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Abstract. Let π : X → Y be a factor map, where (X,T ) and (Y, S) are topological
dynamical systems. Let a = (a1, a2) ∈ R2 with a1 > 0 and a2 ≥ 0, and f ∈
C(X). The a-weighted topological pressure of f , denoted by P a(X, f), is defined
by resembling the Hausdorff dimension of subsets of self-affine carpets. We prove
the following variational principle:

P a(X, f) = sup

{
a1hµ(T ) + a2hµ◦π−1(S) +

∫
f dµ

}
,

where the supremum is taken over the T -invariant measures on X. It not only gen-
eralizes the variational principle of classical topological pressure, but also provides
a topological extension of dimension theory of invariant sets and measures on the
torus under affine diagonal endomorphisms. A higher dimensional version of the
result is also established.

1. Introduction

Inspired by the theory of Gibbs states in statistical mechanics, Ruelle [33] intro-
duced the notion of topological pressure to the theory of dynamical systems and
established a variational principle for it. Ruelle only considered the case when the
underlying dynamical systems satisfy expansiveness and specification. Later Walters
[36] generalized these results to general topological dynamical systems. Topological
pressure, and the associated variational principle and equilibrium measures constitute
the main components of the thermodynamic formalism [34]. They play important
roles in dimension theory of dynamical systems. Indeed they provide as a basic tool
in studying dimension of invariant sets and measures for conformal dynamical systems
(see e.g. [9, 35, 31]).

In this paper we aim to introduce a generalized notion of pressure for factor maps
between general topological dynamical systems, and establish a variational principle
for it. To be more precise, let us introduce some notation first. We say that (X,T )
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is a topological dynamical system (TDS) if X is a compact metric space and T is a
continuous map from X to X. Let (X,T ) and (Y, S) be two topological dynamical
systems. Suppose that (Y, S) is a factor of (X,T ), in the sense that there exists a
continuous surjective map π : X → Y such that π ◦ T = S ◦ π. The map π is called
a factor map from X to Y . Let f be a real-valued continuous function on X, and let
a1 > 0, a2 ≥ 0. The main purpose of this paper is to consider the following.

Question 1.1. How can one define a meaningful term P (a1,a2)(T, f) such that the
following variational principle holds?

(1.1) P (a1,a2)(T, f) = sup

{
a1hµ(T ) + a2hµ◦π−1(S) +

∫
f dµ

}
,

where the supremum is taken over the set of all T -invariant Borel probability measures
µ on X, and hµ(T ), hµ◦π−1(S) stand for the measure-theoretic entropies of µ and
µ ◦ π−1 with respect to T and S, respectively (cf. [37]).

According to the variational principle of Ruelle and Walters, the left-hand side of
(1.1) equals a1P (T, 1

a1
f) in the particular case when a2 = 0, where P (T, ·) stands for

the classic topological pressure of continuous functions (cf. [37]). Our interest is on
the general case that a2 6= 0. This project is motivated from the study of dimension
of invariant sets and measures on the tori under diagonal affine expanding maps.

Let T be the endmorphism on the 2-dimensional torus T2 = R2/Z2 represented
by an integral diagonal matrix A = diag(m1,m2), where 2 ≤ m1 < m2. That is,
Tu = Au (mod 1) for u ∈ T2. In their seminal works, Bedford [5] and McMullen
[27] independently determined the Hausdorff dimension of the so-called self-affine
Sierpinski gaskets, which are a particular class of T -invariant subsets of T2 defined as
follows:

K(T,D) :=

{
∞∑
n=1

A−nun : un ∈ D for all n ≥ 1

}
,

where D runs over the non-empty subsets of{(
i
j

)
: i = 0, 1, . . . ,m1, j = 0, 1, . . . ,m2 − 1

}
.

Moreover, McMullen [27] exhibited explicitly that for each D, there exists an ergodic
T -invariant measure µ supported on K(T,D) with dimH µ = dimH K(T,D), where
dimH denotes the Hausdorff dimension of a set or measure (cf. [13]). Later Kenyon
and Peres [20] extended this result to any compact T -invariant set K ⊆ T2, that is,
there is an ergodic T -invariant measure µ supported on K so that dimH µ = dimH K.
Furthermore Kenyon and Peres [20] established the following variational principle for
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the Hausdorff dimension of K:

(1.2) dimH K = sup

{
1

logm2

hη(T ) +

(
1

logm1

− 1

logm2

)
hη◦π−1(S)

}
,

where the supremum is taken over the collection of T -invariant Borel probability
measures η supported on K, π : T2 → T1 denotes the projection (x, y) 7→ x, and
S : T1 → T1 denotes the map x 7→ m1x(mod 1). It is easy to check that (T1, S)
is a factor of (T2, T ) with the factor map π. We emphasize that for any ergodic
T -invariant measure η on T2, the sum in the bracket of (1.2) just equals dimH η (cf.
[20, Lemma 3.1]); i.e.

(1.3) dimH η =
1

logm2

hη(T ) +

(
1

logm1

− 1

logm2

)
hη◦π−1(S).

This is a version of Ledrappier-Young dimension formula for ergodic measures on T2.
We remark that an extension of the variational relation (1.2) to higher dimensional
tori was also established by Kenyon and Peres [20].

Let us turn back to Question 1.1. According to (1.2), if π is the factor map (x, y) 7→
x between the toral dynamics (K,T ) and (π(K), S) as in the above paragraph, and
if f ≡ 0 on K, and a1 = 1

logm2
, a2 = 1

logm1
− 1

logm2
, then we can just define P (a1,a2)(f)

to be the Hausdorff dimension of K. The problem arises how can we extend this
to general factor maps between topological dynamical systems, as well as to general
continuous functions f and vectors (a1, a2).

In [2, 15], Barral and the first author defined P (a1,a2)(f) (and called it weighted
topological pressure) via relative thermodynamic formalism and subadditive thermo-
dynamic formalism, in the particular case when the underlying dynamical systems
(X,T ) and (Y, S) are subshifts over finite alphabets. They also studied the dynami-
cal properties of weighted equilibrium measures (i.e. the invariant measures µ which
attain the supremum in (1.1)) and gave the applications to the multifractal analysis
on Sirpinski gaskets/sponges [2], and to the uniqueness of invariant measures of full
dimension supported on affine-invariant subsets of tori [15]. Independently, in this
subshift case Yayama [38] defined P (a1,a2)(f) for the particular case f ≡ 0, along the
similar way.

However, the approach of [2, 15] in defining P (a1,a2)(f) relies on certain special
property of subshifts and does not extend to general topological dynamical systems
(see Section 7.1 for details). Moreover, the variational principle established therein
does not give a new proof of Kenyon and Peres’ variational relation (1.2) for the
Hausdorff dimension.
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In the paper, we define P (a1,a2)(f) in a new way, which is inspired from the dimen-
sion theory of affine invariant subsets of tori, and from the “dimension” approaches of
Bowen [8] and Pesin-Pitskel’ [32] in defining the topological entropy and topological
pressure for arbitrary subsets.

We will present our definition under a more general setting. Let k ≥ 2. Assume
that (Xi, di), i = 1, . . . , k, are compact metric spaces, and (Xi, Ti) are topological
dynamical systems. Moreover, assume that for each 1 ≤ i ≤ k − 1, (Xi+1, Ti+1) is a
factor of (Xi, Ti) with a factor map πi : Xi → Xi+1; in other words, π1, . . . , πk−1 are
continuous maps so that the following diagrams commute.

X1
π1−−−→ X2

π2−−−→ · · · πk−1−−−→ Xk

T1

y yT2 yTk
X1

π1−−−→ X2
π2−−−→ · · · πk−1−−−→ Xk

For convenience, we use π0 to denote the identity map on X1. Define τi : X1 →
Xi+1 by τi = πi ◦ πi−1 ◦ · · · ◦ π0 for i = 0, 1, . . . , k − 1.

Let M(Xi, Ti) denote the set of all Ti-invariant Borel probability measures on Xi,
endowed with the weak-star topology. Fix a = (a1, a2, . . . , ak) ∈ Rk with a1 > 0 and
ai ≥ 0 for i ≥ 2. For µ ∈M(X1, T1), we call

haµ(T1) :=
k∑
i=1

aihµ◦τ−1
i−1

(Ti)

the a-weighted measure-theoretic entropy of µ with respect to T1, or simply, the a-
weighted entropy of µ, where hµ◦τ−1

i−1
(Ti) denotes the measure-theoretic entropy of

µ ◦ τ−1
i−1 with respect to Ti.

Definition 1.2 (a-weighted Bowen ball). For x ∈ X1, n ∈ N, ε > 0, denote

Ba
n(x, ε) :=

{
y ∈ X1 : di(T

j
i τi−1x, T

j
i τi−1y) < ε for 0 ≤ j ≤ d(a1 + . . .+ ai)ne − 1,

i = 1, . . . , k} ,

where due denotes the least integer ≥ u. We call Ba
n(x, ε) the n-th a-weighted Bowen

ball of radius ε centered at x.

Following the approaches of Bowen [8] and Pesin-Pitskel’ [32] in defining topological
entropies and topological pressures of non-compact subsets [8], and in which replacing
Bowen balls by a-weighted Bowen balls, we can define the notions of a-weighted
topological entropy and a-weighted topological pressure, respectively. To be concise,
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in this section we only give the definition of a-weighted topological entropy. The
definition of a-weighted topological pressure will be given in Section 3.1.

Let Z ⊂ X1 and ε > 0. We say that an at most countable collection of a-weighted
Bowen balls Γ = {Ba

nj
(xj, ε)}j covers Z if Z ⊂

⋃
j B

a
nj

(xj, ε). For Γ = {Ba
nj

(xj, ε)}j,
put n(Γ) = minj nj. Let s ≥ 0 and define

Λa,s
N,ε(Z) = inf

∑
j

exp(−snj),

where the infinum is taken over all collections Γ = {Ba
nj

(xj, ε)} covering Z, such that

n(Γ) ≥ N . The quantity Λa,s
N,ε(Z) does not decrease with N , hence the following limit

exists:

Λa,s
ε (Z) = lim

N→∞
Λa,s
N,ε(Z).

There exists a critical value of the parameter s, which we will denote by hatop(T1, Z, ε),
where Λa,s

ε (Z) jumps from ∞ to 0, i.e.

Λa,s
ε (Z) =

{
0, s > hatop(T1, Z, ε),
∞, s < hatop(T1, Z, ε).

It is clear to see that hatop(T1, Z, ε) does not decrease with ε, and hence the following
limit exists,

hatop(T1, Z) = lim
ε→0

hatop(T1, Z, ε).

Definition 1.3. We call hatop(T1, Z) the a-weighted topological entropy of T1 restricted
to Z or, simply, the a-weighted topological entropy of Z, when there is no confusion
about T1. In particular we write hatop(T1) for hatop(T1, X1).

Similarly we will define the a-weighted topological pressure P a(T1, f) of contin-
uous functions f on X1 (see Section 3.1). In the particular case when f ≡ 0, we
have P a(T1, 0) = hatop(T1). The main result of this paper is the following variational
principle for weighted topological pressure.

Theorem 1.4. Let f ∈ C(X1). Then

(1.4) P a(T1, f) = sup

{∫
fdµ+ haµ(T1) : µ ∈M(X1, T1)

}
.

In Section 6, we will extend the above theorem to the case that f is a sub-additive
potential. As a corollary, taking f ≡ 0 in Theorem 1.4, we obtain the following
variational principle for weighted topological entropy.

Corollary 1.5. hatop(T1) = sup{haµ(T1) : µ ∈M(X1, T1)}.
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Theorem 1.4 and Corollary 1.5 provide as weighted versions of Ruelle-Walters’ vari-
ational principle for topological pressure, and Goodwyn-Dinaburg-Goodman’s varia-
tional principle for topological entropy (cf. [37]). They are also topological extensions
of Kenyon-Peres’ variational principle for Hausdorff dimension of toral affine invariant
sets. Indeed, consider the aforementioned factor map π between the toral dynamics
(K,T ) and (π(K), S) and let a1 = 1

logm2
, a2 = 1

logm1
− 1

logm2
. It is easy to see from

our definition that h
(a1,a2)
top (T,K) simply coincides with dimH K, and hence Corollary

1.5 recovers (1.2) and its higher dimensional versions given in [20]. Moreover, by
Corollary 1.5, we can generalize (1.2) to a class of skew-product expanding maps on
the k-torus (see Section 7.2 for details).

The proof of Theorem 1.4 is quite sophisticated. Besides adopting some ideas from
[36, 28] and [20], we also introduce substantially new ideas in the proof. For the
convenience of the readers, in the following we illustrate a rough outline of our proof.

To see the lower bound in (1.4), we first prove that for each ergodic measure
µ ∈M(X1, T1),

(1.5) lim
ε→0

lim inf
n→+∞

− log µ(Ba
n(x, ε))

n
= lim

ε→0
lim sup
n→+∞

− log µ(Ba
n(x, ε))

n
= haµ(T1)

for µ-a.e. x ∈ X1. The above formula is not only a weighted version of Brin-Katok’s
Theorem [7] on local entropy, but also a topological extension of the Ledrappier-Young
dimension formula (1.3). The justification of (1.5) is mainly adapted from Kenyon-
Peres’ proof of (1.3) in [20] and Brin-Katok’s argument in [7]. Based on (1.5), the
lower bound in (1.4) follows from a simple covering argument.

The proof of the upper bound in (1.4) is more complicated. First we apply the
techniques in geometric measure theory to prove the following “dynamical” Frostman
lemma: for any 0 < s < P a(T1, f) and small enough ε > 0, there exists a Borel
probability measure ν on X1 and N ∈ N such that

(1.6) ν(Ba
n(x, ε)) ≤ exp

(
−sn+

1

a1

Sda1nef(x)

)
, ∀x ∈ X1, n ≥ N,

where Snf(x) :=
∑n−1

i=0 f(T i1x). This is a key part in our proof. Notice that there
exists a small τ ∈ (0, ε) such that for any Borel partition αi of Xi with diam(αi) < τ ,
i = 1, . . . , k, we have

k∨
i=1

ti(n)−1∨
j=ti−1(n)

T−j1 π−1
i−1αi(x) ⊆ Ba

n(x, ε), ∀x ∈ X1, n ≥ N,
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where t0(n) = 0, ti(n) = d(a1 + . . . + ai)ne, and ∨ stands for the join of partitions.
Hence (1.6) implies that

(1.7)
k∑
i=1

Hν

( ti(n)−1∨
j=ti−1(n)

T−j1 π−1
i−1αi

)
≥ sn−

∫
1

a1

Sda1nef(x)dν(x).

