VARIATIONAL PRINCIPLE FOR WEIGHTED TOPOLOGICAL
PRESSURE

DE-JUN FENG AND WEN HUANG

ABSTRACT. Let 7: X — Y be a factor map, where (X, T) and (Y, S) are topological
dynamical systems. Let a = (aj,as) € R? with a; > 0 and az > 0, and f €
C(X). The a-weighted topological pressure of f, denoted by P?(X, f), is defined
by resembling the Hausdorff dimension of subsets of self-affine carpets. We prove
the following variational principle:

PA(X, J) = sup {alhu(T) + azhyor 1 (S) + / / du} ,

where the supremum is taken over the T-invariant measures on X. It not only gen-
eralizes the variational principle of classical topological pressure, but also provides
a topological extension of dimension theory of invariant sets and measures on the
torus under affine diagonal endomorphisms. A higher dimensional version of the
result is also established.

1. INTRODUCTION

Inspired by the theory of Gibbs states in statistical mechanics, Ruelle [33] intro-
duced the notion of topological pressure to the theory of dynamical systems and
established a variational principle for it. Ruelle only considered the case when the
underlying dynamical systems satisfy expansiveness and specification. Later Walters
[36] generalized these results to general topological dynamical systems. Topological
pressure, and the associated variational principle and equilibrium measures constitute
the main components of the thermodynamic formalism [34]. They play important
roles in dimension theory of dynamical systems. Indeed they provide as a basic tool
in studying dimension of invariant sets and measures for conformal dynamical systems

(see e.g. ]9, 35, 31])).

In this paper we aim to introduce a generalized notion of pressure for factor maps
between general topological dynamical systems, and establish a variational principle
for it. To be more precise, let us introduce some notation first. We say that (X, T)
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is a topological dynamical system (TDS) if X is a compact metric space and T is a
continuous map from X to X. Let (X,T) and (Y, S) be two topological dynamical
systems. Suppose that (Y,.5) is a factor of (X,T), in the sense that there exists a
continuous surjective map 7 : X — Y such that 1 oT'= S oxw. The map 7 is called
a factor map from X to Y. Let f be a real-valued continuous function on X, and let
ay; > 0, ay > 0. The main purpose of this paper is to consider the following.

Question 1.1. How can one define a meaningful term P22 (T, f) such that the
following variational principle holds?

(1.1) P(‘“"”)(T, f) =sup {alhu(T) + aghyon—1(S) + / f d,u} ,

where the supremum is taken over the set of all T-invariant Borel probability measures
poon X, and hy(T), hyer-1(S) stand for the measure-theoretic entropies of jn and
pomt with respect to T and S, respectively (cf. [37)).

According to the variational principle of Ruelle and Walters, the left-hand side of
(1.1) equals ay P(T, ,-f) in the particular case when ay = 0, where P(T,-) stands for
the classic topological pressure of continuous functions (cf. [37]). Our interest is on
the general case that as # 0. This project is motivated from the study of dimension
of invariant sets and measures on the tori under diagonal affine expanding maps.

Let T be the endmorphism on the 2-dimensional torus T? = R?/Z? represented
by an integral diagonal matrix A = diag(my,ms), where 2 < m; < mgy. That is,
Tu = Au (mod 1) for v € T?. In their seminal works, Bedford [5] and McMullen
[27] independently determined the Hausdorff dimension of the so-called self-affine
Sierpinski gaskets, which are a particular class of T-invariant subsets of T? defined as
follows:

K(T,D) := {ZA_”un: un € D for all n > 1},

n=1

where D runs over the non-empty subsets of

{(;) z':(),l,...,ml,j:O,l,...,mQ—l}.

Moreover, McMullen [27] exhibited explicitly that for each D, there exists an ergodic
T-invariant measure p supported on K (7', D) with dimy g = dimy K(T, D), where
dimpy denotes the Hausdorff dimension of a set or measure (cf. [13]). Later Kenyon
and Peres [20] extended this result to any compact T-invariant set K C T2, that is,
there is an ergodic T-invariant measure p supported on K so that dimy p = dimy K.

Furthermore Kenyon and Peres [20] established the following variational principle for
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the Hausdorfl dimension of K:

(1.2) dimy K = sup {bg;mth(T) + ( ! ! > hm—l(S)} :

log m; B log meo

where the supremum is taken over the collection of T-invariant Borel probability
measures 7 supported on K, 7w : T? — T! denotes the projection (z,y) ~ z, and
S : T' — T! denotes the map x — myz(mod 1). It is easy to check that (T, S)
is a factor of (T?,T) with the factor map m. We emphasize that for any ergodic
T-invariant measure 1 on T?, the sum in the bracket of (1.2) just equals dimg 7 (cf.

20, Lemma 3.1]); i.e.
hy(T) + ( ! ! ) hyor—1(.S).

(1.3) dimgyn =

log ms log m; B log ms

This is a version of Ledrappier-Young dimension formula for ergodic measures on T2.
We remark that an extension of the variational relation (1.2) to higher dimensional
tori was also established by Kenyon and Peres [20].

Let us turn back to Question 1.1. According to (1.2), if 7 is the factor map (z,y) —
x between the toral dynamics (K,7") and (7(K),S) as in the above paragraph, and
if f=0on K, and a; = log;nw’ ay = log;ml — log1m27 then we can just define P(91:92)( f)
to be the Hausdorff dimension of K. The problem arises how can we extend this
to general factor maps between topological dynamical systems, as well as to general

continuous functions f and vectors (a, as).

In [2, 15], Barral and the first author defined P12 (f) (and called it weighted
topological pressure) via relative thermodynamic formalism and subadditive thermo-
dynamic formalism, in the particular case when the underlying dynamical systems
(X,T) and (Y, S) are subshifts over finite alphabets. They also studied the dynami-
cal properties of weighted equilibrium measures (i.e. the invariant measures p which
attain the supremum in (1.1)) and gave the applications to the multifractal analysis
on Sirpinski gaskets/sponges [2], and to the uniqueness of invariant measures of full
dimension supported on affine-invariant subsets of tori [15]. Independently, in this
subshift case Yayama [38] defined P(41:32)( f) for the particular case f = 0, along the
similar way.

However, the approach of [2, 15] in defining P{@%)(f) relies on certain special
property of subshifts and does not extend to general topological dynamical systems
(see Section 7.1 for details). Moreover, the variational principle established therein
does not give a new proof of Kenyon and Peres’ variational relation (1.2) for the

Hausdorff dimension.
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In the paper, we define P(@%)( f) in a new way, which is inspired from the dimen-
sion theory of affine invariant subsets of tori, and from the “dimension” approaches of
Bowen [8] and Pesin-Pitskel’ [32] in defining the topological entropy and topological
pressure for arbitrary subsets.

We will present our definition under a more general setting. Let k > 2. Assume
that (X;,d;), ¢ = 1,...,k, are compact metric spaces, and (X;,7T;) are topological
dynamical systems. Moreover, assume that for each 1 < i < k — 1, (X;41,T41) is a
factor of (X;,T;) with a factor map m; : X; — X;i1; in other words, my,..., 1 are
continuous maps so that the following diagrams commute.

X, s X, 2 L X
Tll lTQ JT,C
X, s Xy 2 L X

For convenience, we use my to denote the identity map on X;. Define 7; : X; —
Xi+1 bYTZ':WiOﬂ'Z'_lo"'Oﬂ'Q fOriZO,l,...,l{—l.

Let M(X;,T;) denote the set of all Tj-invariant Borel probability measures on X;,
endowed with the weak-star topology. Fix a = (ay,as, ..., a;) € R* with a; > 0 and
a; > 0 for i > 2. For up € M(X;,T}), we call

k

hz (Tl) = Z aih/j,on:ll (E)

i=1
the a-weighted measure-theoretic entropy of p with respect to Ty, or simply, the a-
weighted entropy of p, where huoill (T;) denotes the measure-theoretic entropy of

o 7,5 with respect to T;.
Definition 1.2 (a-weighted Bowen ball). For z € Xy, n € N, € > 0, denote

Ba(z,e) :={y e X;: di(T) 72, TP 7_qy) < e for 0<j < [(ay +...+a;)n] —1,
i=1,....k},

where [u] denotes the least integer > u. We call B2(x,€) the n-th a-weighted Bowen
ball of radius € centered at x.

Following the approaches of Bowen [8] and Pesin-Pitskel’ [32] in defining topological
entropies and topological pressures of non-compact subsets [8], and in which replacing
Bowen balls by a-weighted Bowen balls, we can define the notions of a-weighted

topological entropy and a-weighted topological pressure, respectively. To be concise,
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in this section we only give the definition of a-weighted topological entropy. The
definition of a-weighted topological pressure will be given in Section 3.1.

Let Z C X; and € > 0. We say that an at most countable collection of a-weighted
Bowen balls I' = {B} (z;,€)}; covers Z it Z C |, By, (z;,€). For I' = {B} (x;,€)};,
put n(I') = min; n,;. Let s > 0 and define

AY.(Z) = inf Z exp(—sn;),
J

where the infinum is taken over all collections I' = { B} (x;, €)} covering Z, such that
n(I') > N. The quantity A%’ (Z) does not decrease with N, hence the following limit
exists:

A®H(Z) = lim A%(Z).

N—oo
There exists a critical value of the parameter s, which we will denote by hf,, (T, Z,€),
where A2*(Z) jumps from oo to 0, i.e.

a,s 0, s> h?op(Tl,Z, €),
A(2) = { o0, s<hi (T, Z,e).

It is clear to see that hf}op(Tl, Z,€) does not decrease with ¢, and hence the following
limit exists,

ha

top

(11, Z) = 11_{%]1 (Th, Z, €).

top

Definition 1.3. We call hi, (T1, Z) the a-weighted topological entropy of Ty restricted
to Z or, simply, the a-weighted topological entropy of Z, when there is no confusion
about Ty. In particular we write i, (T1) for hi, (Th, X1).

Similarly we will define the a-weighted topological pressure P?(7T3, f) of contin-
uous functions f on X; (see Section 3.1). In the particular case when f = 0, we
have P*(1T1,0) = h{,,(T1). The main result of this paper is the following variational
principle for weighted topological pressure.

Theorem 1.4. Let f € C(X;). Then

(1.4) P(T1, f) :sup{/fdu+hZ(T1): pEM(Xl,Tl)}.

In Section 6, we will extend the above theorem to the case that f is a sub-additive
potential. As a corollary, taking f = 0 in Theorem 1.4, we obtain the following
variational principle for weighted topological entropy.

top

Corollary 1.5. hf, (T1) = sup{h3(T1) : p € M(X1,Th)}.
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Theorem 1.4 and Corollary 1.5 provide as weighted versions of Ruelle-Walters’ vari-
ational principle for topological pressure, and Goodwyn-Dinaburg-Goodman’s varia-
tional principle for topological entropy (cf. [37]). They are also topological extensions
of Kenyon-Peres’ variational principle for Hausdorff dimension of toral affine invariant
sets. Indeed, consider the aforementioned factor map between the toral dynamics
(K,T) and (m(K),S) and let a; = log;mQ’ ag = loglml bgm It is easy to see from
our definition that htgém)(T, K) simply coincides with dimy K, and hence Corollary
1.5 recovers (1.2) and its higher dimensional versions given in [20]. Moreover, by

Corollary 1.5, we can generalize (1.2) to a class of skew-product expanding maps on
the k-torus (see Section 7.2 for details).

The proof of Theorem 1.4 is quite sophisticated. Besides adopting some ideas from
[36, 28] and [20], we also introduce substantially new ideas in the proof. For the
convenience of the readers, in the following we illustrate a rough outline of our proof.

