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Abstract. Let E,F ⊂ Rd be two self-similar sets. Under mild conditions, we show
that F can be C1 embedded into E if and only if it can be affinely embedded into E;
furthermore if F can not be affinely embedded into E, then the Hausdorff dimension
of the intersection E∩f(F ) is strictly less than that of F for any C1 diffeomorphism
f on Rd. Under certain circumstances, we prove the logarithmic commensurability
between the contraction ratios of E and F if F can be affinely embedded into E.
As an application, we show that dimH E ∩ f(F ) < min{dimH E, dimH F} when E
is any Cantor-p set and F any Cantor-q set, where p, q ≥ 2 are two integers with
log p/ log q 6∈ Q. This is related to a conjecture of Furtenberg about the intersec-
tions of Cantor sets.

RÉSUMÉ. Soit E et F deux ensembles auto-similaires dans Rd. Sous des hypothèses
raisonnables, nous montrons qu’il existe un plongement C1 de F dans E si et seule-
ment s’il existe un tel plongement affine; de plus, s’il n’existe pas de plongement
affine de F dans E, alors pour tout difféomorphisme C1 de Rd la dimension de
Hausdorff de l’intersection E ∩ f(F ) est strictement inférieure à celle de F . Dans
certains cas, nous montrons que les logarithmes des facteurs de contraction de E
et F sont commensurables lorsqu’il existe un plongement affine de F dans E. En
application, nous montrons que dimH E ∩ f(F ) < min{dimH E, dimH F} quand E
est un p-ensemble de Cantor et F est un q-ensemble de Cantor, où p et q sont des
nombres entiers ≥ 2 tels que log p/ log q 6∈ Q. Ceci est relié à une conjecture de
Furstenberg sur les intersections d’ensembles de Cantor.
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1. Introduction

Let A,B be two subsets of Rd. We say that A can be affinely embedded into B if

f(A) ⊆ B for some affine map f : Rd → Rd of the form f(x) =Mx + a, where M is

an invertible d×d matrices and a ∈ Rd. Similarly, we say that A can be C1-embedded

into B if f(A) ⊆ B for some C1-diffeomorphism f on Rd.

The objective of this paper is to study the relation between C1-embeddings and

affine embeddings for self-similar sets; and to study the necessary conditions under

which one self-similar set can be affinely embedded or C1-embedded into another

self-similar set. These questions are motivated from several projects in related areas,

including the classification of self-similar subsets of Cantor sets [6], the characteriza-

tion of Lipschitz equivalence and Lipschitz embedding of Cantor sets [5, 2], as well

as the study of intersections of Cantor sets [8, 3] and the geometric rigidity of ×m
invariant measures [10].

Before stating our results, we recall some terminologies about self-similar sets. Let

Φ = {φi}ℓi=1 be a finite family of contractive mappings on Rd. Following Barnsley [1],

we say that Φ is an iterated function system (IFS) on Rd. Hutchinson [13] showed

that there is a unique non-empty compact set K ⊂ Rd, called the attractor of Φ, such

that

K =
ℓ⋃

i=1

φi(K).

Correspondingly, Φ is called a generating IFS of K. One notices that K is a singleton

if and only if the mappings φi, 1 ≤ i ≤ ℓ, have the same fixed point. We say that Φ

satisfies the open set condition (OSC) if there exists a non-empty bounded open set

V ⊂ Rd such that φi(V ), 1 ≤ i ≤ ℓ, are pairwise disjoint subsets of V . Similarly, we

say that Φ satisfies the strong separation condition (SC) if φi(K) are pairwise disjoint

subsets of K. The SC always implies the OSC.

A mapping φ : Rd → Rd is called a similitude if φ is of the form φ(x) = αR(x) + a

for x ∈ Rd, where α > 0, R is an orthogonal transformation and a ∈ Rd. When all

maps in an IFS Φ are similitudes, the attractor K of Φ is called a self-similar set; in

this case, the self-similar dimension of K is defined as the unique positive number s

so that
∑ℓ

i=1 ρ
s
i = 1, where ρi denotes the contraction ratio of φi. It is well known

[13] that dimH K = s if Φ consists of similitudes and satisfies the OSC, here dimH

denotes the Hausdorff dimension; the condition of OSC can be further replaced by

some significantly weaker separation condition in the case d = 1 and s ≤ 1 [11].
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In the remaining part of this section, we assume that Φ = {φi}ℓi=1 and Ψ = {ψj}mj=1

are two families of contractive similitudes of Rd of the form

(1.1) φi(x) = αiRi(x) + ai, ψj(x) = βjOj(x) + bj , i = 1, . . . , ℓ, j = 1, . . . , m,

where 0 < αi, βj < 1, ai, bj ∈ Rd and Ri, Oj are orthogonal transformations on Rd.