Then, as another key part, we use (1.7) and entropy theory to show the existence
of a T1-invariant measure µ on X1 such that haµ(T1) > s −

∫
fdµ, from which the

upper bound follows. In the proof of this part, a combinatoric lemma (see Lemma
5.4) established by Kenyon-Peres [20] plays an important role; besides this, we also
use a delicate compactness argument based on the upper semi-continuity of certain
entropy functions, and adopt some ideas from [36, 28] as well. Reducing back to
the aforementioned toral dynamics, our approach provides a new proof for the upper
bound in Kenyon-Peres’ variational principle (1.2).

The paper is organized as follows. In Section 2, we prove the upper semi-continuity
of certain entropy functions. In Section 3, we define weighted topological pressure for
continuous functions and more generally for sub-additive potentials; we also establish
a dynamical Frostman lemma for the weighted topological pressure. In Sections 4-5,
we prove respectively the lower and upper bounds of Theorem 1.4. In Section 6, we
extend Theorem 1.4 to the sub-additive case. In Section 7, we give some remarks,
examples and questions. In Appendix A, we prove the formula (1.5).

2. Upper semi-continuity of certain entropy functions

In this section, we prove the upper semi-continuity of certain entropy functions (see
Lemma 2.3), which is needed in our proof of the upper bound part of Theorem 1.4.
We begin with the following.

Definition 2.1. Let Z be a compact metric space. A function f : Z → [−∞,+∞) is
called upper semi-continuous if one of the following equivalent conditions holds:

(C1) lim sup
zN→z

f(zN) ≤ f(z) for each z ∈ Z;

(C2) for each r ∈ R the set {z ∈ Z : f(z) ≥ r} is closed.

By (C2), the infimum of any family of upper semi-continuous functions is again an
upper semi-continuous function; both the sum and supremum of finitely many upper
semi-continuous functions are upper semi-continuous functions.

7



Lemma 2.2. Let Z be a compact metric space and f : Z → [−∞,+∞) be an upper
semi-continuous function. Then for any µ ∈M(Z),

(2.1) inf
g∈C(Z),g≥f

∫
Z

g(z)dµ(z) =

∫
Z

f(z)dµ(z).

Proof. It is well known that the equality (2.1) holds when f is a real-valued upper
semi-continuous function (see e.g. [12, Appendix (A7)] for a proof). In the following
we assume that f is an upper semi-continuous function taking values in [−∞,+∞).

By the upper semi-continuity of f , we have supz∈Z f(z) = maxz∈Z f(z) < +∞.
Thus

∫
Z
f(z)dµ(z) is well defined and

∫
Z
f(z)dµ(z) ∈ [−∞,+∞).

For M ∈ N, let fM(z) = max{f(z),−M} for z ∈ Z. Then fM is an upper semi-
continuous real-valued function, and thus

inf
g∈C(Z),g≥fM

∫
Z

g(z)dµ(z) =

∫
Z

fM(z)dµ(z).

Since

sup
M∈N

sup
z∈Z

fM(z) ≤ max

{
max
z∈Z

f(z), 0

}
< +∞

and fM(z)↘ f(z) as M → +∞ for any z ∈ Z, one has

lim
M→+∞

∫
Z

fM(z)dµ(z) =

∫
Z

lim
M→+∞

fM(z)dµ(z) =

∫
Z

f(z)dµ(z)

by Lebesgue’s monotone convergence theorem. Moreover

inf
g∈C(Z),g≥f

∫
Z

g(z)dµ(z) = inf
M∈N

{
inf

g∈C(Z),g≥fM

∫
Z

g(z)dµ(z)

}
= inf

M∈N

∫
Z

fM(z)dµ(z)

= lim
M→+∞

∫
Z

fM(z)dµ(z)

=

∫
Z

f(z)dµ(z).

This completes the proof of the lemma. �

Let (X,T ) be a TDS with a compatible metric d. For ε > 0 and M ∈ N, we define
(2.2)
PX(ε,M) = {α : α is a finite Borel partition of X with diam(α) < ε,#(α) ≤M},
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where diam(α) := maxA∈α diam(A), and #(α) stands for the cardinality of α. Then
we define

PX(ε) = {α : α is a finite Borel partition of X with diam(α) < ε}.

It is clear that for any ε > 0, there exists N := N(ε) ∈ N such that PX(ε,M) 6= ∅ for
any M ≥ N . The main result of this section is the following.

Lemma 2.3. Let (X,T ) be a TDS and ε > 0. Then

(1) If M ∈ N with PX(ε,M) 6= ∅, then the map

(2.3) θ ∈M(X) 7→ Hθ(ε,M ; `) := inf
α∈PX(ε,M)

1

`
Hθ

(
`−1∨
i=0

T−iα

)

is upper semi-continuous from M(X) to [0, logM ] for each ` ∈ N.
(2) The map

θ ∈M(X) 7→ Hθ(ε; `) := inf
α∈PX(ε)

1

`
Hθ

(
`−1∨
i=0

T−iα

)

is a bounded upper semi-continuous non-negative function for each ` ∈ N.
(3) The map

µ ∈M(X,T ) 7→ hµ(T, ε) := inf
α∈PX(ε)

hµ(T, α)

is a bounded upper semi-continuous non-negative function.

Proof. We first prove (1). Let M ∈ N with PX(ε,M) 6= ∅, and ` ∈ N. Clearly, the
map H•(ε,M ; `) is defined from M(X) to [0, logM ]. Let θ0 ∈M(X). It is sufficient
to show that the map H•(ε,M ; `) is upper semi-continuous at θ0.

Let δ > 0. Then there exists α ∈ PX(ε,M) such that

(2.4)
1

`
Hθ0

(
`−1∨
i=0

T−iα

)
≤ Hθ0(ε,M ; `) + δ.

Let α = {A1, . . . , Au}. Then u ≤M and diam(Ai) < ε for i = 1, 2, . . . , u. By Lemma
4.15 in [37], there exists δ1 = δ1(u, δ) > 0 such that whenever γ1 = {E1, . . . , Eu}, γ2 =

{F1, . . . , Fu} are two Borel partitions of X with
∑u

j=1

∑`−1
i=0 θ0 ◦ T−i(Ej∆Fj) < δ1,
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then

1

`

∣∣∣∣∣Hθ0

(
`−1∨
i=0

T−iγ1

)
−Hθ0

(
`−1∨
i=0

T−iγ2

)∣∣∣∣∣
≤ 1

`

`−1∑
i=0

|Hθ0◦T−i(γ1|γ2) +Hθ0◦T−i(γ2|γ1)| < δ.

(2.5)

Write η =
∑`−1

i=0 θ0 ◦ T−i. Next, we are going to construct a Borel partition β =
{B1, . . . , Bu} of X so that diam(β) < ε,

∑u
j=1 η(Aj∆Bj) < δ1 and η(∂β) = 0.

In fact, note that η(X) = ` < ∞, hence η is regular on X. Thus there exist open
subsets Vj of X such that Aj ⊆ Vj, diam(Vj) < ε and η(Vj \Aj) < δ1

u2
for j = 1, . . . , u.

Clearly, V := {V1, . . . , Vu} is an open cover. Let t > 0 be a Lebesgue number of
V . For any x ∈ X, there exists 0 < tx ≤ t

3
such that η(∂B(x, tx)) = 0. Thus

{B(x, tx) : x ∈ X} forms an open cover of X. Take its finite subcover {B(xi, txi)}ri=1,
that is,

⋃r
i=1B(xi, txi) = X. Obviously, each B(xi, txi) is a subset of some Vj(i),

j(i) ∈ {1, . . . , u} since txi ≤ t
3
.

Let Ij = {i ∈ {1, . . . , r} : B(xi, txi) ⊂ Vj} for j = 1, . . . , u. Then
⋃u
j=1 Ij =

{1, . . . , r}. Put B1 =
⋃
i∈I1 B(xi, txi) and Bj =

(⋃
i∈Ij B(xi, txi)

)
\
⋃j−1
m=1Bm induc-

tively for j = 2, . . . , u. It is clear that β = {B1, . . . , Bu} is a Borel partition of X
with Bj ⊆ Vj and η(∂Bj) = 0 for j = 1, . . . , u. Now for each j ∈ {1, . . . , u},

Aj∆Bj = (Bj \ Aj) ∪ (Aj ∩ (X \Bj)) ⊆ (Vj \ Aj) ∪
⋃
k 6=j

(Aj ∩Bk)

⊆ (Vj \ Aj) ∪
⋃
k 6=j

(Aj ∩ Vk) ⊆ (Vj \ Aj) ∪
⋃
k 6=j

(Aj ∩ (Vk \ Ak))

⊆
u⋃
k=1

(Vk \ Ak).

Thus
∑u

j=1 η(Aj∆Bj) ≤ u
∑u

k=1 η(Vk \ Ak) < δ1.

Summing up, we have constructed a Borel partition β = {B1, . . . , Bu} ∈ PX(ε,M)
so that

∑u
j=1 η(Bj∆Aj) < δ1 and η(∂β) = 0. Now on the one hand, by (2.5) and

(2.4), we have

1

`
Hθ0

(
`−1∨
i=0

T−iβ

)
≤ 1

`
Hθ0

(
`−1∨
i=0

T−iα

)
+ δ ≤ Hθ0(ε,M ; `) + 2δ.
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On the other hand, since η(∂β) = 0, one has θ0(T−i∂β) = 0 for i = 0, 1, · · · , `−1. As
∂T−iA ⊆ T−i∂A for any A ⊆ X, one has θ0(∂T−iβ) = 0 for i = 0, 1, · · · , `− 1. More-

over note that ∂(A∩B) ⊆ (∂A)∩(∂B) for any A,B ⊆ X, we have θ0(∂(
∨`−1
i=0 T

−iβ)) =

0. Thus the map θ ∈M(X) 7→ 1
`
Hθ(

∨`−1
i=0 T

−iβ) is continuous at the point θ0. There-
fore

lim sup
θ→θ0

Hθ(ε,M ; `) ≤ lim sup
θ→θ0

1

`
Hθ

(
`−1∨
i=0

T−iβ

)

=
1

`
Hθ0

(
`−1∨
i=0

T−iβ

)
≤ Hθ0(ε,M ; `) + 2δ.

Finally letting δ ↘ 0, we see that the map H•(ε,M ; `) is upper semi-continuous at
θ0. This completes the proof of (1).

Now we turn to the proof of (2). Let ` ∈ N. Since PX(ε) =
⋃
M∈N,PX(ε,M)6=∅PX(ε,M),

we have

Hθ(ε; `) = inf
M∈N,PX(ε,M) 6=∅

Hθ(ε,M ; `)

for θ ∈M(X). Moreover, by (1) and the fact that the infimum of any family of upper
semi-continuous functions is again an upper semi-continuous one, we know that the
map

θ ∈M(X) 7→ Hθ(ε; `) := inf
α∈PX(ε)

1

`
Hθ

(
`−1∨
i=0

T−iα

)
is a bounded upper semi-continuous non-negative function. This proves (2).

In the end we prove (3). Note that

hµ(T, ε) = inf
α∈PX(ε)

hµ(T, α) = inf
α∈PX(ε)

inf
`≥1

1

`
Hµ

(
`−1∨
i=0

T−iα

)

= inf
`≥1

inf
α∈PX(ε)

1

`
Hµ

(
`−1∨
i=0

T−iα

)
= inf

`≥1
Hµ(ε; `)

for µ ∈ M(X,T ). Using (2) and the fact that the infimum of any family of upper
semi-continuous functions is again an upper semi-continuous one, we know that the
map

µ ∈M(X,T ) 7→ hµ(T, ε)

is a bounded upper semi-continuous non-negative function. This completes the proof
of the lemma. �
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3. Weighted topological pressures and a dynamical Frostman lemma

In this section we introduce the definition of weighted topological pressure for
(asymptotically) sub-additive potentials for general topological dynamical systems.
Moreover, using some ideas from geometric measure theory, we establish a dynamical
Frostman lemma (see Lemma 3.3) for weighted topological pressure, which plays a
key role in our proof of Theorem 1.4.

3.1. Weighted topological pressures for sub-additive potentials. Assume that
(X,T ) is a TDS. We say that a sequence Φ = {log φn}∞n=1 of functions on X is a sub-
additive potential if each φn is an upper semi-continuous nonnegative-valued function
on X such that

(3.1) 0 ≤ φn+m(x) ≤ φn(x)φm(T nx), ∀ x ∈ X, m, n ∈ N.

In particular, Φ is called additive if each φn is a continuous positive-valued function
so that φn+m(x) = φn(x)φm(T nx) for all x ∈ X and m,n ∈ N; in this case, there is a
continuous real function g on X such that φn(x) = exp(

∑n−1
i=0 g(T ix)) for each n.

Let k ≥ 2. Assume that (Xi, di), i = 1, . . . , k, are compact metric spaces, and
(Xi, Ti) are TDS’s. Moreover, assume that for each 1 ≤ i ≤ k − 1, (Xi+1, Ti+1) is a
factor of (Xi, Ti) with a factor map πi : Xi → Xi+1.

Let a = (a1, . . . , ak) ∈ Rk with a1 > 0 and ai ≥ 0 for 2 ≤ i ≤ k. For any n ∈ N
and ε > 0, define

(3.2) T a
n,ε := {A ⊂ X1 : A is Borel subset of Ba

n(x, ε) for some x ∈ X1},

where Ba
n(x, ε) is defined as in Definition 1.2.