To see the lower bound in (1.4), we first prove that for each ergodic measure
n e M(X17 Tl),

—1 B2 -1 B2
(1.5) lim lim inf ogn(B(r.e) _ lim lim sup LCHCD) h3(Th)

e—0 n—+o0 n =0 5 4100 n

for p-a.e. x € X;. The above formula is not only a weighted version of Brin-Katok’s
Theorem [7] on local entropy, but also a topological extension of the Ledrappier-Young
dimension formula (1.3). The justification of (1.5) is mainly adapted from Kenyon-
Peres’ proof of (1.3) in [20] and Brin-Katok’s argument in [7]. Based on (1.5), the
lower bound in (1.4) follows from a simple covering argument.

The proof of the upper bound in (1.4) is more complicated. First we apply the
techniques in geometric measure theory to prove the following “dynamical” Frostman
lemma: for any 0 < s < P2(13, f) and small enough ¢ > 0, there exists a Borel
probability measure v on X; and N € N such that

1
(1.6) v(Ba(z,€)) < exp (—sn + &—S(am]f(x)> , Vxe Xy, n>N,
1

where S, f(z) := 32" f(Tix). This is a key part in our proof. Notice that there
exists a small 7 € (0, €) such that for any Borel partition «; of X; with diam(«;) < 7,
1=1,...,k, we have

E ti(n)—
\/ \/ T 7w oi(z) C B3(x,€), Vze Xy, n>N,

i= 1] ti— 1(TL)
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where to(n) = 0, t;(n) = [(a1 + ...+ a;)n], and V stands for the join of partitions.
Hence (1.6) implies that

k tl(n)—l

(1.7) ZH,,( \/ Tfjﬂ';_llOéi> > sn—/ailS[aln]f(x)du(x).

=1 j=tii(n)

Then, as another key part, we use (1.7) and entropy theory to show the existence
of a Ty-invariant measure p on X such that h3(T1) > s — [ fdp, from which the
upper bound follows. In the proof of this part, a combinatoric lemma (see Lemma
5.4) established by Kenyon-Peres [20] plays an important role; besides this, we also
use a delicate compactness argument based on the upper semi-continuity of certain
entropy functions, and adopt some ideas from [36, 28] as well. Reducing back to
the aforementioned toral dynamics, our approach provides a new proof for the upper
bound in Kenyon-Peres’ variational principle (1.2).

The paper is organized as follows. In Section 2, we prove the upper semi-continuity
of certain entropy functions. In Section 3, we define weighted topological pressure for
continuous functions and more generally for sub-additive potentials; we also establish
a dynamical Frostman lemma for the weighted topological pressure. In Sections 4-5,
we prove respectively the lower and upper bounds of Theorem 1.4. In Section 6, we
extend Theorem 1.4 to the sub-additive case. In Section 7, we give some remarks,
examples and questions. In Appendix A, we prove the formula (1.5).

2. UPPER SEMI-CONTINUITY OF CERTAIN ENTROPY FUNCTIONS

In this section, we prove the upper semi-continuity of certain entropy functions (see
Lemma 2.3), which is needed in our proof of the upper bound part of Theorem 1.4.
We begin with the following.

Definition 2.1. Let Z be a compact metric space. A function [ : Z — [—00, +00) is
called upper semi-continuous if one of the following equivalent conditions holds:

(C1) limsup f(zy) < f(2) for each z € Z;

ZN—Z

(C2) for each r € R the set {z € Z: f(z) > r} is closed.

By (C2), the infimum of any family of upper semi-continuous functions is again an
upper semi-continuous function; both the sum and supremum of finitely many upper
semi-continuous functions are upper semi-continuous functions.

7



Lemma 2.2. Let Z be a compact metric space and f : Z — [—00,4+00) be an upper
semi-continuous function. Then for any p € M(Z),

(2.1) Lt / 9(2)d(z) = / £(2)du(z)

Proof. 1t is well known that the equality (2.1) holds when f is a real-valued upper
semi-continuous function (see e.g. [12, Appendix (A7)] for a proof). In the following
we assume that f is an upper semi-continuous function taking values in [—o00, +00).

By the upper semi-continuity of f, we have sup,., f(z) = max.cz f(z) < +o0.
Thus [, f(2)du(z) is well defined and [, f(z)du(z) € [—o0, +00).

For M € N, let fuy(2) = max{f(z),—M} for z € Z. Then fj; is an upper semi-
continuous real-valued function, and thus

sec B /29<Z>dﬂ<z> - / far(2)din(2)

sup sup fu(z) < max {max f(2), } < 400
MEeN zeZ z€Z

and fi(2z) \( f(2) as M — 400 for any z € Z, one has

Jim / frr(2)d(= / lim g ()du(2) = / F(2)d(2)

by Lebesgue’s monotone convergence theorem. Moreover

ot [ = e { e / o(:dan() b
= mf /fM Ydp(z

Since

= Jm [ flz)au)

M—+oco VA

- / F(2)dp(2)

This completes the proof of the lemma. 0J

Let (X,T) be a TDS with a compatible metric d. For € > 0 and M € N, we define
(2.2)

Px(e, M) = {a: « is a finite Borel partition of X with diam(a) < €, #(a) < M},
8



where diam(«) := maxae, diam(A), and #(«) stands for the cardinality of ov. Then
we define

Px(€) = {a: a is a finite Borel partition of X with diam(«) < €}.

It is clear that for any e > 0, there exists N := N(¢) € N such that Px (e, M) # () for
any M > N. The main result of this section is the following.

Lemma 2.3. Let (X,T) be a TDS and € > 0. Then

(1) If M € N with Px(e, M) # 0, then the map

-1
(2.3) 0 € M(X)w— Hyp(e, M;?):= inf %Hg (\/ Tia>
i=0

a€Px (e,M)

is upper semi-continuous from M(X) to [0,log M] for each ¢ € N.
(2) The map

-1
1 )
X Hy(e;0) := inf -H, T
0 € M(X) — Hy(e; 0) in 7 9<i\:/() a)

a€Px (e

15 a bounded upper semi-continuous non-negative function for each ¢ € N.
(3) The map

peMX,T)— h,(T,e) == inf h,(T, )

a€Px(€)

15 a bounded upper semi-continuous non-negative function.

Proof. We first prove (1). Let M € N with Px (e, M) # 0, and ¢ € N. Clearly, the
map H,(e, M; () is defined from M(X) to [0,log M]. Let 6, € M(X). It is sufficient
to show that the map H,(e, M; /) is upper semi-continuous at 6.

Let 6 > 0. Then there exists o € Px(e, M) such that

/—1
1 )
(2.4) o, (\/ T—2a> < Hy, (e, M;0) + 6.
=0

Let « = {A,...,Ay}. Then v < M and diam(A4;) < e fori=1,2,...,u. By Lemma

4.15 in [37], there exists 0; = d1(u, d) > 0 such that whenever v; = {FEy, ..., E,}, %2 =

{F,...,F,} are two Borel partitions of X with Y% | 37" 6y o T~(E;AF}) < 61,
9



then

1 /-1 /-1
Z H90 \/ T_Z’71> - H90 (\/ T_172>
1=0 1=0
(2.5) o
<3 ’HGOOT i(1r2) + Hepor—i (271)] < 6.

1=0

Write n = Zf;é 0y o T—*. Next, we are going to construct a Borel partition 3 =
{Bi,...,Bu} of X so that diam(3) < ¢, -7 n(A;AB;) < 6, and 1(93) = 0.

In fact, note that n(X) = ¢ < oo, hence 7 is regular on X. Thus there exist open
subsets V; of X such that A; C V;, diam(V;) < e and n(V;\ 4;) < & forj=1,...,u
Clearly, V := {Vi,...,V,} is an open cover. Let ¢ > 0 be a Lebesgue number of
V. For any x € X, there exists 0 < t, < & such that n(dB(x,t,)) = 0. Thus
{B(z,t;) : v € X} forms an open cover of X. Take its finite subcover {B(z;,t,,) }I_;,
that is, (J;_, B(z;,ts,) = X. Obviously, each B(x;,t,,) is a subset of some Vj),
j(i) € {1,...,u} since t,, < £.

Let I; = {i € {1,...,7"} t B(wi,t,,) C Vi) for j = 1,...,u. Then Uj_, I; =

{1,...,r}. Put By = U,., B(xit,,) and B; = (Uig]. Bz, %)) \ W, B, induc-
tively for j = 2,...,u. It is clear that § = {By,..., By} is a Borel partltlon of X
with B; C V; and n(0B;) =0 for j =1,...,u. Now for each j € {1,...,u},

AjAB; = (B \ A;) U (A; N (X \ B;)) € (V;\ A) U J(A; N By)
g

cWi\A)ulJA;nve) € (N A u A n (Vi \ Ap))

ki ki

ka,\Ak

Thus 37 n(A;AB;) <ud oy n(Vi \ Ag) < o1

Summing up, we have constructed a Borel partition 8 = {By, ..., B,} € Px(e, M)
so that > 5 n(B;AA;) < &, and n(9B) = 0. Now on the one hand, by (2.5) and
(2.4), we have

(-1
% (\/ Tiﬁ) <
=0

~|

-1
0o (\/ TZOé) + ) < H@O(E, M; f) + 20.
1=0
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On the other hand, since n(93) = 0, one has 0y(T~08) =0 fori =0,1,--- ,£—1. As
OT"A C T A for any A C X, one has 0y(0T*8) =0 fori =0,1,--- , £ —1. More-
over note that (ANB) C (DA)N(IB) for any A, B C X, we have 6,(3(\/i_y T~'f)) =

0. Thus the map 6 € M(X) — ;H,y (V'Zt T=B) is continuous at the point 6y. There-
fore

-1
1
lim sup Hy(e, M; ¢) < lim sup gHg (\/T Zﬁ)

0—>90 9—)00 i=0

1 -1
= _H, T

/ 6o (}_/0 ﬂ)
< H90(67 M; 6) + 20.

Finally letting 6 N\, 0, we see that the map H,(e, M;{) is upper semi-continuous at
6. This completes the proof of (1).

Now we turn to the proof of (2). Let £ € N. Since Px(€) = Upsenpy (eanzo Px (€, M),
we have

Hy(e; 0) = inf Hg(e, M; ¢
0(67 ) MEN,’Pl;Igl(e,M);é(D H(Ea ) )

for 6 € M(X). Moreover, by (1) and the fact that the infimum of any family of upper
semi-continuous functions is again an upper semi-continuous one, we know that the
map

a€Px (€

-1
1 .
0 € M(X)— Hy(e;0) := inf -Hy \/T_loz
)¢ i=0
is a bounded upper semi-continuous non-negative function. This proves (2).

In the end we prove (3). Note that

h,(T,e)= inf h,(T,o)= inf inf- H (\/T‘h)

aEPx(€) a€Px () >1 0

~ L7 (VT a) 2} Hule 0

for p € M(X,T). Using (2) and the fact that the infimum of any family of upper
semi-continuous functions is again an upper semi-continuous one, we know that the
map

e M(X,T)— h,(T,e)
is a bounded upper semi-continuous non-negative function. This completes the proof

of the lemma. O
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3. WEIGHTED TOPOLOGICAL PRESSURES AND A DYNAMICAL FROSTMAN LEMMA

In this section we introduce the definition of weighted topological pressure for
(asymptotically) sub-additive potentials for general topological dynamical systems.
Moreover, using some ideas from geometric measure theory, we establish a dynamical
Frostman lemma (see Lemma 3.3) for weighted topological pressure, which plays a
key role in our proof of Theorem 1.4.

