assume inductively that for some k& € {1,...,n—1} the matrices Ay, ..., A are
of dimension 1 and show that dim(A.1) = 1. Suppose to the contrary that d = dim(Ag, 1) >

1. Now there are two cases: either A\ is real or not. If Ay, is real, then the same argument



8 DE-JUN FENG AND ANTTI KAENMAKI

as that for A; gives a contradiction. We may thus assume that Ay = a + b with b # 0.

The matrix Ay is therefore of the form

a
—b

oS O & o
IS

o o o O

o o o O

)
=
(=

Let ¢ = k + d. Applying (3.8), we see that

aty_y + by = Ty (A1),
—bTy_1 +ax, = .i‘g()\fi’l).
Using the above identities and comparing the coefficients of 2 and "' in the Taylor
expansions of Z, and Z,_1, we see that p, = p,_1; and moreover,

ace—1 + ng = Cg_l)\pe,

_ p
—bcy_1 + acy = cp AP,

()= ()

This means that the real number ¢ is an eigenvalue of the above matrix, a contradiction. W

or, equivalently,

By Fact 2, we may now write
A = diag(A1, A2, ..., An), (3.11)

where Ay = A € (—1,1)\ {0}. With this observation, we can examine how the curve 7 defined
in (3.7) looks like.

Fact 3. There exist integers py < p3 < -+- < p, such that a piece of the curve Img(~),
namely v: (to—0,tp+0) — R™ for some 6 > 0, is an affine image of the curve n: (—¢,e) - R”
defined by

n(t) = (t,172, ... 7).

Proof. By (3.11) and (3.8), we have

Fe( A1) = Aedn(71) (3.12)
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and hence, by (3.10), there exist integers po,...,p, > 2 and reals ¢y, ..., ¢, # 0 such that
Ck()\ﬂ?l)pk = )\kaiz'ka + 0(.%]1%)

This implies that Ay = AP% and T (AZ1) = M*Z(Z1). Taking pg-th derivative on both sides

gives 2P (AFy) = 2P (7). Hence 2P (XM F,) = ™) (#,) for all j € N. Letting j — oo, we

k
(Pr) (fl) — f(Pk)(

get Ty, 0) = ¢xpx! and therefore,

fik(jl) = ij'lljk

Since the curve 7 is not contained in a hyperplane, we see that, for any non-zero vector
(b1,...,by), the sum > ), byZy is not identically zero. Thus the integers po,...,p, are

mutually distinct.

We have now proved that, possibly after a permutation on coordinate axis, the curve
v: (to — d,to + 6) — R™ for some § > 0, is an affine image under the affine transformation

u— J 7 (u—~(to)) of the curve
t— (t, et ... cptt™)

defined on (—¢, ¢) for some integers 2 < py < p3 < ---p, and reals c¢s, ...,c, # 0. Applying
a further affine transformation (uq,ug, ..., u,) — (u1,us/ca, ..., uy/c,) we have finished the
proof of Fact 3. u

By Fact 3, it suffices to show that p, = k for all k € {2,...,n}. Observe that n: (—¢,¢) —
R™ given by Fact 3 is an analytic simple curve which cannot be embedded in a hyperplane
and it contains a non-trivial self-affine set. Therefore, applying the previous argument once
more, we find integers 2 < ¢ < g3 < -+ < ¢, and t; € (—¢,¢) \ {0} such that, under a

suitable linear transformation J’, the curve
t = J'(n(t) = n(t))

defined on (t; — &,t1 + &) C (—¢,¢) for some £ > 0 can be parametrized by
s (8,12, ).

This means that, writing J' = (bx;)1<k j<n, We have

n n ak
St~ ) = (bt ) 3.1
p =1

forall t € (t; — &, 61 + &) and k € {2,...,n}. By analyticity, (3.13) holds for all ¢ € R.

We will next compare the degrees of polynomials on both sides of (3.13) for all k €
2,...,n}. Let d =deg(>""_ by (1P — 7)) € {1,pa,...,pn}. When k runs over {2,...,n},
7j=1"1J 1



10 DE-JUN FENG AND ANTTI KAENMAKI

the degrees of the right-hand side of (3.13) are dg.,dgs, . .., dq,, whereas the left-hand side
has degree in {1,ps,...,p,}. Therefore,

{dQQudq& ce qun} - {17p27 o 7]%}

which implies that

pr = dgy, (3.14)
for all k € {2,...,n}. Since d € {1,pa,...,p,}, we must have d = 1 — otherwise, by (3.14),
qr = 1 for some k € {2,...,n} which is a contradiction. But since d = 1, we may write
(3.13) as
D by (P —177) = (et — )P
j=1
for all k € {2,...,n}. In particular, this shows that (¢ — ¢;)P" is a linear combination of

(t —ty), (tP2 — %), ... (tP» — t§). Since t; # 0, all powers t/, j € {1,...,p,}, appear in
(t—t; )P~ with non-degenerate coefficients, and it follows that py = k forall k € {2,...,n}. O

Remark 3.3. (1) Bandt and Kravchenko showed that there are plenty of C! planar self-affine
curves (i.e. self-affine sets that are C' planar curves); see [1, Theorem 2|. Furthermore, in
[1, Theorem 3(ii)], they showed that parabolic arcs and straight line segments are the only
simple C? planar self-affine curves. This result also follows from Theorem A by a simple
modification. It would be interesting to know that if a self-affine set F is contained in a C?

planar curve, then does there exists an analytic curve containing E?