Let Φ = {log φn}∞n=1 be a sub-additive potential on X1. Let Z ⊆ X1, s ≥ 0 and
N ∈ N, define

Λa,s
Φ,N,ε(Z) = inf

∑
j

exp

(
−snj +

1

a1

sup
x∈Aj

φda1nje(x)

)
,

where the infimum is taken over all countable collections Γ = {(nj, Aj)}j with nj ≥ N ,
Aj ∈ T a

nj ,ε
and

⋃
j Aj ⊇ Z. The quantity Λa,s

Φ,N,ε(Z) does not decrease with N , hence
the following limit exists:

Λa,s
Φ,ε(Z) = lim

N→∞
Λa,s

Φ,N,ε(Z).

12



There exists a critical value of the parameter s, which we will denote by P a(T1,Φ, Z, ε),
where Λa,s

Φ,ε(Z) jumps from ∞ to 0, i.e.

Λa,s
Φ,ε(Z) =

{
0, s > P a(T1,Φ, Z, ε),
∞, s < P a(T1,Φ, Z, ε).

Clearly P a(T1,Φ, Z, ε) does not decrease with ε, and hence the following limit exists,

P a(T1,Φ, Z) = lim
ε→0

P a(T1,Φ, Z, ε).

Definition 3.1. We call P a(T1,Φ) := P a(T1,Φ, X1) the a-weighted topological pres-
sure of Φ with respect to T1 or, simply, the a-weighted topological pressure of Φ, when
there is no confusion about T1.

Definition 3.2. Let f ∈ C(X1). Define Φ = {log φn}∞n=1 by φn(x) = exp(
∑n−1

j=0 f(T j1x)).

In this case, Φ is additive. We just define P a(T1, f) := P a(T1,Φ).

Taking f ≡ 0, one can see that P a(T1, 0) = hatop(T1). Let Φ = {log φn}∞n=1 be a
sub-additive potential on X1. For any µ ∈M(X1, T1), define

(3.3) Φ∗(µ) := lim
n→∞

∫
log φn(x)

n
dµ(x).

This limit always exists and takes values in R ∪ {−∞} (cf. [36, Theorem 10.1]).

In our proof of Theorem 1.4, we need the following dynamical Frostman lemma.

Lemma 3.3. Let Φ = {log φn}∞n=1 be a sub-additive potential on X1. Suppose that
P a(T1,Φ) > 0. Then for any 0 < s < P a(T1,Φ), there exist a Borel probability
measure ν on X1 and ε > 0, N ∈ N such that for any x ∈ X1 and n ≥ N we have

(3.4) ν(Ba
n(x, ε)) ≤ exp(−sn) sup

y∈Ba
n(x,ε)

(φda1ne(y))1/a1 .

A non-weighted version of the above lemma was first proved by the authors in the
particular case when φn ≡ 1 (see [17, Lemma 3.4]), using some ideas and techniques
in geometric measure theory. In the remainder of this section, we will give the de-
tailed proof of Lemma 3.3, by adapting and elaborating the approach in [17]. A key
ingredient of our proof is the notion of average weighted topological pressure, which
is an analogue of weight Hausdorff measure in geometric measure theory. The defi-
nition of this notion and some of its properties will be given in next subsection. In
Subsection 3.3, we prove Lemma 3.3.
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3.2. Average weighted topological pressures. Let Φ = {log φn}∞n=1 be a sub-
additive potential on X1. For any function f : X1 → [0,∞), for s ≥ 0 and N ∈ N,
define

(3.5) Wa,s
Φ,N,ε(f) = inf

∑
j

cj exp

(
−snj +

1

a1

sup
x∈Aj

log φda1nje(x)

)
,

where the infimum is taken over all countable collections Γ = {(nj, Aj, cj)}j with
nj ≥ N , Aj ∈ T a

nj ,ε
, 0 < cj <∞, and∑

j

cjχAj ≥ f,

where χA denotes the characteristic function of A, i.e., χA(x) = 1 if x ∈ A and 0 if
x ∈ X1\A.

For Z ⊆ X1, we set Wa,s
Φ,N,ε(Z) = Wa,s

Φ,N,ε(χZ). The quantity Wa,s
Φ,N,ε(Z) does not

decrease with N , hence the following limit exists:

Wa,s
Φ,ε(Z) = lim

N→∞
Wa,s

Φ,N,ε(Z).

There exists a critical value of the parameter s, which we will denote by P a
W (T1,Φ, Z, ε),

where Wa,s
Φ,ε(Z) jumps from ∞ to 0, i.e.

Wa,s
Φ,ε(Z) =

{
0, s > P a

W (T1,Φ, Z, ε),
∞, s < P a

W (T1,Φ, Z, ε).

Clearly P a
W (T1,Φ, Z, ε) does not decrease with ε, and hence the following limit exists,

P a
W (T1,Φ, Z) = lim

ε→0
P a
W (T1,Φ, Z, ε).

Definition 3.4. We call P a
W (T1,Φ) := P a

W (T1,Φ, X1) the average a-weighted topo-
logical pressure of Φ with respect to T1 or, simply, the average a-weighted topological
pressure of Φ, when there is no confusion about T1.

The main result of this subsection is the following.

Proposition 3.5. Let Z ⊆ X1. Then for any s ≥ 0 and ε, δ > 0, we have

Λa,s+δ
Φ,N,6ε(Z) ≤ Wa,s

Φ,N,ε(Z) ≤ Λa,s
Φ,N,ε(Z),

when N is large enough. As a consequence, P a
W (T1,Φ) = P a(T1,Φ).

Before giving the proof of Proposition 3.5, we first state some lemmas.

Lemma 3.6. For any s ≥ 0, N ∈ N and ε > 0, both Λa,s
Φ,N,ε and Wa,s

Φ,N,ε are outer
measures on X.
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Proof. It follows directly from the definitions Λa,s
Φ,N,ε and Wa,s

Φ,N,ε. �

The following combinatoric lemma plays an important role in the proof of Propo-
sition 3.5.

Lemma 3.7. Let (X, d) be a compact metric space and ε > 0. Let (Ei)i∈I be a finite
or countable family of subsets of X with diameter less than ε, and (ci)i∈I a family of
positive numbers. Let t > 0. Assume that F ⊆ X such that

F ⊆

{
x ∈ X :

∑
i

ciχEi > t

}
.

Then F can be covered by no more than 1
t

∑
i ci balls with centers in

⋃
i∈I Ei and

radius 6ε.

To prove Lemma 3.7, we need the following well known covering lemma.

Lemma 3.8 (cf. Theorem 2.1 in [26]). Let (X, d) be a compact metric space and
B = {B(xi, ri)}i∈I be a family of open balls in X. Then there exists a finite or
countable subfamily B′ = {B(xi, ri)}i∈I′ of pairwise disjoint balls in B such that⋃

B∈B

B ⊆
⋃
i∈I′

B(xi, 5ri).

Proof of Lemma 3.7. Without loss of generality, assume that I ⊆ N. For any i ∈ I,
pick xi ∈ Ei and write Bi = B(xi, ε) and 5Bi = B(xi, 5ε) for short. Clearly Ei ⊆ Bi.
Define

Z =

{
x ∈ X :

∑
i

ciχBi > t

}
.

We have F ⊂ Z. To prove the lemma, it suffices to show that Z can be covered by no
more than 1

t

∑
i ci balls with centers in {xi : i ∈ I} and radius 6ε. To avoid triviality,

we assume that
∑

i ci <∞; otherwise there is nothing left to prove.

For k ∈ N, define

Ik = {i ∈ I : i ≤ k} and Zk =
{
x ∈ Z :

∑
i∈Ik

ciχBi(x) > t
}
.

We divide the remaining proof into two small steps.

Step 1. For each k ∈ N, there exists a finite set Jk ⊆ Ik such that the balls Bi

(i ∈ Jk) are pairwise disjoint, Zk ⊆
⋃
i∈Jk 5Bi and

#(Jk) ≤
1

t

∑
i∈Ik

ci.
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To prove the above result, we adopt the argument from Federer [14, 2.10.24] in the
study of weighted Hausdorff measures (see also Mattila [26, Lemma 8.16]). Since Ik is
finite, by approximating the ci’s from above, we may assume that each ci is a positive
rational, and then multiplying ci and t with a common denominator we may assume
that each ci is a positive integer. Let m be the least integer with m ≥ t. Denote
B = {Bi, i ∈ Ik} and define u : B → N by u(Bi) = ci. We define by induction
integer-valued functions v0, v1, . . . , vm on B and sub-families B1, . . . ,Bm of B starting
with v0 = u. Using Lemma 3.8 we find a pairwise disjoint subfamily B1 of B such that⋃
B∈B B ⊆

⋃
B∈B1 5B, and hence Zk ⊆

⋃
B∈B1 5B. Then by repeatedly using Lemma

3.8, we can define inductively for j = 1, . . . ,m, disjoint subfamilies Bj of B such that

Bj ⊆ {B ∈ B : vj−1(B) ≥ 1}, Zk ⊆
⋃
B∈Bj

5B

and the functions vj such that

vj(B) =

{
vj−1(B)− 1 for B ∈ Bj,
vj−1(B) for B ∈ B\Bj.

This is possible since for j < m, Zk ⊆
{
x :
∑

B∈B: B3x vj(B) ≥ m− j
}

, whence every
x ∈ Zk belongs to some ball B ∈ B with vj(B) ≥ 1. Thus

m∑
j=1

#(Bj) =
m∑
j=1

∑
B∈Bj

(vj−1(B)− vj(B)) =
∑
B∈Bj

m∑
j=1

(vj−1(B)− vj(B))

≤
∑
B∈B

m∑
j=1

(vj−1(B)− vj(B)) ≤
∑
B∈B

u(B) =
∑
i∈Ik

ci.

Choose j0 ∈ {1, . . . ,m} so that #(Bj0) is the smallest. Then

#(Bj0) ≤
1

m

∑
i∈Ik

ci ≤
1

t

∑
i∈Ik

ci.

Hence Jk := {i ∈ Ik : Bi ∈ Bj0} is desired.

Step 2. There exists I ′ ⊂ I with #(I ′) ≤ 1
t

∑
i∈I ci so that Z ⊆

⋃
i∈I′ 6Bi.

Since Zk ↑ Z, Zk 6= ∅ when k is large enough. Let Jk be constructed as in Step 1.
Then Jk 6= ∅ when k is large enough. Define Gk = {xi : i ∈ Jk}. Then

#(Gk) = #(Jk) ≤
1

t

∑
i∈Ik

ci ≤
1

t

∑
i∈I

ci.

Since the space of non-empty compact subsets of X is compact with respect to the
Hausdorff distance (cf. Federer [14, 2.10.21]), there is a subsequence (kj) of natural
numbers and a non-empty compact set G ⊂ X such that Gkj converges to G in the
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Hausdorff distance as j →∞. As any two different points in Gk have a distance not
less than ε, so do the points in G. Thus G is a finite set, moreover, #(Gkj) = #(G)
when j is large enough. Hence⋃

x∈G

B(x, 5.5ε) ⊇
⋃

x∈Gkj

B(x, 5ε) =
⋃
i∈Jkj

5Bi ⊇ Zkj

when j is large enough, and thus
⋃
x∈GB(x, 5.5ε) ⊇ Z. On the other hand, when j is

large enough, we have ⋃
x′∈Gkj

B(x′, 6ε) ⊇
⋃
x∈G

B(x, 5.5ε),

hence we have
⋃
x′∈Gkj

B(x′, 6ε) ⊇ Z, with #(Gkj) ≤ 1
t

∑
i∈I ci. �

Return back to the metric spaces (Xi, di) and TDS’s (Xi, Ti), i = 1, . . . , k. For
n ∈ N, define a metric dan on X1 by

dan(x, y) = sup
{
di(T

j
i τi−1x, T

j
i τi−1y) : 1 ≤ i ≤ k, 0 ≤ j ≤ d(a1 + . . .+ ai)ne − 1

}
.

Lemma 3.9. Let ε > 0. Then there exist γ > 0 such that for any n ∈ N, X1 can be
covered by no more than exp(nγ) balls of radius ε in metric dan.

Proof. By compactness, for each 1 ≤ i ≤ k, we can find a finite open cover αi of Xi

with diam(αi) < ε (in metric d1). Let n > 0. Define

β =
k∨
i=1

d(a1+···+ai)ne−1∨
j=0

T−j1 τ−1
i−1αi

 .

Then β is an open cover of X1 with diameter less than ε (with respect to the metric
dan). Hence X1 can be covered by at most #(β) many balls of radius ε in metric dan.

Let γ > 0 so that exp(γ) =
∏k

i=1(#(αi))
a1+···+ai+1. Then

#(β) ≤
k∏
i=1

(#(αi))
d(a1+···+ai)ne ≤ exp(nγ),

which implies the result of the lemma. �

Proof of Proposition 3.5. Let Z ⊆ X1, s ≥ 0, ε, δ > 0. Taking f = χZ and ci ≡ 1
in the definition (3.5), we see that Wa,s

Φ,N,ε(Z) ≤ Λa,s
Φ,N,ε(Z) for each N ∈ N. In the

following, we prove that Λa,s+δ
Φ,N,6ε(Z) ≤ Wa,s

Φ,N,ε(Z) when N is large enough.

Let γ > 0 be given as in Lemma 3.9. Assume that N ≥ 2 such that

(3.6) n2(n+ 1)eγ−nδ ≤ 1, ∀ n ≥ N.
17



Let {(ni, Ai, ci)}i∈I be a family so that I ⊆ N, Ai ∈ T a
ni,ε

, 0 < ci <∞, ni ≥ N and

(3.7)
∑
i∈I

ciχAi ≥ χZ .

We show below that

(3.8) Λa,s+δ
Φ,N,6ε(Z) ≤

∑
i∈I

ci exp

(
−nis+

1

a1

sup
x∈Aj

log φda1nje(x)

)
,

which implies Λa,s+δ
Φ,N,6ε(Z) ≤ Wa,s

Φ,N,ε(Z).

To prove (3.8), we write In = {i ∈ I : ni = n},

gn(x) = (φda1ne(x))1/a1 , gn(E) = sup
x∈E

gn(x)

for n ∈ N, x ∈ X1 and E ⊆ X1. Moreover set

Zn,t =
{
x ∈ Z :

∑
i∈In

ciχAi(x) > t
}
.

We claim that

(3.9) Λa,s+δ
Φ,N,ε(Zn,t) ≤

1

tn2

∑
i∈In

ci exp(−ns)gn(Ai), ∀ n ≥ N, 0 < t < 1.