3.1. Weighted topological pressures for sub-additive potentials. Assume that
(X, T) is a TDS. We say that a sequence ® = {log ¢,,}2° ; of functions on X is a sub-
additive potential if each ¢,, is an upper semi-continuous nonnegative-valued function
on X such that

(3.1) 0 < Onim(®) < On(@)om(T"x),  VreX, mmneN,

In particular, ® is called additive if each ¢, is a continuous positive-valued function
so that ¢nim(z) = ¢n(x)dm(T™z) for all z € X and m,n € N; in this case, there is a
continuous real function g on X such that é,(z) = exp(321-, g(T"z)) for each n.

Let £k > 2. Assume that (X;,d;), i = 1,...,k, are compact metric spaces, and
(X;, T;) are TDS’s. Moreover, assume that for each 1 < i < k — 1, (X;41,T41) is a
factor of (X;, T;) with a factor map m; : X; — X;11.

Let a = (ay,...,a;) € R* with a; > 0and a; > 0 for 2 <i < k. Forany n € N
and € > 0, define

(3.2) Tic={A C Xy : Ais Borel subset of B} (x,¢) for some z € X},

where B2(z,€) is defined as in Definition 1.2.

Let ® = {log¢,}>2, be a sub-additive potential on X;. Let Z C X;, s > 0 and
N € N, define

a,s . 1
Ag'n (Z) = inf Z exp (—snj + — SUpP Prayn;] (x)) ,

ai JJEA]'
J

where the infimum is taken over all countable collections I' = {(n;, A;)}; withn; > N,
Aj € T and |J; A; 2 Z. The quantity Ag’y (Z) does not decrease with N, hence
the following limit exists:

AGU(Z) = lim Ay (2).

N—oo
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There exists a critical value of the parameter s, which we will denote by P?(T}, ®, Z, ¢),
where Ag"(Z) jumps from oo to 0, i.e.

as 0, s>PT1,2,Z€),
A@,E(Z) = { 00, s < Pa(Ty,®,Z,e).

Clearly P?(Ty,®, Z, €) does not decrease with €, and hence the following limit exists,
P13, @, Z) = lim PX(T3, @, Z€).
e—>

Definition 3.1. We call P?(Ty,®) := P?(11, P, X1) the a-weighted topological pres-
sure of ® with respect to T or, simply, the a-weighted topological pressure of ®, when
there is no confusion about T7.

Definition 3.2. Let f € C(X;). Define ® = {log ¢ }02 by ¢n(x) = exp(Z?:_g f(Tix)).
In this case, ® is additive. We just define P?(Th, f) := P?(1T1, D).

Taking f = 0, one can see that P2(Ty,0) = hi, (T1). Let ® = {log¢,};2, be a
sub-additive potential on X;. For any u € M(X1,T}), define

(3.3) O, (p) ;= lim

n—oo

This limit always exists and takes values in RU {—o0o} (cf. [36, Theorem 10.1]).

In our proof of Theorem 1.4, we need the following dynamical Frostman lemma.

Lemma 3.3. Let ® = {log¢,}22, be a sub-additive potential on X;. Suppose that
P2(T,,®) > 0. Then for any 0 < s < P*(T\,®), there exist a Borel probability
measure v on Xy and € >0, N € N such that for any x € Xy and n > N we have

(3.4) V(BA(x,0) < exp(—sn) sup (fa) (1))

yEBE(z,¢€)

A non-weighted version of the above lemma was first proved by the authors in the
particular case when ¢, =1 (see [17, Lemma 3.4]), using some ideas and techniques
in geometric measure theory. In the remainder of this section, we will give the de-
tailed proof of Lemma 3.3, by adapting and elaborating the approach in [17]. A key
ingredient of our proof is the notion of average weighted topological pressure, which
is an analogue of weight Hausdorff measure in geometric measure theory. The defi-
nition of this notion and some of its properties will be given in next subsection. In

Subsection 3.3, we prove Lemma 3.3.
13



3.2. Average weighted topological pressures. Let ® = {log¢,}22, be a sub-
additive potential on X;. For any function f : X; — [0,00), for s > 0 and N € N,
define

a,s . 1
(3.5) Wan(f) = 1nfz cj exp (—snj + — sup log dra;n, (x)) :

j al xeAj

where the infimum is taken over all countable collections I' = {(n;, 4;,¢;)}; with
n; > N, A, 67;2,’6, 0 <c¢j < o0, and

ZCjXAj > f,
J
where y 4 denotes the characteristic function of A, i.e., xa(x) = 1 if x € A and 0 if

x e Xl\A

For Z C X, we set W'y (Z) = Wg'y (xz). The quantity Wg"y (%) does not
decrease with N, hence the following limit exists:

Wee(Z) = lim Wg'y (Z).
’ Nooo &%
There exists a critical value of the parameter s, which we will denote by P§ (T3, ®, Z, €),
where Wg'?(Z) jumps from oo to 0, i.e.

a,s o Oa S>P;/(T1a¢az7€)v
W%(Z) o { 00, §< Py (Th,®,Z¢).

Clearly P§ (T1,®, Z, ¢) does not decrease with €, and hence the following limit exists,
P (T1,®,7) = lin% P (T, P, Z, €).
€E—
Definition 3.4. We call P3 (11, ®) := P§ (11, P, X;) the average a-weighted topo-

logical pressure of ® with respect to Ty or, simply, the average a-weighted topological
pressure of ®, when there is no confusion about T;.

The main result of this subsection is the following.
Proposition 3.5. Let Z C X;. Then for any s > 0 and €,6 > 0, we have
a,s+0 a,s a,s
A@,]\Jfrﬁe(Z) S W@,N,G(Z) S A<I>,N,6(Z>7
when N is large enough. As a consequence, Py, (Th, ®) = P*(T1, ®).

Before giving the proof of Proposition 3.5, we first state some lemmas.

Lemma 3.6. For any s > 0, N € N and e > 0, both A’y . and Wg'y . are outer

measures on X.
14



Proof. Tt follows directly from the definitions Ag’y, and Wg'y .. O

The following combinatoric lemma plays an important role in the proof of Propo-
sition 3.5.

Lemma 3.7. Let (X,d) be a compact metric space and € > 0. Let (E;);cz be a finite
or countable family of subsets of X with diameter less than €, and (¢;);er a family of
positive numbers. Lett > 0. Assume that F C X such that

Fg{xeX: ZCiXEi>t}’

Then F' can be covered by mo more than %ZZ c; balls with centers in |J,.; E; and
radius Ge.

To prove Lemma 3.7, we need the following well known covering lemma.

Lemma 3.8 (cf. Theorem 2.1 in [26]). Let (X,d) be a compact metric space and
B = {B(wi,1i)}icz be a family of open balls in X. Then there exists a finite or
countable subfamily B' = {B(z;, ;) }ier of pairwise disjoint balls in B such that

BeB i€’

Proof of Lemma 3.7. Without loss of generality, assume that Z C N. For any @ € Z,
pick z; € E; and write B; = B(x;,€) and 5B; = B(z;, 5¢) for short. Clearly E; C B;.

Define
ZZ{J?EX: ZCiXB¢>t}-

We have F' C Z. To prove the lemma, it suffices to show that Z can be covered by no
more than 7 Y, ¢; balls with centers in {; : i € Z} and radius 6e. To avoid triviality,
we assume that ) . ¢; < oo; otherwise there is nothing left to prove.

For k € N, define
Iy ={i€eZ: i<k} and Z,= {IEZ: ZCiXBi(x) >t}.
1€Ty
We divide the remaining proof into two small steps.

Step 1. For each k € N, there exists a finite set [J,, C 1, such that the balls B;
(i € Ji) are pairwise disjoint, Zy, C (J,c; 5B; and

1
#(Tr) < n Z Ci-
1€L
15



To prove the above result, we adopt the argument from Federer [14, 2.10.24] in the
study of weighted Hausdorff measures (see also Mattila [26, Lemma 8.16]). Since Zj, is
finite, by approximating the ¢;’s from above, we may assume that each ¢; is a positive
rational, and then multiplying ¢; and ¢ with a common denominator we may assume
that each c¢; is a positive integer. Let m be the least integer with m > t. Denote
B = {B;, i € Z}} and define u : B — N by u(B;) = ¢;. We define by induction
integer-valued functions vg, v1, ..., v, on B and sub-families By, ..., B,, of B starting
with vg = u. Using Lemma 3.8 we find a pairwise disjoint subfamily B; of B such that
Uges B € Upep, 5B, and hence Z;, C (Jg, 5B. Then by repeatedly using Lemma

3.8, we can define inductively for j = 1,...,m, disjoint subfamilies B; of B such that
B;C{BeB:v_(B)>1}, Z.C |]5B
BEBj

and the functions v; such that

' o Ujfl(B) —1 for Be Bj,
UJ(B) o { Uj_l(B) for B S B\BJ

This is possible since for j <m, Z, C {z: Y g4 5o, v;(B) = m — j}, whence every
x € Zj belongs to some ball B € B with v;(B) > 1. Thus

Z#(Bj) = > D (WaB) —v(B) = > Y (v;1(B) —v;(B))

j=1 BeB; BeB; j=1
< Y aB - uB) < Y uB) =Y a
BeB j=1 BeB €T

Choose jo € {1,...,m} so that #(Bj,) is the smallest. Then

Hence J;, :={i € Iy : B; € Bj,} is desired.
Step 2. There exists T' C I with #(Z') < 1 >..7 ¢i so that Z C |J,.4 6B;.

Since Z T Z, Z;, # 0 when k is large enough. Let J; be constructed as in Step 1.
Then J;. # () when k is large enough. Define Gy, = {x; : i € Ji}. Then

#(Gr) = #(Te) < %ch < %Zcz

i€Ty, i€T

Since the space of non-empty compact subsets of X is compact with respect to the
Hausdorff distance (cf. Federer [14, 2.10.21]), there is a subsequence (k;) of natural

numbers and a non-empty compact set G C X such that Gy; converges to G in the
16



Hausdorff distance as 7 — oo. As any two different points in GG have a distance not
less than ¢, so do the points in (. Thus G is a finite set, moreover, #(Gy;) = #(G)
when j is large enough. Hence

U B(z,5.5¢) D U B(x,5¢) = U 5B; D Zy,

zeG xEij iijj

when j is large enough, and thus J, . B(z,5.5¢) 2 Z. On the other hand, when j is
large enough, we have

U B(z',6¢) D U B(z,5.5¢),

CC’Eij zelG

hence we have | B(a',6¢) 2 Z, with #(Gr,) < 1> ,e1 ¢ O

/
T Gij

Return back to the metric spaces (X;,d;) and TDS’s (X;,T;), i« = 1,...,k. For
n € N, define a metric d2 on X; by

d2(z,y) = sup {di(ﬂjTi_lx,leTi_ly) 1 <i<k 0<j<[(a1+...+a)n]— 1} )

Lemma 3.9. Let € > 0. Then there exist v > 0 such that for any n € N, Xy can be
covered by no more than exp(ny) balls of radius € in metric d2.

Proof. By compactness, for each 1 < ¢ < k, we can find a finite open cover «; of X;
with diam(«;) < € (in metric d;). Let n > 0. Define

(a1+++a;)n]—1

k[T
p= \/ \/ T1_j7'z:110‘i
i=1

Jj=0

Then 3 is an open cover of X; with diameter less than e (with respect to the metric
d2). Hence X; can be covered by at most #(/) many balls of radius € in metric d2.
Let v > 0 so that exp(y) =[], (#(,))@ " +%+1 Then

k
#(8) < [ [ (#(a)) [ 90m < exp(ny),
i=1
which implies the result of the lemma. U

Proof of Proposition 3.5. Let Z C X1, s > 0, €,0 > 0. Taking f = yz and ¢; = 1
in the definition (3.5), we see that Wg'y (Z) < Ag’y . (Z) for each N € N. In the

following, we prove that AZ,’Z\J;;&(Z ) < Wg'v(Z) when N is large enough.