(2) The analyticity assumption in Theorem A is well motivated since for each k € N it is
easy to construct a non-quadratic C* planar curve containing a self-affine set. It would also
be interesting to know if there exists a self-affine set £’ which is a subset of a strictly convex
C? planar curve, but is not a subset of any quadratic curve. Also, when can a self-affine set
intersect an analytic curve in a set of positive measure for some relevant measure such as
the self-affine measure? In the self-conformal case, this property implies that the whole set

is contained in an analytic curve; see [4, Theorem 2.1].

4. SELF-AFFINE SETS AND ALGEBRAIC SURFACES
In this section, we prove Theorem B and introduce self-affine polynomials.

Proof of Theorem B. Let P: RY — R be a non-constant polynomial with real coefficients
such that S(P) is compact. Suppose to the contrary that there exists a non-trivial self-affine
set F contained in S(P). Let f be one of the mappings of the affine IFS defining F and set
P, = Po f~" for all n € N. Observe that the degree of P, is at most deg(P). It is easy to
see that S(P,) = f"(S(P)) for all n € N and therefore diam(S(P,)) — 0 as n — co. By the
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assumption, we have f"(E) C f*(S(P)) = S(P,) for all n € N, and by the invariance, we
have f"(E) C f~"Y(E)C--- C E for alln € N.

Since the ring of polynomials having degree at most deg(P) is finite dimensional there
exist Py, ..., Py, such that each P, is a linear combination of these polynomials. Choose n
so large that

diam(S(P,)) < min diam(f"(E)) = diam (ﬂ f’“(E))
i=1

ie{l,....,m}

But since P, = >, ¢; Py, for some ¢;, we have

ﬂ FR(E) () S(P) C S(P).

i=1

This contradiction finishes the proof. 0

Ezample 4.1. Tt is clear that a hyperplane can contain a non-trivial self-affine set. In this
example, we show that also other kinds of non-compact algebraic surfaces can contain
non-trivial self-affine sets. Let P: R? — R, P(zy,...,24) = 23 + -+ + 22| — 74 and fix
an interval [a,b] C R. Define a mapping 7n: [a,b]?t — R? by setting n(z1,...,741) =
(21, xa 1,23 + -+ 22 ). Let {c;(x1,...,24-1) + (di,...,d;)}i_, be an affine IFS on
R~ so that [a, b]¢! is the self-affine set generated by it. Define f;: R? — R? by setting

C; 0 e 0 0 1 d;
0 c; o 0 0 T d;
fi(zy, ..., 2q) = : S : N :
0 o -+ ¢ 0 Td—1 d;
2c;d; 2cid; -+ 2cid; T4 (d—1)d?

for all (zy,...,2q4) € R%andi € {1,...,¢}. Since f;(n(x1,...,24-1)) = n(cixi+d;, . .., cixg_1+
d;) the image n([a,b]?"!) C S(P) is invariant under the affine IFS {f;}¢_,.

The previous example does not characterize the polynomials for which the associated
algebraic surface contains non-trivial self-affine sets. Suppose that P: R? — R is a non-
constant polynomial with real coefficients. We say that a contractive invertible affine map f

is a scaling factor for P if there exists a constant C' € R such that
Pof=CP. (4.1)
A polynomial P is called self-affine if it has two scaling factors with distinct fixed points.

Ezample 4.2. Let P: R*> — R, P(x1,25) = 2o — x1. It is easy to see that f: R? — R?
f(x1,29) = (21, 22), and g: R? = R?, g(z1,22) = 5(z1 + 1,25 + 1), are scaling factors for
P and have distinct fixed points.
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The following proposition shows that a polynomial P being self-affine is sufficient for the

inclusion of self-affine sets.

Proposition 4.3. If P: R? — R is a self-affine polynomial, then S(P) contains a non-trivial
self-affine set.

Proof. Let f be a scaling factor for P with a constant C'. Note that there exists a non-singular
d x d matrix M with ||[M|| < 1 and a € R? so that f(z) = Mz + a for all z € R%. Observe
that

fM(x) = M"z + nleia — iMia =: 7
=0 i=0
as n — 0o, where zo € R? is the fixed point of f. Choose z € R? such that
| P(zo)| +1 < |P(x)].
Such a point z exists since P is not bounded. Since
C"P(z) = Po f"(x) — P(xo)
as n — 0o we may choose n large enough so that |C"P(x)| < |P(x)| + 1. Thus |C| < 1.

Let h and g be scaling factors for P with distinct fixed points. If f is any finite composition
of the mappings h and g, then f is a scaling factor for P. If C' is the constant associated to
the scaling factor f, then the above reasoning implies that |C] < 1. Furthermore, if x( is the
fixed point of f, then P(xy) = P o f(zg) = CP(xp). Since |C| < 1, this implies P(xy) =0
and zg € S(P). Recalling that S(P) is closed it thus contains the self-affine set generated by
the affine IFS {h, g}. O

Remark 4.4. 1t would be interesting to characterize all the algebraic surfaces associated
to self-affine polynomials. For example, in the two-dimensional case, is the surface always
contained in a line through the origin? Of course, the ultimate open question here is to

characterize all the algebraic surfaces containing self-affine sets.
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