To prove the claim, assume that n ≥ N and 0 < t < 1. Set D = 1
n

log gn(Zn,t). For
` = 1, . . . , n and i ∈ In, write

Z`
n,t =

{
x ∈ Zn,t :

1

n
log gn(x) ∈

(
D − γ`

n
,D − γ(`− 1)

n

]}
, Ai,` := Ai ∩ Z`

n,t,

and

Z0
n,t =

{
x ∈ Zn,t :

1

n
log gn(x) ≤ D − γ

}
, Ai,0 = Ai ∩ Z0

n,t.

For ` = 0, 1, . . . , n, write In,` = {i ∈ In : Ai,` 6= ∅}; then

Z`
n,t =

{
x ∈ X1 :

∑
i∈In,`

ciχAi,`(x) > t
}
.

Hence by Lemma 3.7, Z`
n,t can be covered by no more than 1

t

∑
i∈In,` ci balls with

center in
⋃
i∈In Ai,` and radius 6ε (in metric dan). It follows that for ` = 1, . . . , n,

Λa,s+δ
Φ,N,6ε(Z

`
n,t) ≤ e−n(s+δ)(

1

t

∑
i∈In,`

ci)gn(Z`
n,t) ≤ e−n(s+δ)eγ

1

t

∑
i∈In,`

cign(Ai,`)

≤ eγ−nδ
1

t

∑
i∈In

cie
−nsgn(Ai).

(3.10)
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We still need to estimate Λa,s+δ
Φ,N,6ε(Z

0
n,t). By Lemma 3.9, X1 (and thus Z0

n,t) can be
covered by no more than exp(nγ) balls of radius 6ε (in metric dan). Hence

Λa,s+δ
Φ,N,6ε(Z

0
n,t) ≤ exp(nγ)e−n(s+δ)gn(Z0

n,t) ≤ exp(nγ)e−n(s+δ) exp(n(D − γ))

≤ e−n(s+δ) exp(nD) ≤ e−nδ
1

t

∑
i∈In

cie
−nsgn(Ai),

(3.11)

where the last inequality uses the following arguments: since exp(nD) = gn(Zn,t), for
any u < exp(nD), there exists x ∈ Zn,t so that gn(x) ≥ u; however since x ∈ Zn,t we
have

∑
i∈In: Ai3x ci ≥ t, which implies

1

t

∑
i∈In

cign(Ai) ≥
1

t

∑
i∈In:Ai3x

cign(Ai) ≥
1

t

∑
i∈In:Ai3x

ciu ≥ u.

Combining (3.10)-(3.11), we have

Λa,s+δ
Φ,N,6ε(Zn,t) ≤

n∑
`=0

Λa,s+δ
Φ,N,6ε(Z

`
n,t) ≤ (n+ 1)eγ−nδ

1

t

∑
i∈In

cie
−nsgn(Ai)

≤ 1

n2t

∑
i∈In

cie
−nsgn(Ai),

(3.12)

where in the last inequality we use (3.6). This finishes the proof of (3.9).

To complete the proof of Proposition 3.5, notice that
∑∞

n=N n
−2 ≤

∑∞
n=2 n

−2 ≤ 1;
hence if x 6∈

⋃
n≥N Zn,n−2t, then

∑
i∈I

ciχAi(x) =
∑

i∈
⋃∞
n=N In

ciχAi(x) ≤
∞∑
n=N

∑
i∈In

ciχAi(x) ≤
∞∑
n=N

n−2t ≤ t < 1,

thus x 6∈ Z by (3.7). Therefore Z ⊆
⋃
n≥N Zn,n−2t. By (3.12),

Λa,s+δ
Φ,N,6ε(Z) ≤

∞∑
n=N

Λa,s+δ
Φ,N,6ε(Zn,n−2t) ≤

1

t

∞∑
n=N

∑
i∈In

cie
−nsgn(Ai) ≤

1

t

∑
i∈I

cie
−nisgni(Ai).

Letting t ↑ 1, we have

Λa,s+δ
Φ,N,6ε(Z) ≤

∑
i∈I

cie
−nisgni(Ai),

that is, (3.8) holds. This finishes the proof of Proposition 3.5. �
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3.3. Proof of Lemma 3.3. It is easy to see that Lemma 3.3 follows directly from
Proposition 3.5 and the following lemma.

Lemma 3.10. Let s ≥ 0, N ∈ N and ε > 0. Suppose that c := Wa,s
Φ,N,ε(X1) > 0.

Then there is a Borel probability measure µ on X1 such that for any n ≥ N , x ∈ X1,
and any compact K ⊂ Ba

n(x, ε),

µ(K) ≤ 1

c
e−nsgn(K),

where

gn(z) = (φda1ne(z))1/a1 , gn(K) = sup
z∈K

gn(z).

Proof. Here we adopt the idea employed by Howroyd in his proof of the Frostman
lemma in compact metric spaces (cf. [19, Theorem 2]). Clearly c < ∞. We define a
function p on the space C(X1) of continuous real-valued functions on X1 by

p(f) = (1/c)Wa,s
Φ,N,ε(f).

Let 1 ∈ C(X1) denote the constant function 1(x) ≡ 1. It is easy to verify that

(1) p(f + g) ≤ p(f) + p(g) for any f, g ∈ C(X1).
(2) p(tf) = tp(f) for any t ≥ 0 and f ∈ C(X1).
(3) p(1) = 1, 0 ≤ p(f) ≤ ‖f‖∞ for any f ∈ C(X1), and p(g) = 0 for g ∈ C(X1)

with g ≤ 0.

By the Hahn-Banach theorem, we can extend the linear functional t 7→ tp(1), t ∈ R,
from the subspace of the constant functions to a linear functional L : C(X1) → R
satisfying

L(1) = p(1) = 1 and − p(−f) ≤ L(f) ≤ p(f) for any f ∈ C(X1).

If f ∈ C(X1) with f ≥ 0, then p(−f) = 0 and so L(f) ≥ 0. Hence combining the fact
L(1) = 1, we can use the Riesz representation theorem to find a Borel probability
measure µ on X1 such that L(f) =

∫
fdµ for f ∈ C(X1).

Now let x ∈ X1 and n ≥ N . Suppose that K is a compact subset of Ba
n(x, ε). Let

δ > 0. Since gn is upper semi-continuous, there exists an open set Ba
n(x, ε) ⊃ V ⊃ K

such that gn(V ) ≤ gn(K) + δ.

By the Uryson lemma, there exists f ∈ C(X1) such that 0 ≤ f ≤ 1, f(y) = 1 for
y ∈ K, and f(y) = 0 for y ∈ X1\V . Then µ(K) ≤ L(f) ≤ p(f). Since f ≤ χV and
n ≥ N , we have Wa,s

Φ,N,ε(f) ≤ e−nsgn(V ) and thus p(f) ≤ 1
c
e−sngn(V ). Therefore

µ(K) ≤ 1

c
e−nsgn(V ) ≤ 1

c
e−ns(gn(K) + δ).
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Letting δ → 0, we have µ(K) ≤ 1
c
e−nsgn(K). This completes the proof of the lemma.

�

4. The proof of Theorem 1.4: Lower bound

In this section, we prove the lower bound part of Theorem 1.4. The following
weighted version of Brin-Katok theorem plays a key role in our proof.

Theorem 4.1. For each ergodic measure µ ∈M(X1, T1), we have

lim
ε→0

lim inf
n→+∞

− log µ(Ba
n(x, ε))

n
= lim

ε→0
lim sup
n→+∞

− log µ(Ba
n(x, ε))

n
= haµ(T1)

for µ-a.e. x ∈ X1.

We shall postpone the proof of Theorem 4.1 to Appendix A. In the following we
prove the lower bound part of Theorem 1.4 for sub-additive potentials rather than
additive potentials.

Proposition 4.2. Let Φ = {log φn}∞n=1 be a sub-additive potential on X1. Then

P a(T1,Φ) ≥ sup
{

Φ∗(µ) + haµ(T1) : µ ∈M(X1, T1),Φ∗(µ) 6= −∞
}
.

Proof. By Jacobs’ theorem (cf. [37, Theorem 8.4]) and Proposition A.1.(3) in [16],
if µ =

∫
E(X1,T1)

m dτ(m) is the ergodic decomposition of an element µ in M(X1, T1),

then

haµ(T1) =

∫
E(X1,T1)

ham(T1) dτ(m), Φ∗(µ) =

∫
E(X1,T1)

Φ∗(m) dτ(m).

Hence to prove the proposition, it suffices to show that

(4.1) P a(T1,Φ) ≥ Φ∗(µ) + min{δ−1, haµ(T1)− δ} − δ
for any δ > 0 and any ergodic µ ∈M(X1, T1) with Φ∗(µ) 6= −∞.

For this purpose, we fix δ > 0 and an ergodic measure µ on X1 with Φ∗(µ) 6= −∞.
Write

H := min{δ−1, haµ(T1)− δ}.
By Theorem 4.1, we can choose ε > 0 so that

(4.2) lim inf
n→∞

− log µ(Ba
n(x, ε))

n
> H for µ-a.e. x ∈ X1.

Since Φ is sub-additive, by Kingman’s subadditive ergodic theorem (cf. [37, p. 231]
and [16, Proposition A.1.]), we have

lim
n→∞

1

n
log φn(x) = Φ∗(µ)

21



for µ-a.e. x ∈ X1. Hence there exists a large N ∈ N and a Borel set EN ⊂ X1 with
µ(EN) > 1/2 such that for any x ∈ EN and n ≥ N ,

(4.3) µ(Ba
n(x, ε)) < exp(−nH), log φda1ne(x) ≥ a1nΦ∗(µ)− a1nδ.

Now assume that Γ = {(nj, Aj)}i is a countable collection so that nj ≥ N , Aj ∈
T a
nj ,ε/2

(cf. (3.2) for the definition) and
⋃
j Aj = X1. By definition, for each j, there

exists xj ∈ X so that Aj ⊆ Ba
nj

(xj, ε/2). Set

I := {j : Aj ∩ EN 6= ∅}.

For j ∈ I, pick yj ∈ Aj ∩ EN ; then we have

Aj ⊆ Ba
nj

(xj, ε/2) ⊆ Ba
nj

(yj, ε)

and thus

µ(Aj) ≤ µ(Ba
nj

(yj, ε)) ≤ exp(−njH);

moreover,

1

a1

sup
x∈Aj

log φda1nje(x) ≥ 1

a1

log φda1nje(yj) ≥ njΦ∗(µ)− njδ.

Set s := Φ∗(µ) +H − δ. Then for any j ∈ I,

exp

(
−snj +

1

a1

sup
x∈Aj

φda1nje(x)

)
≥ µ(Aj) exp (nj (−s+ Φ∗(µ) +H − δ)) = µ(Aj).

Summing over j ∈ I, we have∑
j∈I

exp

(
−snj +

1

a1

sup
x∈Aj

φda1nje(x)

)
≥
∑
j∈I

µ(Aj) ≥ µ

(⋃
j∈I

Aj

)
≥ µ(EN) ≥ 1/2.

It follows that Λa,s
Φ,ε(X1) ≥ Λa,s

Φ,N,ε(X1) ≥ 1/2, and thus

P a(T1,Φ) ≥ P a(T1,Φ, X1, ε/2) ≥ s = Φ∗(µ) + min{δ−1, haµ(T1)− δ} − δ,

as desired. �

5. The proof of Theorem 1.4: upper bound

In this section, we prove the upper bound in Theorem 1.4, that is, for any f ∈ C(X1)
and δ > 0, there exists µ ∈M(X1, T1) such that

P a(T1, f) ≤ haµ(T1) +

∫
X1

fdµ+ δ.

Before proving the above result, we first give some lemmas.
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Lemma 5.1. Let (X,T ) be a TDS and µ ∈M(X). Let α = {A1, . . . , AM} be a Borel
partition of X with cardinality M . Write for brevity

h(n) := H 1
n

∑n−1
i=0 µ◦T−i

(α), h(n,m) := H 1
m

∑m+n−1
i=n µ◦T−i(α).

for n,m ∈ N. Then

(i) h(n) ≤ logM and h(n,m) ≤ logM for n,m ∈ N.
(ii) |h(n+ 1)− h(n)| ≤ 1

n+1
log (3M2(n+ 1)) for all n ∈ N.

(iii)
∣∣h(n+m)− n

n+m
h(n)− m

n+m
h(n,m)

∣∣ ≤ log 2 for all n,m ∈ N.

Proof. (i) is obvious. Now we turn to the proof of (ii). It is well known (see e.g.
[37, Theorem 8.1] and the proof therein) that for any finite Borel partition β of X,
ν1, ν2 ∈M(X) and p ∈ [0, 1],

(5.1)

0 ≤ Hpν1+(1−p)ν2(β)− pHν1(β)− (1− p)Hν2(β)

≤ −(p log p+ (1− p) log(1− p))
≤ log 2.

Let n ∈ N. Applying (5.1) and (i), we have

|h(n+ 1)− h(n)|

=
∣∣∣h(n+ 1)− n

n+ 1
h(n)− 1

n+ 1
Hµ◦T−n(α)− 1

n+ 1
h(n) +

1

n+ 1
Hµ◦T−n(α)

∣∣∣
≤
∣∣∣h(n+ 1)− n

n+ 1
h(n)− 1

n+ 1
Hµ◦T−n(α)

∣∣∣+
2

n+ 1
logM

≤ − n

n+ 1
log

n

n+ 1
− 1

n+ 1
log

1

n+ 1
+

2

n+ 1
logM

≤ 1

n+ 1
log
(
3M2(n+ 1)

)
,

where we use the fact (1 + 1/n)n < e < 3 in the last inequality. This proves (ii).

Finally, since

1

n+m

n+m−1∑
i=0

µ ◦ T−i =
n

n+m

(
1

n

n−1∑
i=0

µ ◦ T−i
)

+
m

n+m

(
1

m

n+m−1∑
i=n

µ ◦ T−i
)

for n,m ∈ N, (iii) follows from (5.1). �

Lemma 5.2. Let (X,T ) be a TDS and µ ∈ M(X). For ε > 0 and `,M ∈ N, let
H•(ε,M ; `) be defined as in (2.3). Then the following statements hold.