Let v > 0 be given as in Lemma 3.9. Assume that N > 2 such that

(3.6) n*(n+1)e™™ <1, ¥Yn>N.
17



Let {(ni, A, ¢i) biez be a family so that ZC N, 4; € 72, 0 < ¢; <00, n; > N and
(3.7) ZCiXAi > Xz
i€
We show below that
1
(3.8) Ag’ﬂge(Z) < Z C; €Xp (—n,;s + — sup log ¢[a1nﬂ(:c)> ,

s a1 zeA;
which implies AZS]\J; ' (2) < Wa'n.(2).
To prove (3.8), we write Z, = {i € Z: n; = n},
9a(@) = (Fran ())V*, gu(E) = sup gu ()

forn e N, x € X; and E C X;. Moreover set

Znt = {x ez ZCiXAi(l’) > t}.

i€Tn
We claim that

1
a,s+0
(3.9) Agve(Zne) < 55

Zci exp(—ns)gn(4;), ¥Yn>N,0<t<l

i€T,
To prove the claim, assume that n > N and 0 <t < 1. Set D = %log Gn(Zys). For

¢(=1,...,nand 1 € Z,, write

1 —1
Zf;t: {ZEEZM : —log gn(x) € (D—V—E,D—M}}, A= A, N7zt
’ n n n

nts
and
Zg’t = {:1: S/ %loggn(x) <D - fy} ., Aog=AN Zg’t.
For ¢ =0,1,...,n, write Z,, = {i € Z,, : A;; # (}; then
Zh, = {x € Xy Z ciXa,, (1) > t}.
€T,

Hence by Lemma 3.7, Zf;’t can be covered by no more than %Z ¢; balls with

iEInﬁg

center in (J;c; Ai¢ and radius 6e (in metric d;). It follows that for £ =1,... n,
s —n(s 1 —n(s 1
ASNEZ0) < e DT e)gal(Z0) < e T cigalAi)
i€T, i€T,
(3.10) X S .t
< e’Y—néE Z Cie_nsgn<14i>.
i€,

18



We still need to estimate AZ?%E(ZO ). By Lemma 3.9, X; (and thus Z),) can be
covered by no more than exp(nv) balls of radius 6e (in metric d2). Hence

A e(Z0,) < exp(ny)e g, (Z),) < exp(ny)e ") exp(n(D — 7))
(3.11)

1
< e M5 exp(nD) < e7™= cie " gn(A;),
p(D) < 75 3 ()

where the last inequality uses the following arguments: since exp(nD) = g,(Z,.), for
any u < exp(nD), there exists x € Z,,; so that g,(x) > u; however since x € Z,; we
have ;7 . 4.5, ¢ > t, which implies

"N Z ngn % Z Z ngn<Az> Z Z Gu Z U.

2€In 1€Ln:A;Dx 1€Ln:A;Dx

| =
~ | =

Combining (3.10)-(3.11), we have

1

a,s+0 a,s+4d —nd —ns

Ag 1\% nt) < ZAcb Jifrﬁe ZZ ) < (n+1)e 7 Z cie” " gn(Ai)
(3.12) i€

E Cl TL

zEZn

where in the last inequality we use (3.6). This finishes the proof of (3.9).

To complete the proof of Proposition 3.5, notice that > >2  n 2 < 3> n=2 < 1;
hence if = € UJ,,5 y Znn-2, then

Y axa@) = D axal Z > eixal Z nTi <t <1,

i€l icUnZn In n=N i€l,

thus x & Z by (3.7). Therefore Z C |, x Znn-2- By (3.12),

oo oo
1 _
AESJ;TH(SS (2) < Z A;wge(zn,n*Qt) < P Z Z cie” " gu( Zcz P, (A
n=N n=N 1€, €L

Letting ¢ 1 1, we have
a,s+4
Aq) ];["»66 < Z ¢;e gnz
i€

that is, (3.8) holds. This finishes the proof of Proposition 3.5. O
19



3.3. Proof of Lemma 3.3. It is easy to see that Lemma 3.3 follows directly from
Proposition 3.5 and the following lemma.

Lemma 3.10. Let s > 0, N € N and ¢ > 0. Suppose that ¢ :== Wg'y (X1) > 0.
Then there is a Borel probability measure p on Xy such that for anyn > N, x € X1,
and any compact K C B2(z,€),

p(K) < —e™"gn(K),

Q|

where
gn(2) = (gb[aml(z))l/alv gn(K) = Su}ggn<z)~
zZEe
Proof. Here we adopt the idea employed by Howroyd in his proof of the Frostman
lemma in compact metric spaces (cf. [19, Theorem 2]). Clearly ¢ < co. We define a
function p on the space C'(X7) of continuous real-valued functions on X; by

p(f) = (1/e)Wex ().
Let 1 € C(X;) denote the constant function 1(x) = 1. It is easy to verify that

(1) p(f +9) < p(f) +p(g) for any f, g € C(Xy).

(2) p(tf) =tp(f) for any t > 0 and f € C(X).

(3) p(1) =1, 0 < p(f) < [[fll for any f € C(X3), and p(g) = 0 for g € C(X3)
with g <0.

By the Hahn-Banach theorem, we can extend the linear functional ¢ — tp(1), t € R,
from the subspace of the constant functions to a linear functional L : C(X;) — R
satisfying

L(1) = p(1) = L and — p(—f) < L(f) < p(f) for any f € C(X,).

If feC(X,)with f >0, then p(—f) = 0 and so L(f) > 0. Hence combining the fact
L(1) = 1, we can use the Riesz representation theorem to find a Borel probability
measure p on X; such that L(f) = [ fdu for f € C(Xy).

Now let z € X; and n > N. Suppose that K is a compact subset of B2(x,¢). Let
d > 0. Since g, is upper semi-continuous, there exists an open set B2(x,e) DV D K
such that g,(V) < g.(K) + 9.

By the Uryson lemma, there exists f € C'(X;) such that 0 < f <1, f(y) =1 for
y € K, and f(y) =0 for y € X;\V. Then pu(K) < L(f) < p(f). Since f < xy and
n> N, we have W'y (f) < e ™ gn(V) and thus p(f) < Le*"g,(V). Therefore

n(K) <

o=

e g (V) <
20
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e " (gn(K) +9).



Letting § — 0, we have pu(K) <

Q=

e "¢, (K). This completes the proof of the lemma.
0

4. THE PROOF OF THEOREM 1.4: LOWER BOUND

In this section, we prove the lower bound part of Theorem 1.4. The following
weighted version of Brin-Katok theorem plays a key role in our proof.

Theorem 4.1. For each ergodic measure p € M(X4,T1), we have
—1 Ba 1 Ba
g OEABR ) L ogp(By(a.)
n

e—0 n—+o0 n =0 5100

= hi (1)
for p-a.e. v € X;.

We shall postpone the proof of Theorem 4.1 to Appendix A. In the following we
prove the lower bound part of Theorem 1.4 for sub-additive potentials rather than
additive potentials.

Proposition 4.2. Let & = {log ¢, }°°, be a sub-additive potential on X,. Then
P(Th,®) > sup { @, (p) + h5(Th) : p € M(X1,Th), ®u(p) # —00} .
Proof. By Jacobs’ theorem (cf. [37, Theorem 8.4]) and Proposition A.1.(3) in [16],

if u= fS(Xl 7y M dr(m) is the ergodic decomposition of an element p in M (X3, Ty),
then

m@) = [ @) drm), e = [ au(m) dr(m)
E(X1,Th) E(X1,Th)
Hence to prove the proposition, it suffices to show that
(4.1) P*(Ty,®) > &, (i) + min{o ", ho(Ty) — 0} — 6
for any 6 > 0 and any ergodic p € M(Xy,T7) with ®, () # —o0.

For this purpose, we fix § > 0 and an ergodic measure p on X; with ®,(u) # —oo.
Write
H :=min{6~", h3(T1) — d}.
By Theorem 4.1, we can choose € > 0 so that
—1 B2
(4.2) lim inf —128#4(Ba(7,9))

n—00 n

> H for p-ae. x € Xj.

Since ® is sub-additive, by Kingman’s subadditive ergodic theorem (cf. [37, p. 231]
and [16, Proposition A.1.]), we have

lim = log ¢, (z) = ®. ()

n—o00 1,
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for p-a.e. x € X;. Hence there exists a large N € N and a Borel set Ey C X; with
w(Exn) > 1/2 such that for any = € Exy and n > N,

(4.3) u(Bi(x,€)) < exp(—nH), log¢ran)(z) > arn®,(u) — arnd.

Now assume that I' = {(n;, 4;)}; is a countable collection so that n; > N, A; €
Toveso (cf. (3.2) for the definition) and (J; A; = Xi. By definition, for each j, there
exists x; € X so that A; C By (x;,¢/2). Set

Z:={j: A;NEyN#0}.
For j € Z, pick y; € A; N E; then we have
A; C B} (z),¢/2) C B} (yj. €)
and thus

1(Ay) < u(By, (yj,€)) < exp(—n;H);
moreover,

1 1
— sup log ¢ra;n, 1(z) > —log qb(amﬂ(yj) > n;®,(p) — nyo.
a1

a1 TEA;

Set s := @, () + H — §. Then for any j € Z,
1
exp <_an + o S D <x>) > u(A;) exp (ny (=5 + . () + H — 6)) = p(A,).
xe
Summing over j € Z, we have

1
Zexp (—sn]—l——sup gb(amj] ) >Z” >M<UA> > u(Ex) > 1/2.

JEL j€T JET

It follows that AG"(X1) > Ag'y (X1) > 1/2, and thus
Pa(Tl, q)) Z Pa<T1, (I),Xl, 6/2) 2 S = q)*(ﬂ) -+ min{(S_l, h‘z(Tl) - (5} - 5,
as desired. 0

5. THE PROOF OF THEOREM 1.4: UPPER BOUND

In this section, we prove the upper bound in Theorem 1.4, that is, for any f € C'(X;)
and § > 0, there exists p € M(X7,T}) such that

P (T, f) < h5(T) + [ fdu+9d.

X1

Before proving the above result, we first give some lemmas.
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Lemma 5.1. Let (X, T) be a TDS and p € M(X). Let a« = {Ay,..., An} be a Borel
partition of X with cardinality M. Write for brevity

h(n) = H% Z?_1HOT7i(C¥>7 h(n, m) = H% Z;r;—;n—luoT,i(O{).

i—0

for n,m € N. Then

(i) h(n) <logM and h(n,m) <log M for n,m € N.
(ii) [h(n+1) — h(n)| < - log (3M2(n + 1)) for alln € N.

n+1
(iii) |h(n+ m) — =2-h(n) — -2-h(n,m)| <log?2 for all n,m € N.

n+m n+m

Proof. (i) is obvious. Now we turn to the proof of (ii). It is well known (see e.g.
[37, Theorem 8.1] and the proof therein) that for any finite Borel partition 5 of X,
vy, € M(X) and p € [0, 1],

0< le/l-i-(l—p)l/z(ﬂ) _leq(ﬁ) - (1 _p)HVQ(/B)
(5.1) < —(plogp + (1 —p)log(1l —p))
< log 2.

Let n € N. Applying (5.1) and (i), we have

[h(n +1) = h(n)]

= B+ 1) = () = Hen () = —h(0) + — = Hyori(a)
< ‘h(n—i— 1) — nj_lh(n) - %_HHWTn(a) + e log M
S_nillogniil_n—ll-llogn—li-1+n—2kllogM

< n_li_llog (3M?(n+1)),

where we use the fact (1 +1/n)" < e < 3 in the last inequality. This proves (ii).