23



(1) For all n ∈ N,∣∣∣H 1
n

∑n−1
i=0 µ◦T−i

(ε,M ; `)−H 1
n+1

∑n
i=0 µ◦T−i

(ε,M ; `)
∣∣∣

≤ 1

`(n+ 1)
log
(
3M2`(n+ 1)

)
.

(2) For all n,m ∈ N,

(5.2)

n

n+m
H 1

n

∑n−1
i=0 µ◦T−i

(ε,M ; `) +
m

n+m
H 1

m

∑n+m−1
i=n µ◦T−i(ε,M ; `)

≤ H 1
n+m

∑m+n−1
i=0 µ◦T−i(ε,M ; `) +

log 2

`
.

Proof. The statements directly follow from the definition of H•(ε,M ; `) and Lemma
5.1. �

Lemma 5.3 (Lemma 2.4 of [10]). Let ν ∈ M(X) and M ∈ N. Suppose ξ =
{A1, . . . , Aj} is a Borel partition of X with j ≤ M . Then for any positive integers
n, ` with n ≥ 2`, we have

1

n
Hν

(
n−1∨
i=0

T−iξ

)
≤ 1

`
Hνn

(
`−1∨
i=0

T−iξ

)
+

2`

n
logM,

where νn = 1
n

∑n−1
i=0 ν ◦ T−i.

The following lemma is a slight variant of [20, Lemma 4.1] by Kenyon and Peres.

Lemma 5.4. Let p ∈ N. Let uj : N→ R (j = 1, . . . , p) be bounded functions with

lim
n→∞

|uj(n+ 1)− uj(n)| = 0.

Then for any positive numbers c1, . . . , cp and r1, . . . , rp,

lim sup
n→+∞

p∑
j=1

(uj(dcjne)− uj(drjne)) ≥ 0.

Proof. For the convenience of reader, we give a proof by adapting the argument of
Kenyon and Peres in [20].

For j = 1, . . . , p, extend uj in a piecewise linear fashion to a bounded continuous
function on [1,+∞). Then for each 1 ≤ j ≤ p,

(5.3) lim
t→+∞

sup

{
|uj(x)− uj(y)| : x, y ≥ t, |x− y| ≤ max

1≤i≤p
max{ci, ri, 1}

}
= 0.
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Take a positive number M so that

(5.4) M > max
1≤j≤p

{| log cj|+ | log rj|+ 1}.

Then for every w > M ,∣∣∣ ∫ w

M

p∑
j=1

(
uj(e

x+log cj)− uj(ex+log rj)
)
dx
∣∣∣

=

∣∣∣∣∣
p∑
j=1

[∫ w+log cj

M+log cj

uj(e
x)dx−

∫ w+log rj

M+log rj

uj(e
x)dx

]∣∣∣∣∣
≤

p∑
j=1

∣∣∣∣∣
∫ w+log cj

M+log cj

uj(e
x)dx−

∫ w+log rj

M+log rj

uj(e
x)dx

∣∣∣∣∣
=

p∑
j=1

∣∣∣ ∫ w+log cj

w+log rj

uj(e
x)dx−

∫ M+log cj

M+log rj

uj(e
x)dx

∣∣∣,
Since each uj is bounded, the sum in the right-hand side of the last ‘=’ above is
uniformly bounded. It follows that

lim sup
x→+∞

p∑
j=1

(
uj(e

x+log ci)− uj(ex+log rj)
)
≥ 0.

Setting t = ex, one has

lim sup
t→+∞

p∑
j=1

(uj(cit)− uj(rjt)) ≥ 0.

Combining the above inequality with (5.3), we have

lim sup
n→+∞

p∑
j=1

(uj(dcjne)− uj(drjne)

= lim sup
n→+∞

p∑
j=1

(uj(cjn)− uj(rjn))

= lim sup
t→+∞

p∑
j=1

(uj(cjdte)− uj(rjdte))

= lim sup
t→+∞

p∑
j=1

(uj(cjt)− uj(rjt)) ≥ 0,

which completes the proof of the lemma. �
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Proof of Theorem 1.4: upper bound. Suppose that P a(T1, f) > 0. Fix 0 < s < s′ <

P a(T1, f). Let Φ = {log φn}∞n=1 be the additive potential generated by f , that is,
φn(x) = exp(Snf(x)) where Snf(x) :=

∑n−1
i=0 f(T i1x). Take ε0 > 0 such that

(5.5) sup{|f(x)− f(y)| : x, y ∈ X1, d1(x, y) ≤ ε0} < (s′ − s)a1/(1 + a1).

By Lemma 3.3, there exist ν ∈M(X1), ε ∈ (0, ε0), and N ∈ N such that

ν(Ba
n(x, ε)) ≤ sup

y∈Ba
n(x,ε)

exp

(
−s′n+

1

a1

Sda1nef(y)

)
≤ exp

(
−sn+

1

a1

Sda1nef(x)

)(5.6)

for any n ≥ N and x ∈ X1, where in the last inequality we use (5.5).

By continuity, there exists τ ∈ (0, ε) such that for any 1 ≤ i < j ≤ k, if xi, yi ∈ Xi

satisfy di(xi, yi) < τ , then

dj(πj−1 ◦ · · · ◦ πi(xi), πj−1 ◦ · · · ◦ πi(yi)) < ε.

Take M0 ∈ N with PXi(τ,M0) 6= ∅ for i = 1, . . . , k, where PXi(τ,M0) is defined as
in (2.2). Now fix M ∈ N with M ≥ M0. Let αi ∈ PXi(τ,M) for i = 1, . . . , k. Set
βi = τ−1

i−1αi and write for brevity that

t0(n) = 0, ti(n) = d(a1 + . . .+ ai)ne

for n ∈ N and i = 1, . . . , k. Then for any n ∈ N and x ∈ X1, we have

(5.7)
k∨
i=1

ti(n)−1∨
j=ti−1(n)

T−j1 βi(x) ⊆ Ba
n(x, ε).

Now assume that n ≥ N . By (5.6) and (5.7),

(5.8) ν
( k∨
i=1

ti(n)−1∨
j=ti−1(n)

T−j1 βi(x)
)
≤ exp

(
−sn+

1

a1

Sda1nef(x)

)
for any x ∈ X1. It follows that

Hν

( k∨
i=1

ti(n)−1∨
j=ti−1(n)

T−jβi

)
= −

∫
log ν

( k∨
i=1

ti(n)−1∨
j=ti−1(n)

T−j1 βi(x)
)
dν(x)

≥ sn−
∫

1

a1

Sda1nef(x)dν(x).
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Hence

(5.9)
k∑
i=1

Hν

( ti(n)−1∨
j=ti−1(n)

T−j1 βi

)
≥ sn−

∫
1

a1

Sda1nef(x)dν(x).

Now fix ` ∈ N. By Lemma 5.3, the left-hand side of (5.9) is bounded from above
by

k∑
i=1

ti(n)− ti−1(n)

`
Hwi,n

( `−1∨
j=0

T−j1 βi

)
+ 2k` logM,

where

wi,n :=

∑ti(n)−1
j=ti−1(n) ν ◦ T

−j
1

ti(n)− ti−1(n)
.

Hence by (5.9) and the definition of H•(τ,M ; `) (cf. (2.3)), we have

(5.10)

k∑
i=1

(ti(n)− ti−1(n))Hwi,n◦τ−1
i−1

(τ,M ; `)

≥ sn− da1ne
a1

∫
fdw1,n − 2k` logM.

Define νm =
∑m−1
j=0 ν◦T−j1

m
for m ∈ N. For i = 1, . . . , k, we have

νm ◦ τ−1
i−1 =

∑m−1
j=0 (ν ◦ τ−1

i−1) ◦ T−ji
m

, wi,n ◦ τ−1
i−1 =

∑ti(n)−1
j=ti−1(n)(ν ◦ τ

−1
i−1) ◦ T−ji

ti(n)− ti−1(n)

and

νti(n) ◦ τ−1
i−1 =

ti−1(n)

ti(n)
νti−1(n) ◦ τ−1

i−1 +
ti(n)− ti−1(n)

ti(n)
wi,n ◦ τ−1

i−1.(5.11)

Applying Lemma 5.2(2) to the measure ν ◦τ−1
i−1 (more precisely, in (5.2), we replace

the terms T , µ, n, m by Ti, ν ◦ τ−1
i−1, ti−1(n), ti(n)− ti−1(n), respectively), we have

ti−1(n)

ti(n)
Hνti−1(n)

◦τ−1
i−1

(τ,M, `) +
ti(n)− ti−1(n)

ti(n)
Hwi,n◦τ−1

i−1
(τ,M ; `)

≤ Hνti(n)◦τ
−1
i−1

(τ,M ; `) +
log 2

`
.

That is,

ti(n)Hνti(n)◦τ
−1
i−1

(τ,M ; `)− ti−1(n)Hνti−1(n)
◦τ−1
i−1

(τ,M, `)

≥ (ti(n)− ti−1(n))Hwi,n◦τ−1
i−1

(τ,M ; `)− ti(n) log 2

`
.
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Combining the above inequality with (5.10), we have

(5.12)

Θn :=
k∑
i=1

(
ti(n)Hνti(n)◦τ

−1
i−1

(τ,M ; `)− ti−1(n)Hνti−1(n)
◦τ−1
i−1

(τ,M, `)
)

≥sn− t1(n)

a1

∫
fdνt1(n) − 2k` logM − ktk(n) log 2

`
.

Write gi(n) := Hνn◦τ−1
i−1

(τ,M ; `). Then by Lemma 5.2(1),

(5.13) |gi(n)− gi(n+ 1)| ≤ 1

`(n+ 1)
log
(
3M2`(n+ 1)

)
.

Set

γ(n) :=
k∑
i=2

ti(n)(gi(ti(n))− gi(t1(n)))−
k∑
i=2

ti−1(n)(gi(ti−1(n))− gi(t1(n))).

Then we have

Θn = γ(n) +
k∑
i=1

(ti(n)− ti−1(n))gi(t1(n)),

where Θn is defined as in (5.12). Hence by (5.12), we have

(5.14)

k∑
i=1

ti(n)− ti−1(n)

n
gi(t1(n)) +

t1(n)

a1n

∫
fdνt1(n)

≥ −γ(n)

n
+ s− 2k` logM

n
− ktk(n) log 2

n`
.

Define

w(n) =
k∑
i=2

(a1+· · ·+ai−1)(gi(ti−1(n))−gi(t1(n)))−
k∑
i=2

(a1+· · ·+ai)(gi(ti(n))−gi(t1(n))).

Then we have lim supn→∞w(n) ≥ 0 by applying Lemma 5.4, in which we take p =
2k − 2,

uj(n) =

{
(a1 + · · ·+ aj)gj+1(n) if 1 ≤ j ≤ k − 1,
−(a1 + · · ·+ aj−k+2)gj−k+2(n) if k ≤ j ≤ 2k − 2,

and

cj =

{
aj if 1 ≤ j ≤ k − 1,
aj−k+2 if k ≤ j ≤ 2k − 2,

and rj = 1 for all j; the condition limn→∞ |uj(n + 1) − uj(n)| = 0 fulfils, thanks to
(5.13).
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Since gi’s are bounded functions, we have

lim sup
n→∞

−γ(n)

n
= lim sup

n→∞
w(n) ≥ 0.

Hence letting n→∞ in (5.14) and taking the upper limit, we obtain

(5.15) lim sup
n→∞

(
k∑
i=1

aigi(t1(n)) +

∫
fdvt1(n)

)
≥ s− k(a1 + · · ·+ ak) log 2

`
.

Take a subsequence (nj) of the natural numbers so that the left-hand side of (5.15)
equals

lim
j→∞

(
k∑
i=1

aiHνt1(nj)◦τ
−1
i−1

(τ,M ; `) +

∫
fdνt1(nj)

)
and moreover, νt1(nj) converges to an element λ ∈ M(X1, T1) in the weak* topology.
Since the map H•(τ,M ; `) is upper semi-continuous on M(X1) (see Lemma 2.3), we
have

(5.16)
k∑
i=1

aiHλ◦τ−1
i−1

(τ,M ; `) +

∫
fdλ ≥ s− k(a1 + · · ·+ ak) log 2

`
.

Define

E :=

{
(M, `, δ) : M, ` ∈ N, δ > 0 with M ≥M0, ` ≥

k(a1 + · · ·+ ak) log 2

δ

}
and

ΩM,`,δ :=

{
η ∈M(X1, T1) : Ha

η (τ,M ; `) +

∫
fdη ≥ s− δ

}
,

where Ha
η (τ,M ; `) :=

∑k
i=1 aiHη◦τ−1

i−1
(τ,M ; `). Then by (5.16), ΩM,`,δ is a non-empty

compact set whenever (M, `, δ) ∈ E . However

ΩM1,`1,δ1 ∩ ΩM2,`2,δ2 ⊇ ΩM1+M2,`1`2,min{δ1,δ2}

for any (M1, `1, δ1), (M2, `2, δ2) ∈ E . It follows (by finite intersection property) that⋂
(M,`,δ)∈E

ΩM,`,δ 6= ∅.

Take µs ∈
⋂

(M,`,δ)∈E ΩM,`,δ. Then

haµs(T1, τ) +

∫
fdµs ≥ s,
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where haµs(T1, τ) :=
∑k

i=1 aihµs◦τ−1
i−1

(Ti, τ). Since the map θ ∈ M(X1, T1) 7→ haθ(T1, τ)

is upper semi-continuous (see Lemma 2.3), we can find µ ∈M(X1, T1) such that

haµ(T1, τ) +

∫
fdµ ≥ P a

W (T1, f, ε)− ωε(f)

by letting s↗ P a
W (T1, f, ε). Since haµ(T1) ≥ haµ(T1, τ), this completes the proof of the

proposition. �

6. Sub-additive case

In this section, we extend Theorem 1.4 to sub-additive potentials, under the fol-
lowing two additional assumptions: (1) htop(T1) < ∞ and (2) the entropy maps
θ ∈M(Xi, Ti) 7→ hθ(Ti), i = 1, 2, · · · , k, are upper semi-continuous.

Definition 6.1. Let f : X1 → [−∞,+∞) be an upper semicontinuous function.
Define Ψ = {logψn}∞n=1 by ψn(x) = exp(

∑n−1
j=0 f(T j1x)). In this case, Ψ is additive.

We just define

P a(T1, f) := P a(T1,Ψ).

Lemma 6.2. Assume that htop(T1) < ∞ and the entropy maps θ ∈ M(Xi, Ti) 7→
hθ(Ti), i = 1, 2, · · · , k, are upper semi-continuous. Let f : X1 → [−∞,+∞) be a
upper semicontinuous function. Then there exists µ ∈M(X1, T1) such that

haµ(T1) +

∫
X1

fdµ ≥ P a(T1, f).

Proof. For g ∈ C(X1) with g ≥ f , we define

Mg =
{
ν ∈M(X1, T1) : haν(T1) +

∫
X1

gdν ≥ P a(T1, f)
}
.

Notice that, under the assumptions of the lemma, the entropy map ν ∈M(X1, T1) 7→
haν(T1) is a bounded upper semi-continuous function. Hence by Theorem 1.4, there
exists µg ∈M(X1, T1) such that

haµg(T1) +

∫
X1

gdµg ≥ P a(T1, g) ≥ P a(T1, f).

Thus µg ∈ Mg. Since ν ∈ M(X1, T1) 7→
∫
X1
gdν is a bounded continuous non-

negative valued function on M(X1, T1), the mapping ν ∈ M(X1, T1) 7→ haν(T1) +∫
X1
gdν is a bounded upper semicontinuous non-negative valued function onM(X1, T1).

Thus Mg is a non-empty closed subset of M(X1, T1).
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Now put

Mf :=
⋂

g∈C(X1),g≥f

Mg.

Note that Mg1 ∩Mg2 ⊇ Mmin{g1,g2} for any g1, g2 ∈ C(X1) with g1 ≥ f , g2 ≥ f ,
and each Mg is a non-empty closed subset of the compact metric space M(X1, T1).
Hence Mf 6= ∅, by the finite intersection property characterization of compactness.
Take any µ ∈Mf . Then

haµ(T1) +

∫
X1

gdµ ≥ P a(T1, f)

for any g ∈ C(X1) with g ≥ f . Moreover, since 0 ≤ haµ(T1) <∞, we have

haµ(T1) + inf
g∈C(X1),g≥f

∫
X1

gdµ ≥ P a(T1, f).

Finally by Lemma 2.2, inf
g∈C(X1),g≥f

∫
X1
gdµ =

∫
X1
fdµ and thus

haµ(T1) +

∫
X1

fdµ ≥ P a(T1, f).

This completes the proof of the lemma. �

Lemma 6.3. Let Φ = {log φn}∞n=1 be a sub-additive potential on X1. If for ` ∈ N
and M ∈ N, let f`,M(x) = max{1

`
log φ`(x),−M} for x ∈ X1, then f`,M : X1 → R is

a bounded upper semi-continuous function and

P a(T1, f`,M) ≥ P a(T1,Φ).

Proof. Let ` ∈ N and M ∈ N. Let f`,M = max{1
`

log φ`,−M}. It is clear that

f`,M : X1 → R is a bounded upper semi-continuous function since 1
`

log φ` : X1 →
[−∞,+∞) is upper semi-continuous.

Let φ0(x) ≡ 1 for x ∈ X1 and

D := D(`) = sup
x∈X1, i∈{0,1,··· ,`−1}

log φi(x).

Then 0 ≤ D <∞. For x ∈ X1 and n ≥ 2`, we have

log φn(x) ≤ log φi(x) +

[n−i
`

]−1∑
j=0

log φ`(T
j`+i
1 x)

+ log φn−i−[n−i
`

]`

(
T
i+[n−i

`
]`

1 x
)

≤ 2D +

[n−i
`

]−1∑
j=0

log φ`(T
j`+i
1 x)
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for each i ∈ {0, 1, . . . , ` − 1}, using the sub-additivity of Φ = {log φn}∞n=1, where [a]
denotes the greatest integer ≤ a. Summing i from 0 to `− 1, we obtain

log φn(x) ≤ 2D +
`−1∑
i=0

[n−i
`

]−1∑
j=0

1

`
log φ`(T

j`+ix) = 2D +
n−∑̀
j=0

1

`
log φ`(T

j
1x)

≤ 2D +
n−∑̀
j=0

f`,M(T j1x) ≤ C +
n−1∑
j=0

f`,M(T j1x)

where C = 2D + `M ∈ [0,+∞).

Define Ψ = {logψn}∞n=1 by ψn(x) = exp
(∑n−1

j=0 f`,M(T j1x)
)

. Then

(6.1) φn(x) ≤ eCψn(x), ∀ x ∈ X1, n ≥ 2`,

This implies that for any ε > 0, s ∈ R and N ≥ 2a1`,

Ma,s
Φ,N,ε(X1) ≤ e

C
a1 · Ma,s

Ψ,N,ε(X1).

Hence Ma,s
Φ,ε(X1) ≤ e

C
a1Ma,s

Ψ,ε(X1) for ε > 0, s ∈ R. It follows that

P a(T1,Φ, X1, ε) ≤ P a(T1,Ψ, X1, ε) = P a(T1, f`,M , X1, ε).

Letting ε→ 0, we are done. �

Theorem 6.4. Assume that htop(T1) < ∞ and the entropy maps θ ∈ M(Xi, Ti) 7→
hθ(Ti), i = 1, 2, · · · , k, are upper semi-continuous. Let Φ = {log φn}∞n=1 be a sub-
additive potential on X1. Then

P a(T1,Φ) = sup{haµ(T1) + Φ∗(µ) : µ ∈M(X1, T1)},
and moreover the supremum is attainable.

Proof. By Proposition 4.2, it is sufficient to show that there exists µ ∈ M(X1, T1)
such that P a(T1,Φ) ≤ haµ(T1) + Φ∗(µ).

For n,M ∈ N, let fn(x) = 1
n

log φn(x) and fn,M(x) = max{ 1
n

log φn(x),−M} for
x ∈ X1. Then fn,M is a bounded upper semi-continuous function. Define

Mn,M =

{
ν ∈M(X1, T1) : haν(T1) +

∫
X1

fn,M dν ≥ P a(T1,Φ)

}
.

By Lemma 6.2, there exists µn,M ∈M(X1, T1) such that

haµn,M (T1) +

∫
X1

fn,M dµn,M ≥ P a(T1, fn,M) ≥ P a(T1,Φ),

where the last inequality comes from Lemma 6.3. Thus µn,M ∈ Mn,M . By the
assumption, we know that the function ha•(T1) is bounded, upper semi-continuous
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and non-negative on M(X1, T1). Notice that ν ∈ M(X1, T1) 7→
∫
X1
fn,Mdν is also

an upper semi-continuous function from M(X1, T1) to R. Hence ν ∈ M(X1, T1) 7→
haν(T1) +

∫
X1
fn,Mdν is upper semi-continuous. Thus Mn,M is a non-empty closed

subset of M(X1, T1). Moreover since Mn,1 ⊇ Mn,2 ⊇ · · · and infM∈N
∫
X1
fn,Mdν =∫

X1
fndν for any ν ∈ M(X1, T1), one has Mn =

⋂
M∈NMn,M is a non-empty closed

subset of M(X1, T1).

Now put

MΦ :=
⋂
n∈N

Mn.

Since
∫
X1
fn1n2dν ≤ min{

∫
X1
fn1dν,

∫
X1
fn2dν} for ν ∈ M(X1, T1), we have Mn1 ∩

Mn2 ⊇ Mn1n2 for any n1, n2 ∈ N. Moreover since each Mn is a non-empty closed
subset of the compact metric space M(X1, T1), one has MΦ 6= ∅ by the finite inter-
section property characterization of compactness. Take any µ ∈MΦ. Then

haµ(T1) +

∫
X1

fndµ ≥ P a(T1,Φ)

for any n ∈ N. Moreover, since 0 ≤ haµ(T1) <∞, we have

haµ(T1) + inf
n∈N

1

n

∫
X1

log φndµ ≥ P a(T1,Φ).

Finally since inf
n∈N

1
n

∫
X1

log φndµ = Φ∗(µ) and thus

haµ(T1) + Φ∗(µ) ≥ P a(T1,Φ).

This finishes the proof of the Theorem. �

7. Final remarks and examples

In this section we give some remarks, examples and questions.

7.1. In [2, 15], Barral and the first author defined weighted topological pressure for
factor maps between subshifts in a different way, motivated from the study of multi-
fractal analysis on affine Sierpinski gaskets [3, 4, 21, 29] and a question of Gatzouras
and Peres [18] on the uniqueness of invariant measures of full dimension on certain
affine invariant sets. The approach is based on the following lemma, which is de-
rived from the relativized variational principle of Ledrappier and Walters [24] and its
sub-additive extension [39].
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Lemma 7.1. [2, 15] Assume that (X,T ) and (Y, S) are subshifts over finite alphabets
and π : X → Y is a factor map. Let f ∈ C(X) (or more general, a subadditive
potential on X). Then there exists a sub-additive potential Φf = (log φn)∞n=1 on Y
such that for any ν ∈M(Y, S),

sup
µ∈M(X,T ), µ◦π−1=ν

(∫
fdµ+ hµ(T )− hν(S)

)
= Φ∗(ν) := lim

n→+∞

1

n

∫
log φndν.

According to above lemma, for given a1, a2 > 0, one has

sup
µ∈M(X,T ), µ◦π−1=ν

(∫
fdµ+ a1hµ(T ) + a2hν(S)

)

= sup
ν∈M(Y,S)

{
(a1 + a2)hν(S) + sup

µ∈π−1ν

a1

(∫
1

a1

fdµ+ hµ(T )− hν(S)

)}
= sup

ν∈M(Y,S)

{(a1 + a2)hν(S) + (Φa−1
1 f )∗(ν)}

= (a1 + a2)P

(
S,

a1

a1 + a2

Φa−1
1 f

)
.

where the last equality follows from the sub-additive thermodynamic formalism (see
e.g. [10]). Hence in [2, 15], P (a1,a2)(T, f) was defined in terms of sub-additive topo-
logical pressure in the subshift case.

However, Lemma 7.1 does not extend to factor maps between general topological
dynamical systems. Below we will give a counter example. Hence the approach in
[2, 15] in defining weighted topological pressure does not extend to general topological
dynamical systems.

Example 7.2. Let X = {(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, y2 +z2 = x2} be a cone surface.
Define T : X → X by

T ((x, x cos θ, x sin θ)) = (x, x cos(2θ), x sin(2θ)), x ∈ [−1, 1].

Let Y = [−1, 1] and S : Y → Y be the identity. Set π : X → Y by π((x, y, z)) = x.
Then (Y, S) is a factor of (X,T ) associated with the factor map π. Take f ∈ C(X)
with f ≡ 0. Suppose that Lemma 7.1 extends to this case, that is, there exists a
sub-additive potential Φ on Y such that for any ν ∈M(Y, S),

(7.1) sup
µ∈π−1ν

(hµ(T )− hν(S)) = Φ∗(ν).

In what follows we derive a contradiction.
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We first claim that the mapping

(7.2) ν ∈M(Y, S) 7→ sup
µ∈π−1ν

(hµ(T )− hν(S))

is not upper semi-continuous. To see this, for t ∈ Y , let νt = δt (the Dirac measure
at t). Clearly δt ∈ M(Y, S) and when t → 0, δt → δ0 in the weak-star topology.
However one can check that

sup
µ∈π−1δt

(
hµ(T )− hνt(S)

)
=

{
log 2, for t 6= 0

0, if t = 0
.

Hence the mapping in (7.2) is not upper semi-continuous. Therefore by (7.1), ν 7→
Φ∗(ν) is not upper semi-continuous on M(Y, S). But this contradicts the fact that
ν 7→ Φ∗(ν) is always upper semi-continuous (see e.g. [16, Proposition A.1.(2)]).

7.2. Using Corollary 1.5, we can extend Kenyon-Peres’ variational principle (1.2) and
its higher dimensional version to a particular class of skew product expanding maps
on the k-torus Tk := Rk/Zk (k ≥ 2).

To see this, let 2 ≤ m1 ≤ m2 ≤ . . . ≤ mk be integers. For i = 1, . . . , k − 1, let φi
be C1 real-valued functions on Ti. Define T1 : Tk → Tk by

T1((x1, . . . , xk)) = (m1x1,m2x2 + φ1(x1), . . . ,mkxk + φk−1(x1, . . . , xk−1)).

This transformation can be viewed as a skew product of the maps

xi 7→ mixi, (i = 1, . . . , k).

Let K ⊂ Tk be a T1-invariant compact set. Let τi (i = 1, . . . , k−1) be the canonical
projection from Tk to Tk−i, i.e.

τi(x1, . . . , xk) = (x1, . . . , xk−i).

Set X1 = K and Xi = τi−1(K) for 2 ≤ i ≤ k. Define Ti : Xi → Xi (i = 2, . . . , k) by

Ti((x1, . . . , xi)) = (m1x1,m2x2 + φ1(x1), . . . ,mixi + φi−1(x1, . . . , xi−1)).

Then (Xi+1, Ti+1) is the factor of (Xi, Ti) associated with the factor map πi : Xi →
Xi+1, which is defined by

(x1, . . . , xk+1−i) 7→ (x1, . . . , xk−i).

Define a = (a1, . . . , ak) with

a1 =
1

logmk

, ai =
1

logmk+1−i
− 1

logmk+2−i
for i = 2, . . . , k.
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It is direct to check that there exist two constants C1, C2 > 0 (depending on φi’s)
such that for any ε > 0 and x ∈ Tk,

(7.3) C2Be−nε(x) ⊂ Ba
n(x, ε) ⊂ C1Be−nε(x).

Hence from the definition of hatop(·), we see that hatop(T1, K) = dimH K. Applying
Corollary 1.5, we have

(7.4) dimH K = hatop(T1, K) = sup
µ∈M(X1,T1)

haµ(T1),

where the supremum is attainable at some ergodic µ ∈M(X1, T1). Moreover by (7.3)
and Theorem A.1, we have dimH µ = haµ(T1) for each ergodic µ ∈ M(X1, T1). Hence
there exists an ergodic µ ∈M(X1, T1) of full Hausdorff dimension, i.e.