Finally, since

1 n+m—1 n 1 n—1 m 1 n+m-—1
T—i: - T—i - T—i
n-+m Z: e n+m<nZ’uo )+n+m<m Z e )

1=n

for n,m € N, (iii) follows from (5.1). O

Lemma 5.2. Let (X,T) be a TDS and pp € M(X). For e > 0 and {,M € N, let

Ho(e, M; L) be defined as in (2.3). Then the following statements hold.
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(1) For alln € N,
H%Z?;&WT_Z-(G,M;E) H oy uoT,i(e,M;f))
1
< ———log (3M*(n+1)).
S g e BM I+ D)
(2) For alln,m € N,

(e, M 0) +

le len+m 1#OTZ(€M€)

) uoT ™ n+m
(5.2) log 2

14

S H 1 Zm+n—1 uOT,i(E, M; g) +

n+m 1=0

Proof. The statements directly follow from the definition of H, (e, M;¥¢) and Lemma
5.1. 0

Lemma 5.3 (Lemma 2.4 of [10]). Let v € M(X) and M € N. Suppose & =
{A1,..., A;} is a Borel partition of X with j < M. Then for any positive integers
n, ¢ with n > 2¢, we have

n—1
1 ~ 1
—-H, T7'¢ | < - T_Z —1 M,
where v, = 23"y o T

The following lemma is a slight variant of [20, Lemma 4.1] by Kenyon and Peres.
Lemma 5.4. Letp e N. Let u; :N—=R (j=1,...,p) be bounded functions with
lim |uj(n+1) —uj(n)| = 0.

n—o0

Then for any positive numbers cy,...,c, and r1,...,1p,

timsup S (ay[esn]) — w([ryn])) = 0.

n—+oo .
=1

Proof. For the convenience of reader, we give a proof by adapting the argument of
Kenyon and Peres in [20].

For j = 1,...,p, extend u; in a piecewise linear fashion to a bounded continuous
function on [1,+00). Then for each 1 < j <p,

; () — 7 . > —_ul < . —
(5.3) tLlfrnoo sup {|u](x) ui(y)| xyy >t v —y| < %rgl?;;max{cz,n, 1}}
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Take a positive number M so that

(5.4) M > max{|logc;| + |logr;| + 1}.
1<j<p

Then for every w > M,

35 e e

p w+log c; wlog r;

x x
E / uj(e”)dx —/ uj(e”)dx
: M+logc; M+logr;

J=1
p w+log ¢; w+logr;
x x
< E / uj(e”)dx —/ u;(e”)dx
j=1 M+logc; M+logr;

p w+log ¢; M+log ¢;

_ x z

= E ’/ u;j(e )dx—/ uj(e )dz‘,
j= wlogr; M+logr;

1

Since each u; is bounded, the sum in the right-hand side of the last ‘=" above is
uniformly bounded. It follows that
p
lim supz (u; (e o8 — (" H1B™3)) > 0.
T—+00 j=1
Setting t = €”, one has
lim su w;(cit) — uj(rt)) > 0.
t—H—oopZ ! ! ))
Combining the above inequality with (5.3), we have
lim su uj([en]) —ui([rin
n_>+oopz i([¢ i([rin])
= limsu ui(c;n) —ui(rm
THJroopZ i\Cj j(rin))
= limsu u;j(ci[t]) (|t
t_>+oopz i (¢ [E]) = uy(r;[t]))
= lim supz (uj(cit) —uj(rit)) >0,
t——+o00 =1
which completes the proof of the lemma. 0
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Proof of Theorem 1.4: upper bound. Suppose that P?(T}, f) > 0. Fix 0 < s < § <
P2(Ty, f). Let ® = {log,}>2, be the additive potential generated by f, that is,

dn(z) = exp(S, f(x)) where S, f(x) := S~ f(Tiz). Take ¢y > 0 such that

(5:5) sup{|f(z) = f(W)l : =,y € X1, di(w,y) < e} < (5" = 5)ar /(1 + aa).

By Lemma 3.3, there exist v € M(X;), € € (0,¢), and N € N such that

1
(B2, < sup exp (—s’n+—swf<y>)
yeBa(x,€) ax

(5.6) 1
< exp (—sn + a_S[aﬂﬂf(x))
1

for any n > N and z € X, where in the last inequality we use (5.5).

By continuity, there exists 7 € (0, €) such that for any 1 <i < j <k, if z;,y; € X;

satisfy d;(x;,y;) < 7, then

dj(mjq 0 om(x;), mj_10---0om(y;)) < e

Take My € N with Px, (1, My) # 0 for i = 1,...,k, where Py, (7, Mp) is defined as

n (2.2). Now fix M € N with M > M,. Let a; € Px,(1,M) fori =1,...,

B; = 7,-L; and write for brevity that
to(n) =0, t;(n)="[(ar+...+a;)n]

formeNandi=1,...,k Then for any n € N and x € X;, we have

k t; (n)fl

(5.7) V 'V Ti8i(x) € Bix.o).

i=1j=t;_1(n)

Now assume that n > N. By (5.6) and (5.7),

(5.8) (\/ \/ T, Bi(x > < exp (—sn - ailS[am]f(x))

i= 1.7 ti— 1
for any x € X;. It follows that

E ti(n)—

H(\/ \V Tﬂ@) - [1os(V/ V1))

1= 1] tz 1 i=1] tz 1(TL)

> sn — /ailS[al,ﬂf(x)dy(x).
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Hence
k ti (n) —1

(5.9) S\ T8)zm- / ails[m F@)dv(z).

=1 j=ti_i(n)

Now fix ¢ € N. By Lemma 5.3, the left-hand side of (5.9) is bounded from above
by
k -1
t: —t. .
Z z(n) ; i l(n) Hwi,n < \/ Tfjﬁz) 4 2k 10g ]\47

i=1 §=0

where .
Zti(”)—l Vo Tfj

j=ti—1(n)
ti (n) — ti,l(n)
Hence by (5.9) and the definition of He(7, M;¥) (cf. (2.3)), we have

Wi p =

k
Z(ti(”) —tic1(n))H,, o1 (7, M )
(5.10) i=1
> sn — @] /fdwl,n — 2kllog M.
a1
Z’f”fl voT;d .
Define v, = ==——— form € N. Fori=1,...,k, we have
m— — —J i(n)—1 — -J
LS werh)e L o) o T
UmOT;_1 = y Wip O T, =
m ti(n) —ti-1(n)
and
_ ti_1(n) _ ti(n) —ti_1(n) _
(511) Vti(n) © Tifll = tz(n) Vti_1(n) © Tifll + tl(n) Win © 7—2‘711'

Applying Lemma 5.2(2) to the measure vo7;"} (more precisely, in (5.2), we replace
the terms T', j1, n, m by Tj, vo7,-}, t;i_1(n), t;(n) — t;_1(n), respectively), we have

ti_l(n) tz(n) — ti_1<n)
-1 M, ¢ —1 M/
ti(n) neymer s (T M 0) + ti(n) wimor (T M5 €)
log 2
L R
That is,
tl (n)Hljti(n)OTi__ll (7—7 M; g) - tzfl <n)Hyti_1(n)OTi__11 (7_7 M7 6)
ti n)log 2
> (tz('N/) — ti,l(n))Hwi,noﬁ__ll (T7 M)g) — ()Tg
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Combining the above inequality with (5.10), we have

k
Z( Hy oror (R M0 = tia(m)H,, o (7, M,0)
(512) i=1
>on - kti(n) log 2

— 2kllog M — /

Write g;(n) := H, ot (1, M;?¢). Then by Lemma 5.2(1),

(5.13) 1gi(n) — gi(n +1)| < log (3M*(n + 1)).

{(n+1)
Set

v(n) izzti(n)(gi(t( n)) — gi(ti(n th 1(n)(gi(ti-1(n)) — gi(t1(n))).
Then we have
+Z n) — ti-1(n))gi(t1(n)),

where ©,, is defined as in (5.12). Hence by (5.12), we have

PR UPHNER)
(5.14) P
> _M L ZkllogM k'tk(n)élogQ.
Define
w(n) = D _(art - +aia) (gi(tia () =gi(h1(n) =3 _(ar-+- -+ ai) (gi(ti(n) —gi (11 ().

Then we have limsup,,_,,, w(n) > 0 by applying Lemma 5.4, in which we take p =
% — 2.

w;(n) = (a1 + -+ +aj)gji1(n) if1<j<k-—1,
! —(a1+ -+ aj pr2)gjni2(n) itk <j <2k -2

and

Cj:

a; if1<j<k-1,
aj-pre Mk <j<2k-2
and r; = 1 for all j; the condition lim,_, |u;(n 4+ 1) — u;(n)| = 0 fulfils, thanks to

(5.13).
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Since g;’s are bounded functions, we have

lim sup —(n) = limsupw(n) > 0.

n—o0 n n—o00

Hence letting n — oo in (5.14) and taking the upper limit, we obtain

k
k log 2
(5.15) lim sup (Z a;g;(t1(n /fdvtl n)) > s (ar + - €+ ax) log

Take a subsequence (n;) of the natural numbers so that the left-hand side of (5.15)
equals

k
]ILI?O (; aiHutl(nj)oTiill (7_7 M7 6) + /fdytl("j)>

and moreover, 14 (,,,) converges to an element A € M(Xy,T1) in the weak™ topology.
Since the map Hq(7, M; /) is upper semi-continuous on M(X;) (see Lemma 2.3), we
have

k
k(ay + -+ + ax)log 2
(5.16) ;aif[}\on—ll (1, M;0) +/fd)\ > 5 — 7 :

Define

£ {(M,ﬁ,é):M,éeN,5>OwithM2M0,€2 k(“1+”'5+“’“)10g2}

and

QM,Z,(S = {7] € M(XlaT1> : H?(T7M7€) +/fd7] Z S — 5}’

where H2 (7, M; () = ZZ L (7' M:;?0). Then by (5.16), Qpss is a non-empty

T]OT

compact set whenever (M, 0, §) € 5 However

QM1751,51 N QM2752,52 2 QM1+M2,E152,miH{51752}

for any (M, 01, 61), (Ma, {2, d5) € €. Tt follows (by finite intersection property) that
ﬂ Qs 7 0.

(M £,5)€E

Take ps € ﬂ(Mj’&)Eg Qares. Then

T1> /fdMsZS



where b3 (T1,7) = S a;hy, o-=1 (T3, 7). Since the map 6 € M(Xy,Ty) — hg(T1,7)
is upper semi-continuous (see Lemma 2.3), we can find p € M(X;,T7) such that

B (Th7) + / Jdu > BTy, f.6) — wi(f)

by letting s 7 P, (Th, f,€). Since hi(T1) > hi(Ty, 7), this completes the proof of the
proposition. [

6. SUB-ADDITIVE CASE

In this section, we extend Theorem 1.4 to sub-additive potentials, under the fol-
lowing two additional assumptions: (1) hyp(77) < oo and (2) the entropy maps
0 € M(X;,T;) — hy(T;),i=1,2,--- , k, are upper semi-continuous.

Definition 6.1. Let f : X; — [—o0,+00) be an_upper semicontinuous function.
Define ¥ = {log ¥, }5°, by ¢¥n(z) = exp(zg;é f(T{x)). In this case, ¥ is additive.
We just define

Pa(Tl,f) = Pa(Tl,\I/).

Lemma 6.2. Assume that hop(T1) < oo and the entropy maps 0 € M(X;,T;) —
ho(T;), i = 1,2,--- ,k, are upper semi-continuous. Let f : X7 — [—00,+00) be a
upper semicontinuous function. Then there exists p € M(Xy,T1) such that

ho(T) + [ fdu > PA(Th, f).