(7.5) dimH µ = dimH K.

This extends the work of Kenyon and Peres [20]. We remark that (7.5) was also
proved by Luzia [25] for a more general class of skew product expanding maps on T2.

7.3. In [17], the authors proved a variational principle for topological entropies for
arbitrary Borel subsets. We remark that this principle also holds for weighted topo-
logical entropies, by applying Lemma 3.10 and following the arguments in [17].

In the end we pose several questions about possible extensions of Theorem 1.4:
does this result remain valid for Zd-actions? and moreover does it admit a relativized
or randomized version? is there an analogous topological extension of the dimensional
result on Gatzouras-Lalley self-affine carpets [23]?

Appendix A. A weighted version of the Brin-Katok theorem

The main result in this appendix is the following weighted version of the Brin-Katok
theorem. It is needed in our proof of the lower bound of Theorem.

Theorem A.1. For each ergodic measure µ ∈M(X1, T1), we have

lim
ε→0

lim inf
n→+∞

− log µ(Ba
n(x, ε))

n
= lim

ε→0
lim sup
n→+∞

− log µ(Ba
n(x, ε))

n
= haµ(T1)

for µ-a.e. x ∈ X1.

When a = (1, 0, . . . , 0), the above result reduces to the Brin-Katok theorem on
local entropy [7].

The proof of Theorem A.1 is based on the following weighted version of the Shannon-
McMillan-Breiman theorem.
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Proposition A.2. Let (X,B, µ, T ) be a measure preserving dynamical system and
k ≥ 1. Let α1, . . . , αk be k countable measurable partitions of (X,B, µ) with Hµ(αi) <
∞ for each i, and a = (a1, . . . , ak) ∈ Rk with a1 > 0 and ai ≥ 0 for i ≥ 2. Then

(A.1) lim
N→+∞

1

N
Iµ

( k∨
i=1

(αi)
d(a1+···+ai)Ne−1
0

)
(x) =

k∑
i=1

aiEµ(Fi|Iµ)(x)

almost everywhere, where

Fi(x) := Iµ

( k∨
j=i

αj
∣∣ ∞∨
n=1

T−n(
k∨
j=i

αj)
)

(x), i = 1, . . . , k

and Iµ = {B ∈ B : µ(B4T−1B) = 0}. In particular, if T is ergodic, we have

lim
N→+∞

1

N
Iµ

( k∨
i=1

(αi)
d(a1+···+ai)Ne−1
0

)
(x) =

k∑
i=1

aihµ(T,
k∨
j=i

αj)

almost everywhere.

When k = 1 and a1 = 1, Proposition A.2 reduces to the classical Shannon-
McMillan-Breiman theorem (see e.g. [30, Theorem 7]). We remark that a variant
of Proposition A.2, for certain particular partitions, was proved by Kenyon and Peres
(cf. [20, Lemmas 3.1 and 4.4]) in the case that µ is ergodic. For completeness and
for the convenience of the reader, we will provide a full proof of Proposition A.2 in
the end of this section, by adapting the argument by Kenyon and Peres in [20].

The following result is a direct corollary of Proposition A.2.

Corollary A.3. Let (X,B, µ, T ) be an ergodic measure preserving dynamical system
and k ≥ 1. If α1, . . . , αk are k countable measurable partitions of (X,B, µ) with
α1 � α2 � · · · � αk and Hµ(αi) < ∞, i = 1, . . . , k, and a = (a1, . . . , ak) ∈ Rk with
a1 > 0 and ai ≥ 0 for i ≥ 2, then

lim
N→+∞

1

N
Iµ

( k∨
i=1

( d(a1+···+ai)Ne−1∨
j=d(a0+···+ai−1)Ne

T−jαi

))
(x) =

k∑
i=1

aihµ(T, αi)

almost everywhere, where we make the convention a0 = 0.

Proof of Theorem 4.1. We just adapt the proof of Brin and Katok [7] for their local
entropy formula.
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We first prove the upper bound. Let ε > 0. Let αi be a finite Borel partition of
Xi, i = 1, . . . , k, with diam(αi) < ε. Then

Ba
n(x, ε) ⊇

k⋂
i=1

(τ−1
i−1αi)

d(a1+···+ai)ne−1
0 (x)

for x ∈ X1. Hence by Proposition A.2, for µ-a.e x ∈ X1 we have

lim sup
n→+∞

− log µ(Ba
n(x, ε))

n
≤ lim sup

n→+∞

− log µ
( k⋂
i=1

(τ−1
i−1αi)

d(a1+···+ai)ne−1
0 (x)

)
n

= lim sup
n→+∞

Iµ

( k∨
i=1

(τ−1
i−1αi)

d(a1+···+ai)ne−1
0

)
(x)

n
=

k∑
i=1

aihµ

(
T1,

k∨
j=i

τ−1
j−1αj

)

=
k∑
i=1

aihµ

(
T1, τ

−1
i−1

(
αi ∨

k∨
j=i+1

π−1
i ◦ · · · ◦ π−1

j−1αj

))

=
k∑
i=1

aihµ◦τ−1
i−1

(
Ti, αi ∨

k∨
j=i+1

π−1
i ◦ · · · ◦ π−1

j−1αj

)

≤
k∑
i=1

aihµ◦τ−1
i−1

(Ti) = haµ(T1).

Letting ε→ 0 in the above inequality, we have

lim
ε→0

lim sup
n→+∞

− log µ(Ba
n(x, ε))

n
≤ haµ(T1).

This completes the proof of the upper bound.

Next we prove the lower bound. It is sufficient to show that for any δ > 0, there
exist ε > 0 and a measurable subset D of X1 such that µ(D) > 1− 3δ and

lim inf
n→+∞

− log µ(Ba
n(x, ε))

n
≥ min

{
1

δ
, haµ(T1)− δ

}
− 2(1 + a1 + · · ·+ ak)δ

for any x ∈ D.

Fix δ > 0. We are going to find such ε and D. First, we find a finite Borel partition
αi = {Ai1, Ai2, . . . , Aiui} of Xi, i = 1, . . . , k, such that

(1) αi � π−1
i (αi+1) for i = 1, . . . , k − 1.

(2)
∑k

i=1 aihµ◦τ−1
i−1

(Ti, αi) ≥ min{1
δ
, haµ(T1)− δ}.

(3) µ ◦ τ−1
i−1(∂αi) = 0 for i = 1, . . . , k.
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Let M = max{ui : 1 ≤ i ≤ k} and Λ = {1, . . . ,M}. Given m ∈ N, for s =
(si)

m−1
i=0 , t = (ti)

k−1
i=0 ∈ Λ{0,1,··· ,m−1}, the Hamming distance between s and t is defined

to be the following value

1

m
# {i ∈ {0, 1, · · · ,m− 1} : si 6= ti} .

For s ∈ Λ{0,1,··· ,m−1} and 0 < τ ≤ 1, let Q(s, τ) be the total number of those t ∈
Λ{0,1,··· ,m−1} so that the Hamming distance between s and t does not exceed τ . Clearly,

Qm(τ) := max
s∈Λ{0,1,··· ,m−1}

Q(s, τ) ≤
(

m

dmτe

)
M dmτe.

By the Stirling formula, there exists a small δ1 > 0 and a positive constant C :=
C(δ,M) > 0 such that

(A.2)

(
m

dmδ1e

)
M dmδ1e ≤ eδm+C

for all m ∈ N.

For η > 0, set

U i
η(αi) = {x ∈ X1 : B(τi−1x, η) 6⊆ αi(τi−1x)}, i = 1, . . . , k.

Then
⋂
η>0 U

i
η(αi) = τ−1

i−1(∂αi), and hence µ(U i
η(αi)) → µ(τ−1

i−1(∂αi)) = 0 as η → 0.

Therefore, we can choose ε > 0 such that µ(U i
η(αi)) < δ1 for any 0 < η ≤ ε and

i = 1, . . . , k.

By the Birkhoff ergodic theorem, for µ-a.e. x ∈ X1, we have

lim
n→+∞

1

d(a1 + · · ·+ ak)ne

k∑
i=1

d(a1+···+ai)ne−1∑
j=d(a0+···+ai−1)ne

χU iε(αi)(T
j
1x)

=
1

(a1 + · · ·+ ak)

k∑
i=1

aiµ(U i
ε(αi)) < δ1,

where we take the convention a0 = 0. Thus we can find a large natural number `0

such that µ(A`) > 1− δ for any ` ≥ `0, where

A` =

x ∈ X1 :
1

d(a1 + · · ·+ ak)ne

k∑
i=1

d(a1+···+ai)ne−1∑
j=d(a0+···+ai−1)ne

χU iε(αi)(T
j
1x) ≤ δ1 for all n ≥ `

 .
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Since τ−1
0 α1 � τ−1

1 α2 � · · · � τ−1
k−1αk, we have

lim
n→+∞

− log µ
( k∨
i=1

( d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
(x)
)

n

=
k∑
i=1

aihµ(T1, τ
−1
i−1αi) =

k∑
i=1

aihµ◦τ−1
i−1

(Ti, αi)

almost everywhere by Corollary A.3. Hence we can find a large natural number `1

such that µ(B`) > 1− δ for any ` ≥ `1, where B` is the set of all points x ∈ X1 such
that

(A.3)
− log µ

(∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
(x)
)

n
≥

k∑
i=1

aihµ◦τ−1
i−1

(Ti, αi)− δ

for all n ≥ `.

Fix ` ≥ max{`0, `1}. Let E = A` ∩ B`. Then µ(E) > 1 − 2δ. For x ∈ X1 and
n ∈ N, the unique element

C(n, x) = (Cj(n, x))
d(a1+···+ak)ne−1
j=0

in Λ{0,1,··· ,d(a1+···+ak)ne−1} satisfying that T j1x ∈ τ−1
i−1(AiCj(n,x)) for d(a0 + · · ·+ai−1)ne ≤

j ≤ d(a1 + · · · + ai)ne − 1, i = 1, . . . , k, is called the ({αi}ki=1, a;n)-name of x.

Since each point in one atom A of
∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
has the same

({αi}ki=1, a;n)-name, we define

C(n,A) := C(n, x)

for any x ∈ A, which is called the ({αi}ki=1, a;n)-name of A.

Now if y ∈ Ba
n(x, ε), then for i = 1, . . . , k and d(a0 + · · ·+ai−1)ne ≤ j ≤ d(a1 + · · ·+

ai)ne − 1, either T j1x and T j1 y belong to the same element of τ−1
i−1αi or T j1x ∈ U i

ε(αi).
Hence if x ∈ E, n ≥ ` and y ∈ Ba

n(x, ε), then the Hamming distance between
({αi}ki=1, a;n)-name of x and y does not exceed δ1. Furthermore, Ba

n(x, ε) is contained
in the set of points y whose ({αi}ki=1, a;n)-name is δ1-close to ({αi}ki=1, a;n)-name of
x. It is clear that the total number Ln(x) of such ({αi}ki=1, a;n)-names admits the
following estimate:

Ln(x) ≤
(
d(a1 + · · ·+ ak)ne
dd(a1 + · · ·+ ak)neδ1e

)
M dd(a1+···+ak)neδ1e

≤ eδd(a1+···+ak)ne+C

≤ e(a1+···+ak)δn+C+δ
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where the second inequality comes from (A.2). More precisely, we have shown that
for any x ∈ E and n ≥ `,
(A.4)
Ba
n(x, ε) ⊆ {y ∈ X1 : C(n, y) is δ1-close to C(n, x)}

=
⋃{

A ∈
k∨
i=1

( d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
: C(n,A) is δ1-close to C(n, x)

}
and

(A.5)
#
{
A ∈

k∨
i=1

( d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
: C(n,A) is δ1-close to C(n, x)

}
≤ e(a1+···+ak)δn+C+δ.

Now for n ∈ N, let En denote the set of points x in E such that there exists an

element A in
∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
with

µ(A) > e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+(2+a1+···+ak)δ

)
n

and the ({αi}ki=1, a;n)-name of A is δ1-close to the ({αi}ki=1, a;n)-name of x. It is

clear that if x ∈ E \En, then for each A ∈
∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
whose

({αi}ki=1, a;n)-name is δ1-close to the ({αi}ki=1, a;n)-name of x, one has

µ(A) ≤ e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+(2+a1+···+ak)δ

)
n
.

In the following, we wish to estimate the measure of En for n ≥ `.

Let n ≥ `. Put

Fn =

A ∈
k∨
i=1

( d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
: µ(A) > e

(
−

k∑
i=1

aihµ◦τ−1
i−1

(Ti,αi)+(2+a1+···+ak)δ
)
n

 .

Obviously,

#Fn ≤ e

(∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)−(2+a1+···+ak)δ

)
n

since µ(X1) = 1.

Let x ∈ En. On the one hand since x ∈ B`,

µ
( k∨
i=1

( d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
(x)
)
≤ e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+δ

)
n
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by (A.3). On the other hand by the definition of En, there exists A ∈ Fn with
the ({αi}ki=1, a;n)-name of A is δ1-close to the ({αi}ki=1, a;n)-name of x, that is the
({αi}ki=1, a;n)-name of A is δ1-close to the ({αi}ki=1, a;n)-name of

( k∨
i=1

d(a1+···+ai)ne−1∨
j=d(a0+···+ai−1)ne

T−j1 τ−1
i−1αi

)
(x).

According to this, we have

(A.6) En ⊂
⋃
{B : B ∈ Gn}

where Gn denotes the set all elements B in
∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
satis-

fying µ(B) ≤ e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+δ

)
n

and the ({αi}ki=1, a;n)-name of B is δ1-close
to the ({αi}ki=1, a;n)-name of A for some A ∈ Fn.

Since for eachA ∈ Fn, the total number ofB in
∨k
i=1

(∨d(a1+···+ai)ne−1
j=d(a0+···+ai−1)ne T

−j
1 τ−1

i−1αi

)
,

whose ({αi}, a;n)-name is δ1-close to the ({αi}, a;n)-name of A, is upper bounded
by (

d(a1 + · · ·+ ak)ne
dd(a1 + · · ·+ ak)neδ1e

)
M dd(a1+···+ak)neδ1e ≤ e(a1+···+ak)δn+C+δ.