X1

Proof. For g € C(X;) with g > f, we define

M, = {1/ e M(X,,Th) : h2(TY) +/

X1

gdv > PA(T1, f) .

Notice that, under the assumptions of the lemma, the entropy map v € M(X;y,T}) —
h2(T}) is a bounded upper semi-continuous function. Hence by Theorem 1.4, there
exists p1y € M(X7,T}) such that

)+ [ gduy = P(Tg) = PTL ).
X1

Thus py € M,. Since v € M(X1,T1) = [y, gdv is a bounded continuous non-

negative valued function on M(Xy,7}), the mapping v € M(X;,T1) — h3(T1) +

| X4 gdv is a bounded upper semicontinuous non-negative valued function on M( Xy, T}).

Thus M, is a non-empty closed subset of M (X1, T}).
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Now put
Mf = ﬂ ./\/lg.
9€C(X1),92f
Note that My, N My, 2O Muin(g, g} for any gi1,g2 € C(Xy) with g1 > f, go > f,
and each M, is a non-empty closed subset of the compact metric space M(Xy,T}).
Hence My # (), by the finite intersection property characterization of compactness.
Take any p € My. Then

he(Th) +/ gdp > P*(T1, f)
X3
for any g € C(X;) with g > f. Moreover, since 0 < h#(7T1) < oo, we have
hiy(Th) +  inf / gdp > P*(T1, f).
X1

9€C(Xa1),92f

Finally by L 2.2 inf dp = d d th
inally by Lemma D eol Jx, 9dp = [, fdp and thus

ho(Th) + | fdp > P2(T4, ).
X1
This completes the proof of the lemma. 0J

Lemma 6.3. Let & = {log¢,}>°, be a sub-additive potential on X;. If for { € N
and M € N, let fyp(x) = max{%log@(a:), —M} for x € Xy, then fra: X1 — Rois
a bounded upper semi-continuous function and

Pa(TlafZ,M) Z Pa(Thq))’

Proof. Let ¢ € N and M € N. Let fou = max{%logqbg,—M}. It is clear that
fear + X1 — R is a bounded upper semi-continuous function since %log o2 X1 —
[—00, +00) is upper semi-continuous.

Let ¢p(x) =1 for 2 € X; and
D:=D{) = sup log ¢(x).

2€X1, i€{0,1,+ £—1}
Then 0 < D < oo. For x € X; and n > 2/, we have
[27])-1

log ¢, () < log ¢i(x) + log 6¢(T{"*'x) | +10g 6, _;_nsyy (1177
[25]
Jj=0

[

()1
< 2D+ Z log ¢o(TV )
=0
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for each i € {0,1,...,¢ — 1}, using the sub-additivity of ® = {log ¢,,}>°,, where [a]
denotes the greatest integer < a. Summing ¢ from 0 to £ — 1, we obtain

n—i

E—l[ 7 -1 n—~¢

1 o 1 .
loggu(x) <2D+) Y ;loggu(T7Fe) =2D+ ) Slog du(T}x)
i=0 j=0 j=0
n—~{ ' n—1 '
<2D+3 four(Tin) <C+ 3 fon(Tiw)
j=0 j=0

where C'= 2D + (M € [0, +00).
Define U = {log¢,,}°°; by ¥, (z) = exp (Z;:g f[’M(T{I>>. Then
(6.1) dn(2) < eChy (), VaoeXy,n>20
This implies that for any € > 0, s € R and N > 2a./,
B (X)) < et M (X).
Hence Mg (X;) < e%M?I,’i(Xl) for e > 0, s € R. It follows that
PY(Ty, @, X1,¢) < PY(Th, ¥, Xy, €) = P14, four, X1, €).
Letting ¢ — 0, we are done. 0

Theorem 6.4. Assume that hyop(17) < 00 and the entropy maps 6 € M(X;,T;) —
ho(T3), i = 1,2,-- ,k, are upper semi-continuous. Let ® = {log¢,}>2, be a sub-
additive potential on X;. Then

Pa(Tl, q)) = sup{hf:(Tl) + (ID*(,u) IS M(Xl,Tl)},

and moreover the supremum s attainable.

Proof. By Proposition 4.2, it is sufficient to show that there exists p € M(X;,T1)
such that P*(T1, ®) < hS(T1) + Pu(p).

For n,M € N, let f,(z) = ~tlog¢n(z) and f, n(z) = max{+log¢,(x), —M} for

T n

x € Xj. Then f, y is a bounded upper semi-continuous function. Define

M’V%M = {V - M(Xl,Tl) . hz;(Tl) + fn,M dv 2 Pa(Tl,CI))} .

X1
By Lemma 6.2, there exists ji,, ;s € M(X7,T1) such that
RE (1) + Jon i ar > P(TY, fomr) > P2(Th, @),

Hn, M
X1

where the last inequality comes from Lemma 6.3. Thus p,n € M, y. By the

assumption, we know that the function h2(7}) is bounded, upper semi-continuous
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and non-negative on M(Xy,7T;). Notice that v € M(Xy,T1) — le frmdy is also
an upper semi-continuous function from M(Xy,77) to R. Hence v € M(X,,T}) —
h3(Ty) + [, famdv is upper semi-continuous. Thus M, s is a non-empty closed
subset of M(X;,T7). Moreover since M,,; O M, 5 D --- and infen le fomdy =
le fndv for any v € M(Xy,Ty), one has M,, = ();ey Mn,i is @ non-empty closed
subset of M(Xy,T7).

Now put
Mcp = ﬂ ./\/ln

neN

Since [y, fainpdv < min{ [ fo,dv, [ fa,dv} for v € M(Xy,Ty), we have M., N
My, 2 My, for any ny,ny € N. Moreover since each M,, is a non-empty closed
subset of the compact metric space M(X1,T}), one has Mg # () by the finite inter-
section property characterization of compactness. Take any u € Mg. Then

hZ(Tl) + . Jndp > Pa(Thq))

for any n € N. Moreover, since 0 < hi(7T1) < oo, we have
a : 1 a
)+ inf - [ ogoud > P(T5).
Finally since inlg % le log ¢ dpp = @, (1) and thus
ne

WD) + @) > PT,.B).
This finishes the proof of the Theorem. O

7. FINAL REMARKS AND EXAMPLES

In this section we give some remarks, examples and questions.

7.1. In [2, 15], Barral and the first author defined weighted topological pressure for
factor maps between subshifts in a different way, motivated from the study of multi-
fractal analysis on affine Sierpinski gaskets [3, 4, 21, 29] and a question of Gatzouras
and Peres [18] on the uniqueness of invariant measures of full dimension on certain
affine invariant sets. The approach is based on the following lemma, which is de-
rived from the relativized variational principle of Ledrappier and Walters [24] and its

sub-additive extension [39].
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Lemma 7.1. [2, 15] Assume that (X,T) and (Y, S) are subshifts over finite alphabets
and ™ : X — Y is a factor map. Let f € C(X) (or more general, a subadditive
potential on X ). Then there exists a sub-additive potential @y = (log ¢,)22, on Y
such that for any v € M(Y,S),

sup ( / Fdp+ hy,(T) — hV(S)) —B.(v) = lim © / log Gndv.

HEM(X,T), por—l=v n—+00 N

According to above lemma, for given ay,as > 0, one has

sup ( / Fp + arh,(T) + agh,,(S))

HEM(X,T), por—l=v

= sup {(a1+a2)hl,(5+ sup a (/ —fdp+ h,(T) — h(S)>}

veM(Y,S) per—ly
— swp {(a+ @)k () + (D, 1))}
veM(Y,S)
(3]
= PlS—9 - .
(a1—|—CL2) ( 7a1+a2 a11f)

where the last equality follows from the sub-additive thermodynamic formalism (see
e.g. [10]). Hence in [2, 15], P(41:%2) (T f) was defined in terms of sub-additive topo-
logical pressure in the subshift case.

However, Lemma 7.1 does not extend to factor maps between general topological
dynamical systems. Below we will give a counter example. Hence the approach in
[2, 15] in defining weighted topological pressure does not extend to general topological
dynamical systems.

Example 7.2. Let X = {(z,y,2) e R?: =1 <z < 1,5°+ 2% = 2%} be a cone surface.
DefineT : X — X by

T((x,zcosb,xsinf)) = (z,xcos(20), xsin(20)), z= € [—-1,1].

Let Y = [—=1,1] and S : Y — Y be the identity. Set m : X — Y by n((z,y,2)) = x.
Then (Y, S) is a factor of (X, T) associated with the factor map w. Take f € C(X)
with f = 0. Suppose that Lemma 7.1 extends to this case, that is, there exists a
sub-additive potential ® on'Y such that for any v € M(Y,S),

(7.1) sup (h(T) = hy(S)) = B.(v).

per—ly

In what follows we derive a contradiction.
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We first claim that the mapping
(7.2) ve M(Y,S)— sup (h,(T)—h,(5))

per—ly

is not upper semi-continuous. To see this, fort € Y, let v, = §; (the Dirac measure
at t). Clearly 6; € M(Y,S) and when t — 0, 6; — &y in the weak-star topology.
However one can check that

sup (hu(T) — hl,t(S)) =

pen—14;

log2, fort+#0
0, ift=0 "

Hence the mapping in (7.2) is not upper semi-continuous. Therefore by (7.1), v +—
. (v) is not upper semi-continuous on M(Y,S). But this contradicts the fact that
v O.(v) is always upper semi-continuous (see e.g. [16, Proposition A.1.(2)]).

7.2. Using Corollary 1.5, we can extend Kenyon-Peres’ variational principle (1.2) and
its higher dimensional version to a particular class of skew product expanding maps
on the k-torus T* := R*/ZF (k > 2).

To see this, let 2 < my < my < ... < my be integers. Forv=1,... k — 1, let ¢;
be C' real-valued functions on T?. Define T} : T* — T* by

Ti((x1, ... xk)) = (Mmyzy, mexs + ¢1(x1), ..oyl + P11 (1, -, T1))-
This transformation can be viewed as a skew product of the maps
i muxg,  (=1,...,k).

Let K C T* be a Tj-invariant compact set. Let 7; (i = 1,...,k—1) be the canonical

projection from T* to TF~, i.e.
Ti(xy, k) = (21, o, Tpy).
Set X1 = K and X; =7,_1(K) for 2 <i < k. Define T; : X; — X; (i =2,...,k) by
Ti((z1, ..., 2;)) = (myxy, maxe + (1), .., miz; + Gi1(z1, ..., 2i1)).
Then (X;41,T;41) is the factor of (X;,T;) associated with the factor map m; : X; —
X1, which is defined by
(X1, .oy Thr1—) > (@1, .00, Thei)-

Define a = (aq, . .., a;) with

1 1 1

1= = -
log my, logmyp1—;  logmyyo;
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It is direct to check that there exist two constants C1,Cy > 0 (depending on ¢;’s)
such that for any € > 0 and = € T*,

(7.3) CyBy-ne() € B, ¢) C CyBpne(x).

Hence from the definition of h2 (-), we see that h2 (71, K) = dimy K. Applying

top top
Corollary 1.5, we have
(7.4) dimg K = i, (Th, K) = sup  h3(T1),
HEM(X1,T1)

where the supremum is attainable at some ergodic u € M(Xy,T}). Moreover by (7.3)
and Theorem A.1, we have dimy p = hi(T}) for each ergodic u € M(X1,T1). Hence
there exists an ergodic u € M(X;,T) of full Hausdorff dimension, i.e.

(7.5) dimg p = dimy K.

This extends the work of Kenyon and Peres [20]. We remark that (7.5) was also
proved by Luzia [25] for a more general class of skew product expanding maps on T?.