Hence

#Gn ≤ e(a1+···+ak)δn+C+δ · (#Fn) ≤ e

(∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)−2δ

)
n+C+δ

.

Moreover

µ(En) ≤ e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+δ

)
n
· (#Gn) ≤ e−δn+C+δ

by (A.6) and the definition of Gn.

Next we take `2 ≥ ` so that
∑∞

n=`2
e−δn+C+δ < δ. Then µ(

⋃
n≥`2 En) < δ. Let

D = E \
⋃
n≥`2 En. Then µ(D) > 1 − 3δ. For x ∈ D and n ≥ `2, since x ∈ E \ En,

one has

µ(Ba
n(x, ε)) ≤ e(a1+···+ak)n+C+δ · e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+(2+a1+···+ak)δ

)
n

= e

(
−
∑k
i=1 aihµ◦τ−1

i−1
(Ti,αi)+2(1+a1+···+ak)δ

)
n+C+δ
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by (A.4), (A.5) and the definition of En. Thus for x ∈ D,

lim inf
n→+∞

− log µ(Ba
n(x, ε))

n
≥

k∑
i=1

aihµ◦τ−1
i−1

(Ti, αi)− 2(1 + a1 + · · ·+ ak)δ

≥ min

{
1

δ
, haµ(T1)− δ

}
− 2(1 + a1 + · · ·+ ak)δ.

This finishes the proof of Theorem A.1. �

In the remaining part of this section, we provide a full proof of Proposition A.2.
First we give two lemmas.

Lemma A.4 (cf. [30]). Let (X,B, µ, T ) be a measure preserving dynamical system.
Let α, β be two countable measurable partitions of (X,B, µ) with Hµ(α) <∞, Hµ(β) <
∞ and A a sub-σ-algebra of B. Let Iµ(·|·) denote the conditional information of µ.
Then we have the following:

(i) Iµ(α|A) ◦ T = Iµ(T−1α|T−1A).
(ii) Iµ(α∨β|A) = Iµ(α|A)+Iµ(β|α∨A). In particular, Hµ(α∨β|A) = Hµ(α|A)+

Hµ(β|α ∨ A).
(iii) If A1 ⊂ A2 ⊂ · · · is an increasing sub-σ-algebra of B with An ↑ A, then

Iµ(α|An) converges almost everywhere and in L1 to Iµ(α|A). In particular,
limn→+∞Hµ(α|An) = Hµ(α|A).

Lemma A.5. Let (X,B, µ, T ) be a measure preserving dynamical system and Fn ∈
L1(X,B, µ) be a sequence that converges almost everywhere and in L1 to F ∈ L1(X,B, µ)
and

∫
X

supk |Fn(x)|dµ(x) < +∞. If f : N→ N satisfies f(n) ≥ n for all k ∈ N, then

lim
n→+∞

1

n

n−1∑
j=0

Ff(n)−j(T
jx) = Eµ(F |Iµ)(x)

almost everywhere and in L1, where Iµ = {B ∈ B : µ(B∆T−1B) = 0} and Eµ(F |Iµ)
stands for the conditional expectation of F given Iµ.

Proof. This is a slight variant of Maker’s ergodic theorem [22]. For the convenience
of the reader, we give a detailed proof. Since F ∈ L1(X,B, µ), by Birkhoff’s ergodic
theorem, we have

lim
n→+∞

1

n

n−1∑
j=0

F (T jx) = Eµ(F |Iµ)(x)
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almost everywhere and in L1. Since

1

n

n−1∑
j=0

Ff(n)−j(T
jx) =

1

n

n−1∑
j=0

F (T jx) +
1

n

n−1∑
j=0

(Ff(n)−j(T
jx)− F (T jx)),

it is suffices to show that

lim
n→+∞

1

n

n−1∑
j=0

|Ff(n)−j(T
jx)− F (T jx)| = 0

almost everywhere and in L1. Set Zm(x) = supj≥m |Fj(x) − F (x)| for m ∈ N. Then
0 ≤ Zm(x) ≤ supn |Fn(x)| + |F (x)| and Zm(x)→ 0 as m→ +∞ almost everywhere.
Since supn |Fn(x)| + |F (x)| ∈ L1(X,B, µ), we have limm→+∞

∫
Zm(x)dµ(x) = 0 by

Lebesgue’s dominated convergence theorem. Then we have Eµ(Zm|Iµ) → 0 as m →
+∞ almost everywhere and in L1 (cf. [6, Theorem 34.2]).

Now let m ∈ N. For n > m+ 1,

1

n

n−1∑
j=0

|Ff(n)−j(T
jx)− F (T jx)|

≤ 1

n

n−1∑
j=n−m

|Ff(n)−j(T
jx)− F (T jx)|+ 1

n

n−m−1∑
j=0

Zm(T jx)

≤ 1

n

n−1∑
j=n−m

Z1(T jx) +
n−m
n

( 1

n−m

n−m−1∑
j=0

Zm(T jx)
)
.

Letting n→ +∞ and using Birkhoff’s ergodic theorem we have

lim sup
n→+∞

1

n

n−1∑
j=0

|Ff(n)−j(T
jx)− F (T jx)| ≤ Eµ(Zm|Iµ)(x)

almost everywhere. Since Eµ(Zm|Iµ) → 0 almost everywhere and in L1 as m → ∞,
we have

lim sup
n→+∞

1

n

n−1∑
j=0

|Ff(n)−j(T
jx)− F (T jx)| = 0

almost everywhere and in L1, as desired. �

Proof of Proposition A.2. Our proof is adapted from the arguments of Kenyon and
Peres in [20, Lemmas 3.2, 4.4].
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First we show that for any a > 0, b ≥ 0 and a countable measurable partition β of
(X,B, µ) with Hµ(β) <∞,

(A.7) lim
N→+∞

1

N
Iµ

(
β
d(a+b)Ne−1
daNe

)
(x) = bEµ(G|Iµ)(x)

almost everywhere, where G(x) := Iµ

(
β|
∨∞
n=1 T

−nβ
)

(x).

If b = 0, then β
d(a+b)Ne−1
daNe = {X, ∅} (mod µ) for each N ∈ N and so (A.7) holds.

Now assume that b > 0. Note that

Iµ

( d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x) = Iµ

( d(a+b)Ne−1∨
n=0

T−nβ
)

(x)−Iµ(

daNe−1∨
n=0

T−nβ|
d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x).

By the Shannon-McMillan-Breiman theorem, (A.7) is equivalent to

(A.8) lim
N→+∞

1

N
Iµ(

daNe−1∨
n=0

T−nβ|
d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x) = aEµ(G|Iµ)(x)

almost everywhere.

Note that

Iµ

( daNe−1∨
n=0

T−nβ|
d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x)

= Iµ

(
β|
d(a+b)Ne−1∨

n=1

T−nβ
)

(x) + Iµ

( daNe−1∨
n=1

T−nβ|
d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x)

= Iµ

(
β|
d(a+b)Ne−1∨

n=1

T−nβ
)

(x) + Iµ

( daNe−2∨
n=0

T−nβ|
d(a+b)Ne−2∨
n=daNe−1

T−nβ
)

(Tx)

...

=

daNe−1∑
j=0

Iµ

(
β|

[(a+b)N ]−1−j∨
n=1

T−nβ
)

(T jx).

Write Gk(x) = Iµ(β|
∨k−1
n=1 T

−nβ)(x) for k ∈ N and x ∈ X. Then

(A.9) Iµ(

daNe−1∨
n=0

T−nβ|
d(a+b)Ne−1∨
n=daNe

T−nβ
)

(x) =

daNe−1∑
j=0

Gd(a+b)Ne−j(T
jx).

Since
∨k−1
n=1 T

−nβ ↑
∨∞
n=1 T

−nβ when k → +∞, Gk ∈ L1(X,B, µ) is a sequence
that converges almost everywhere and in L1 to G ∈ L1(X,B, µ) by Lemma A.4. As
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Hµ(β) <∞, we have
∫
X

supk |Gk(x)|dµ(x) ≤ Hµ(β) + 1 <∞ by Chung’s lemma [11].
By (A.9) and Lemma A.5,

lim
N→+∞

1

N
Iµ

( daNe−1∨
n=0

T−nβ
∣∣∣ d(a+b)Ne−1∨

n=daNe

T−nβ
)

(x)

= a lim
N→+∞

1

daNe

daNe−1∑
j=0

Gd(a+b)Ne−j(T
jx)

= aEµ(G|Iµ)(x)

almost everywhere. Hence (A.8) holds, so does (A.7).

Now we are ready to prove (A.1), by induction on k. For k = 1, (A.1) reduces to
the Shannon-McMillan-Breiman theorem. Assume that (A.1) holds for k = ` (` ≥ 1).
We show below that it holds for k = `+ 1.

Let k = ` + 1. Write βi =
∨`+1
j=i αi for i = 1, . . . , ` + 1. Then β1 � β2 � · · · � β`+1

and Fi(x) = Iµ(βi|
∨+∞
n=1 T

−nβi)(x) for i = 1, . . . , `+ 1. Note that

(A.10)
`+1∨
i=1

(αi)
d(a1+···+ai)Ne−1
0 =

( ∨̀
i=1

(βi)
d(a1+···+ai)Ne−1
0

)
∨ (β`+1)

d(a1+···+a`+a`+1)Ne−1

d(a1+···+a`)Ne .

By the induction assumption and (A.7), we have

(A.11)
lim

N→+∞

1

N
Iµ

( ∨̀
i=1

(βi)
d(a1+···+ai)Ne−1
0

)
(x) =

∑̀
i=1

aiEµ(Fi|Iµ)(x) and

lim
N→+∞

1

N
Iµ

(
(β`+1)

d(a1+···+a`+a`+1)Ne−1

d(a1+···+a`)Ne )
)

(x) = a`+1Eµ(F`+1|Iµ)(x)

almost everywhere. Next we use the idea employed by Algoet and Cover [1] in their
elegant “sandwich” proof of the Shannon-McMillan-Breiman theorem. For µ-a.e.
x ∈ X, we define

Zm(x) =

µ
( ∨̀
i=1

(βi)
d(a1+···+ai)me−1
0 (x)

)
· µ
(

(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me (x)
)

µ
(( ∨̀

i=1

(βi)
d(a1+···+ai)me−1
0 ∨ (β`+1)

d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

)
(x)
)

for all m ∈ N. Then for µ-a.e. x ∈ X, Zm(x) > 0 for all m ∈ N.
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Since ∫
X

Zm(x)dµ(x) =
∑

A∈
∨̀
i=1

(βi)
d(a1+···+ai)me−1
0

B∈(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

∫
A∩B

µ(A)µ(B)

µ(A ∩B)
dµ(x)

=
∑

A∈
∨̀
i=1

(βi)
d(a1+···+ai)me−1
0

B∈(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

µ(A)µ(B)

= 1,

the series
∑∞

m=1 µ({x ∈ X : Zm(x) ≥ eεm}) converges for every ε > 0 and the Borel-
Canteli Lemma implies that lim supN→+∞

1
N

logZN(x) ≤ 0 for µ-a.e. x ∈ X. Using
the definition of Zm, (A.10) and (A.11), we obtain

lim sup
N→+∞

1

N
Iµ

( `+1∨
i=1

(αi)
d(a1+···+ai)Ne−1
0

)
(x) ≤

`+1∑
i=1

aiEµ(Fi|Iµ)(x)

for µ-a.e. x ∈ X.

Conversely, by (A.7) and the induction assumption, we have
(A.12)

lim
N→+∞

1

N
Iµ

(
(βi)

d(a1+···+a`+a`+1)Ne−1

d(a1+···+a`)Ne

)
(x) = a`+1Eµ(Fi|Iµ)(x), i = `, `+ 1 and

lim
N→+∞

1

N
Iµ

( `−1∨
i=1

(βi)
d(a1+···+ai)Ne−1
0 ∨ (β`)

d(a1+···+a`+a`+1)Ne−1
0

)
(x)

= (a` + a`+1)Eµ(F`|Iµ)(x) +
`−1∑
i=1

aiEµ(Fi|Iµ)(x)

almost everywhere. Then for µ-a.e. x ∈ X, we define

Rm(x) =

µ
(( ∨̀

i=1

(βi)
d(a1+···+ai)me−1
0 ∨ (β`+1)

d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

)
(x)
)

µ
(( `−1∨

i=1

(βi)
d(a1+···+ai)Ne−1
0 ∨ (β`)

d(a1+···+a`+a`+1)Ne−1
0

)
(x)
)

×
µ
(

(β`)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me (x)
)

µ
(

(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me (x)
)

for all m ∈ N. Then for µ-a.e. x ∈ X, Rm(x) > 0 for all m ∈ N.
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Since β` � β`+1, we have∫
X

Rm(x)dµ(x) =
∑

A∈
∨̀
i=1

(βi)
d(a1+···+ai)me−1
0

B∈(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

C∈(β`)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

∫
A∩B∩C

µ(A ∩B)µ(B ∩ C)

µ(A ∩B ∩ C)µ(B)
dµ(x)

=
∑

A∈
∨̀
i=1

(βi)
d(a1+···+ai)me−1
0

B∈(β`+1)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

C∈(β`)
d(a1+···+a`+a`+1)me−1

d(a1+···+a`)me

µ(A ∩B)µ(B ∩ C)

µ(B)

= 1

for m ∈ N. Thus the series
∑∞

m=1 µ({x ∈ X : Rm(x) ≥ eεm}) converges for every
ε > 0 and the Borel-Canteli Lemma implies that lim supN→+∞

1
N

logRN(x) ≤ 0 for
µ-a.e. x ∈ X. Using the definition RN , (A.10) and (A.12), we have

lim inf
N→+∞

1

N
Iµ

( `+1∨
i=1

(αi)
d(a1+···+ai)Ne−1
0

)
(x) ≥

`+1∑
i=1

aiEµ(Fi|Iµ)(x)

for µ-a.e. x ∈ X. for µ-a.e. x ∈ X. This completes the proof of Proposition A.2. �
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