7.3. In [17], the authors proved a variational principle for topological entropies for
arbitrary Borel subsets. We remark that this principle also holds for weighted topo-
logical entropies, by applying Lemma 3.10 and following the arguments in [17].

In the end we pose several questions about possible extensions of Theorem 1.4:
does this result remain valid for Z%actions? and moreover does it admit a relativized
or randomized version? is there an analogous topological extension of the dimensional
result on Gatzouras-Lalley self-affine carpets [23]?

APPENDIX A. A WEIGHTED VERSION OF THE BRIN-KATOK THEOREM

The main result in this appendix is the following weighted version of the Brin-Katok
theorem. It is needed in our proof of the lower bound of Theorem.

Theorem A.1. For each ergodic measure jp € M(X;,T}), we have
_1 Ba _1 Ba
llmhmmf Og/‘b( n<x7 6)) — hmhmsup Og :u( n(xa 6))

e—0 n—-+oo n e—0 n—-4o00

= h;(Th)
for p-a.e. v € X;.

When a = (1,0,...,0), the above result reduces to the Brin-Katok theorem on
local entropy [7].

The proof of Theorem A.1 is based on the following weighted version of the Shannon-

McMillan-Breiman theorem.
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Proposition A.2. Let (X,B,u,T) be a measure preserving dynamical system and
k>1. Let ay,...,ay be k countable measurable partitions of (X, B, p) with H, (o) <
oo for each i, and a = (aq,...,a;) € R¥ with a1 > 0 and a; > 0 fori > 2. Then

1 k
(A.1) lim —Ju<\/(%)g(0“+ HaN]- 1) Zal (FIZ.) ()

N—+4o00 N

=1

almost everywhere, where

Fi(x) := I#(\I}aj‘ ?T‘"(\?aﬂ)(z), i=1,....k

and I, = {B € B: u(BAT'B) =0}. In particular, if T is ergodic, we have

k k
. 1 [(a1++a;))N|—
Jm (V)0 = Ve
1= =1 Jj=t
almost everywhere.
When k£ = 1 and a; = 1, Proposition A.2 reduces to the classical Shannon-

McMillan-Breiman theorem (see e.g. [30, Theorem 7]). We remark that a variant
of Proposition A.2, for certain particular partitions, was proved by Kenyon and Peres
(cf. [20, Lemmas 3.1 and 4.4]) in the case that p is ergodic. For completeness and
for the convenience of the reader, we will provide a full proof of Proposition A.2 in
the end of this section, by adapting the argument by Kenyon and Peres in [20].

The following result is a direct corollary of Proposition A.2.
Corollary A.3. Let (X,B,u,T) be an ergodic measure preserving dynamical system
and k > 1. If aq,...,ap are k countable measurable partitions of (X, B, n) with

=g = =g and Hy(oy) < oo, i=1,....k, and a = (ay,...,a;) € R* with
a1 >0 and a; > 0 for 1 > 2, then

k [(a1+-4a;)N1—1

g (VT V )= anma)

i=1  j=[(ao++a;—1)N]

almost everywhere, where we make the convention ag = 0.

Proof of Theorem 4.1. We just adapt the proof of Brin and Katok [7] for their local

entropy formula.
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We first prove the upper bound. Let € > 0. Let a; be a finite Borel partition of
X, i=1,...,k, with diam(«;) < €. Then

B2(x,€) D ﬂ L) Ha1+'"+a")n1_1(x)

for x € X;. Hence by Proposition A.2, for u-a.e x € X; we have

k

—log p(B3(x, €)) —10gu<ﬂ(r L) arttainl- 1(:5))

lim sup < lim sup =
n—-+4o0o n n—-4oo n
k
(V@ add™ @) ‘
1= — E . -1 .
B l;lgilolop n N i=1 l <TI’ \_/ Tj_l%)

k k
:Zaih#<TlaTiill<aiv \/ 77;10 "o 1%))
i=1 j=it+1
k
_za@ wor (Toov \f mtoromitiay)
Jj=i+1

< Zal poT, _ - ha(T1>

Letting ¢ — 0 in the above inequality, we have

—1 B2

=0 notoo n

< RE(TY).

This completes the proof of the upper bound.

Next we prove the lower bound. It is sufficient to show that for any 6 > 0, there
exist € > 0 and a measurable subset D of X such that u(D) > 1 — 3§ and

lim inf —18A4BR @ O) o [ WA(TY) =66 —2(1+ay + -+ ag)é
n—+00 n 5 H
for any x € D.

Fix 6 > 0. We are going to find such € and D. First, we find a finite Borel partition
o = {A AL, ALY of X, i =1, k, such that

(1) o =7 (ggq) fori=1,... . k—1.
(2) Zf 1 alh’p,m’ (7—‘7/’ a’b) > mln{(S?ha(Tl) - 5}

(3) por} (8a2)—0f0rz—1,...,k.
38



Let M = max{u; : 1 <i <k}and A ={1,...,M}. Given m € N, for s =
(si)mott = (t)i2y € Ao m=1} the Hamming distance between s and t is defined
to be the following value

. _
E#{ZE{O,l, ,m—l}sz#tl}

For s € AOL=m=1F and 0 < 7 < 1, let Q(s,7) be the total number of those t €
AL m=1} g6 that the Hamming distance between s and t does not exceed 7. Clearly,

m )Mfmﬂ.

[m]

Qu(r)i=  max  Qls,7) < (

SEA{O,I,W ,m—1}

By the Stirling formula, there exists a small §; > 0 and a positive constant C' :=
C(9, M) > 0 such that

m
A2 M[mél] < pdm+C
(42 (M <
for all m € N.
For n > 0, set

Uf](ozi) ={reX;: B(riz,n) € a;(1,12)}, i=1,... k.

Then (M, ., Uy (i) = 7,1 (00;), and hence p(Uj(a;)) — pu(m,2}(0y)) = 0 as n — 0.
Therefore, we can choose € > 0 such that p(U}(a;)) < & for any 0 < n < ¢ and
i=1,... k.

By the Birkhoff ergodic theorem, for u-a.e. x € X;, we have

[(a1+-+ai;)n]—1

I (o) (T4
nﬁlgloo [(al + .+ &k Z Z XUe(al)( I'I)

=1 j=[(ap++a;—1)n]

1

- G Yy e <b

where we take the convention ay = 0. Thus we can find a large natural number £,
such that p(Ay) > 1 — ¢ for any ¢ > {,, where

a1+ +a1n —1

Z Z XUg‘(ai)(leﬁ) <9 foralln>/¢

=1 j=[(ap+~+a;—1)n]
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Since Tglal - TflocQ e T];_lloék, we have

k [(a1+-+a;)n]—1

“logu(V (Ve @)
. =1 *j=[(ao++a;—1)n|
lim

n—-+oo n

k

= E az Tla Ti_ 1az E MOT T’z;az)

almost everywhere by Corollary A.3. Hence we can find a large natural number ¢
such that p(By) > 1 — § for any ¢ > ¢, where By is the set of all points z € X; such
that

[(a1+ —i—aln
—tog Vi, (VIS

n

(A.3)

Tl_jTZ:lla> )
> Za Poor=1. (T, ;) — 0

for all n > /.

Fix ¢ > max{ly,(1}. Let E = Ay N By. Then p(E) > 1 —20. For z € X; and
n € N, the unique element

O(?’L IL’) _ (C’(n l,))][(_aé-l-“'-l-ak)nl—l

in {01 [t tannl =1} gatisfying that TVx € 7,7° (AZC (ny) for [(ao+---+ai_1)n] <
j < |—(a1 + o da)n] — 1,1 = 1,...k, is called the ({a;}F_,,a;n)-name of x.

[(a14-~+a;)n]—1 T j_—1

Since each point in one atom A of \/f:1 <\/] ot tas yn] 11°Ti 10@) has the same

({a;}k_ |, a;n)-name, we define
C(n,A) :=C(n,x)
for any z € A, which is called the ({a;}¥_,,a;n)-name of A.

Now if y € B2(x,¢€), then fori =1,... kand [(ag+---+a;_1)n l <j<[(ar+---+
a;)n] — 1, either TVz and T7y belong to the same element of 7,4 a; or TVz € Ui (wy).
Hence if x € E, n > ( and y € B2(z,¢), then the Hamming distance between
({;}f_ |, a;n)-name of z and y does not exceed §;. Furthermore, B2(z, €) is contained
in the set of points y whose ({;}f_,,a;n)-name is d;-close to ({a;}%_,, a;n)-name of
x. It is clear that the total number L,(z) of such ({a;}*_;,a;n)-names admits the
following estimate:

Ln(l') < ( l(al +o ak)n—l )M”(al-‘l—"--ﬁ-ak)n]dﬂ
~ \U[(ay + -+ ar)n|d|
S 66[(a1+---+ak)nl+0

< e(a1+~~~+ak)6n+C+5
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where the second inequality comes from (A.2). More precisely, we have shown that
for any x € E and n >/,

(A.4)

Bi(z,e) C{y € Xy : C(n,y) is 0,-close to C(n,z)}

k [(a1+--+a;)n]-1

— U {A c \! ( \/ Tl_jTi__llai> : C(n, A) is d;-close to C'(n, x)}

j=[(ao++a;_1)n]

and
k [(a14--+a;)n]—1
(A.5) #{A € \/ ( \/ T jTﬂ@) : C(n, A) is d;-close to C'(n, :c)}
’ =1 j=[(ao++a;-1)n]

< e(a1+---+ak)§n+C+6

Now for n € N, let E, denote the set of points r in E such that there exists an
clement A in \/1_, <\/[ attagn] =l pip ) with

J I—a0+ Fai— l)n.l

1 (Ti,ai)+(2+a1+---+ak)6) n

HeTi 1

— ]-“_laih
pu(A) > 6< -

and the ({o;}¥_ |, a;n)-name of A is d;-close to the ({a;}F_,,a;n)-name of x. It is

clear that if z € E\ E,,, then for each A € \/¥_, (VE(QF(J;O :afgsj 1§n-| T, 7; 11041> whose

({i}k_ |, a;n)-name is 6;-close to the ({a;}F_,,a;n)-name of z, one has

- k a; — 7 a wda n
N(A) < 6( it h“oﬂ'}l(T JH@+art+ k)(s) .
In the following, we wish to estimate the measure of F,, for n > /.
Let n > ¢. Put
[(a144a;)n]—1 &
—j =Y ah -1 (Th00)+(2+a1++a,)s ) n
n ={ Ac \/ < \/ Tl ]Ti__1104i> : M(A) > 6( i=1 “071'711 1 K )
] ’V(a0+ Fa;— 1) “
Obviously,
#Fn S €(Z§:1 aihuo‘riill (Ti’ai)_(2+a1+“‘+ak)5)n

since pu(X;) = 1.
Let x € E,,. On the one hand since x € By,

[(a1+-+a;)n]—1

k
M( \/ < \/ Tl_]Tz_—llaz> ([L’)) < 6(72?:1 aihHOTi—_ll (Ti,ai)Jr(S)n

i=1  j=[(ao++a;—1)n]
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by (A.3). On the other hand by the definition of FE,, there exists A € F, with
the ({a;}F_,,a;n)-name of A is d;-close to the ({a;}*_,,a;n)-name of x, that is the
({a;}%_ |, a;n)-name of A is 6;-close to the ({a;}¥_,,a;n)-name of

a1+-+a;)n|—1

koI(
(\/ \/ Tl_jTZ-__llOzi> (x).

i=1j=[(ap++aj—1)n]

According to this, we have
(A.6) E,c| {B:BeG.}

where G, denotes the set all elements B in \/%_, <\/£(:‘IF(ZO++‘1JBZJ__$M T Ti__1104i> satis-

— f, a;h —1 (T;,a5)+6 |n
fying pu(B) < e( i il () ) and the ({a;}%_,,a;n)-name of B is §;-close

to the ({a;}¥_,,a;n)-name of A for some A € F,.

Since for each A € F,,, the total number of B in \/f:1 ( \/g(:a[l(z OJ“JBZ]_’SM T 774 Oéi> :

whose ({«a;}, a;n)-name is d;-close to the ({«;},a;n)-name of A, is upper bounded
by

[(a1 4 -+ ax)n] M T@tan]an] o ar+-+ap)sntC+s
[[(a1 + -+ ax)n)d ] -

Hence

k
HG, < elort+a)intCHd (y Ty < (Sherait, o (T2 )mscts
n — n — .

Moreover

— I.C_ a;h —1 (T;,a3)+6 |n
W(Ey) < L TR TN ) ¢ cmamions

by (A.6) and the definition of G,,.

Next we take f; > £ so that Y, e "+ < 5. Then u(U,s,, Fn) < 0. Let
D = E\U,>¢, En Then (D) > 1—30. For x € D and n > {y, since x € '\ E,
one has

(B2 (x, €)) < elorttapntC+s (ST ain ot (Tt Erartta)i)n

(7226:1 aihuor_l (Ti,a¢)+2(1+a1+---+ak)5) n+C+d6
= e i—1
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by (A.4), (A.5) and the definition of E,. Thus for x € D,

—1
lim inf og 1 Ba(w; ) >Zal por=t (Tiy00) = 2(L+ a1 + - - + ax)d

n——+00
> min {S’hz(Tl) — 5} —2(1+ay + -+ a)d.
This finishes the proof of Theorem A.1. U

In the remaining part of this section, we provide a full proof of Proposition A.2.
First we give two lemmas.

Lemma A.4 (cf. [30]). Let (X,B,u,T) be a measure preserving dynamical system.
Let o, B be two countable measurable partitions of (X, B, u) with H, (o) < o0, H,(5) <
oo and A a sub-o-algebra of B. Let I,(-|-) denote the conditional information of p.
Then we have the following:

(i) (] A)oT = [,(T 'a| T A).
(i) I,(aVPB|A) = 1,(a|A)+1,(BlaVA). In particular, H,(aV B|A) = H, (o] A)+
Hy(8lav A).
(iii) If Ay € Ay C --- is an increasing sub-o-algebra of B with A, 1 A, then
I,(alA,) converges almost everywhere and in L' to I,(a|A). In particular,

limy, 400 Hu(a|Ay) = Hy(alA).

Lemma A.5. Let (X,B,u,T) be a measure preserving dynamical system and F, €
LY (X, B, 11) be a sequence that converges almost everywhere and in L' to F € L' (X, B, p)
and [y supy, | Fy(x)|dp(x) < 4o00. If f : N — N satisfies f(n) >n for all k € N, then

lim — Z Fin) =E.(F|Z,)(x)

n—-+4oo N,

almost everywhere and in L*, where T, = {B € B : u(BAT'B) =0} and E,(F|Z,)
stands for the conditional expectation of I given I,,.

Proof. This is a slight variant of Maker’s ergodic theorem [22]. For the convenience
of the reader, we give a detailed proof. Since F € L'(X, B, 1), by Birkhoff’s ergodic
theorem, we have

lim — S F(T72) = B,(F[T
n;rfmnz (FIZ,)()
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almost everywhere and in L'. Since

—

3
|

—_

n—

n—1
1 . 1 ) 1 )
- > F-(TP) = - > F(Tx) + ~ > (Fym)—(T'z) = F(T’x)),

=0 =0 =0

it is suffices to show that
1 n—1
lim — Fromp_i(Tox) — F(T2)| =0
nirfoon;)' i (T72) = F(T)|

almost everywhere and in L'. Set Z,(x) = sup;s,, |Fj(z) — F(x)| for m € N. Then
0 < Zn(z) <sup, |Fn(x)|+ |F(x)| and Z,,(z) — 0 as m — +oo almost everywhere.
Since sup,, |F,,(z)| + |F(z)| € LY(X, B, 1), we have lim,, s oo [ Zp(z)du(z) = 0 by
Lebesgue’s dominated convergence theorem. Then we have E,(Z,,|Z,) — 0 as m —
+00 almost everywhere and in L' (cf. [6, Theorem 34.2]).

Now let m € N. For n > m + 1,

1 n—1

=D | Fy—4(T2) = F(T'2)|

n

Letting n — +o00 and using Birkhoft’s ergodic theorem we have

n—1
lim sup — Z|Ff(n J(T72) — F(T2)| < BW(Zn|L) (2)
n—-+o0o

j =0

almost everywhere. Since E,(Z,,|Z,) — 0 almost everywhere and in L' as m — oo,

we have
n—1
lim su Fy T'z)— F(Tz)| =0
s -3 | Fr-o(172) = F(T0)
almost everywhere and in L', as desired. O

Proof of Proposition A.2. Our proof is adapted from the arguments of Kenyon and

Peres in [20, Lemmas 3.2, 4.4].
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First we show that for any a > 0, b > 0 and a countable measurable partition g of
(X, B, p) with H,(8) < oo,

(A7) lim 1 (6[;“’)]\’ )(x):bE#(Gﬁ#)(x)

N—r+o00 N
almost everywhere, where G(z) := I, (5| Voo, T”Lﬁ) ().

If b =0, then ﬂ a+b NI = = {X,0} (mod p) for each N € N and so (A.7) holds.
Now assume that b > 0 Note that

[(a+b)N [(a+b)N]-1 [aN [(a+b)N]-1
Iu( VA W)@ =1V )= \/ g\ T8) ().
n=[aN] n=[aN]

By the Shannon-McMillan-Breiman theorem, (A.7) is equivalent to

[aN]—1 [(a+b)N]—1
(A8)  Jim LT \/ T8\ T78) () = aB,(GIT) (x)
n=[aN]
almost everywhere.
Note that
[aNT-1 [(a+b)N]-1
\/ T\ T8 (@)
n=[aN|
[(a+b)N]—1 [aN]—1 [(a+b)N]—1
=L( Vorra)@an( Ve Vo e
n=[aN]
[(a+b)N]—1 [aN]—2 [(a+b)N]—2
- 1,(8 \/ T8) () + I \/ T\ T8)(Ta)
n=[aN]-1
[(a+b)N]—1—j '
Z (s Ts)a),
n=1
Write Gy (x )—1 (m\/’f 1T"8)(z) for k € N and # € X. Then
faN [(a+b)N]-1 [aNT-1
(A.9) \/ s\ T nﬁ) Z Grasnn—j(Tz).
n=[aN]

Since \/k 1T "3 1 Vo, T7"B when k — +oo, Gy € L'(X,B,u) is a sequence

that converges almost everywhere and in L' to G € L'(X, B, ) by Lemma A.4. As
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H,(B) < 0o, we have [, sup,, |Gy(x)|du(z) < H,(8)+1 < co by Chung’s lemma [11].
By (A.9) and Lemma A.5,

[aN1-1 [(a+b)N]—1
a2V
n=[aN]
1 [aNT—1
= T JZ; Griastyn—(T77)
— GE,(GIT,)(x)

almost everywhere. Hence (A.8) holds, so does (A.7).

Now we are ready to prove (A.1), by induction on k. For k = 1, (A.1) reduces to
the Shannon-McMillan-Breiman theorem. Assume that (A.1) holds for k = ¢ (¢ > 1).
We show below that it holds for k = ¢ + 1.

Let k = (¢ + 1. Writeﬁi:\/eﬂaz fori=1,...,0+1. Then 8y = By = -+ = Boy1
and Fy(z) = L(Bi| V5 T™B)(x) fori =1, €+ 1. Note that

n=1

/41 l
a1+-+a;)N|—1 a1+-+a;)N|—1 a1+-+ag+a N]-1
(A10) V@M = (Vofe M) v e fer i

=1

By the induction assumption and (A.7), we have

1 ¢
lim —I (ﬁl) (@rt-+a)N1=1 g a;E,(F;|Z,)(x) and
(A.11) Novioo NH <\_/1 )

1 [(a1+-+ag+ags1)N|—1
Nl_lgl N ((5&1)( a1+...+aﬁ)N?l ))(m) = ap1 B, (Frsq|Z,) ()

almost everywhere. Next we use the idea employed by Algoet and Cover [1] in their
elegant “sandwich” proof of the Shannon-McMillan-Breiman theorem. For p-a.e.
r € X, we define

Avmw“wwuym%wﬁﬂﬁmM@)
Zm($> . =1

¢
a cta;)m]—1 ai1+-+apgtapr1)m|—1
a((V @R G o) @)

for all m € N. Then for p-a.e. x € X, Z,,(z) > 0 for all m € N.
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/XZm(x)du(x) = Z /AHB %dﬂ@)

Aev(ﬁ)((aﬁ “tagm] -1

((a1+ Fagtapyq)m]—1
[(ag4--+ap)m]

= > p(A)u(B)

m]—1

B€(Bp41)

¢ a1t
ac ol e

[(a1+-+aptapy)m]—1
BEBe+ 1 (a) +-tag)m]

=1

Y

the series Y °_, p({z € X : Z,,(x) > e™}) converges for every ¢ > 0 and the Borel-
Canteli Lemma implies that limsupy_, ., + log Zy(z) < 0 for p-a.e. x € X. Using
the definition of Z,,, (A.10) and (A.11), we obtain

1 /+1 /+1
li —7I ( ; [(a1+-+a;)N|— ) < ; F I
im sup 1, i:\/l(a ) Za IZ,) (x)

for p-a.e. r € X.

Conversely, by (A.7) and the induction assumption, we have
(A.12)

lim _[ ((ﬁl)f(a1+---+ae+az+1)NW71> (x) _ ag+1E“(FZ-’ZM)(:L‘), i—0 0+1and

Notoo N W [(a1+-+ap)N]
/—1
1 [(a1+~a;)N]—1 f(a1+~~-+az+az+1)NW—1>
Jim 1, <i\/fﬁ”“ v (B0 (x)

-1
= (a0 + ars1)Eu(F|Z,) (2) + ) aiBu(F[Z,) (x)
i=1
almost everywhere. Then for p-a.e. z € X, we define

(VR oo 1) )

R () = lﬁ 1
(R G R [0)
ai+---+ag+ta 1
(e ©)
ai+-+ae+a m|—1
(e )

for all m € N. Then for p-a.e. z € X, R,,(x) > 0 for all m € N.
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Since £y = Pei1, we have

B (AN B)u(BNC)
/X Bon(w)dulw) = Z /AmBmC p(ANBNC)u(B) ()

Ae\/( )Ra1+ creamis
[(ay4+aptagp,1)m]—1
BE(ﬁ[+1)"(a1+“.+gj)m‘f+1
[(a1+Fagtagyy)m]—1
[(a1+---4ag)m]

) W(AN B)u(B N C)
a 2 u(B)

Ce(By)

¢ a1 dda)m]—
Aeyﬁmﬂ<ﬁf+z)W1

[(a1+-+agtagys)m]-1
BE(B@+1) Ha1+4..+a€)mw+l
[(ag+tagtagyi)m]—1
Ce(ﬂz)[(a1+...+ag)m1
=1

for m € N. Thus the series >~ u({z € X : R, (z) > e“}) converges for every
€ > 0 and the Borel-Canteli Lemma implies that limsupy_, o % log Ry(x) < 0 for
p-a.e. x € X. Using the definition Ry, (A.10) and (A.12), we have

1 {41 {41
lﬁfrgfg N[N< \/(ai)g(a1+-.-+ai)N171> Z o F ‘I )(z)

i=1
for p-a.e. z € X. for p-a.e. x € X. This completes the proof of Proposition A.2. [
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