Let E, F be the attractors of Φ and Ψ, respectively. To avoid triviality, we always

assume that E, F are not singletons in this paper.

For any real invertible d × d matrix M , let κ(M) denote the condition number of

M , that is,

(1.2) κ(M) = max

{ |Mu|
|Mv| : u, v ∈ Rd with |u| = |v| = 1

}
.

The first result of this paper is the following.

Theorem 1.1. Assume that Φ satisfies the OSC, and the Hausdorff dimension of F

equals its self-similar dimension. Then F can be C1-embedded into E if and only if

F can be affinely embedded into E. Furthermore if F can not be affinely embedded

into E, then

dimH(E ∩ f(F )) < dimH F

for any C1 diffeomorphism f on Rd; moreover, for any L > 0,

sup
f∈Diff1

L
(Rd)

dimH(E ∩ f(F )) < dimH F,

where Diff1
L(R

d) denotes the collection of all C1 diffeomorphisms f on Rd so that

κ(Dx(f
−1)) ≤ L for any x ∈ E, in which Dx(f

−1) denotes the differential of f−1 at

x.

The proof of Theorem 1.1 is mainly based on the similarity of self-similar sets. In

what follows, we discuss when F can be affinely embedded into E. It is natural to

expect that if E, F are totally disconnected and F can be affinely embedded into E,

then the ratios αi, βj should satisfy some arithmetic conditions. We formulate the

following conjecture from this view point.

Conjecture 1.2. Suppose that E, F are totally disconnected and F can be affinely

embedded into E. Then for each 1 ≤ j ≤ m, there exist non-negative rational numbers

ti,j such that βj =
∏ℓ

i=1 α
ti,j
i . In particular, if αi = α for 1 ≤ i ≤ ℓ, then log βj/ logα ∈

Q for 1 ≤ j ≤ m.
3



We remark that the above arithmetic conditions on αi, βj do fulfill if E and F are

Lipschitz equivalent and dust-like (i.e., Φ, Ψ satisfy the SC) [5]. Nevertheless, no

arithmetic conditions are needed for the Lipschitz embeddings. It was shown in [2]

that if E, F are dust-like with dimH F < dimH E, then F can be Lipschitz embedded

into E.

In the following we give some partial answers to Conjecture 1.2.

Theorem 1.3. Assume that Φ satisfies the SC, αi = α for 1 ≤ i ≤ ℓ, and dimH E <

1/2. If F can be affinely embedded into E, then log βj/ logα ∈ Q for 1 ≤ j ≤ m.

The main idea in the proof of Theorem 1.3 is to show that if F can be affinely

embedded into E but log βj/ logα 6∈ Q for some j, then the set {|x− y| : x, y ∈ E}
contains a non-degenerate interval, which contradicts the assumption that dimH E <

1/2. The argument involves the theory of compact Lie groups.

We can further sharpen the above result when both E and F are central Cantor

sets in R. For 0 < ρ < 1/2, let CCCρ denote the attractor of the IFS {ρx, ρx+ 1− ρ}.
It is easy to check that

CCCρ =

{
x =

+∞∑

i=0

ǫi(1− ρ)ρi : ǫi ∈ {0, 1} for all i ≥ 0

}
.

Recall that a Pisot number is an algebraic integer > 1 whose algebraic conjugates

are all inside the unit disk. For instance,
√
2 + 1 is a Pisot number (it has a unique

algebraic conjugate
√
2 − 1), so are the positive roots of xn − xn−1 − · · · − x − 1 for

n ≥ 2 and the positive roots of x2n(x−2)−1 for n ≥ 1. Of course, all integers greater

than 1 are Pisot numbers. The readers are referred to [16] for further properties of

Pisot numbers.

Theorem 1.4. Let 0 < β < α < 1/2. Then the following statements hold.

(i) If α < 1/4, thenCCCβ can be affinely embedded intoCCCα if and only if log β/ logα ∈
N.

(ii) If 1/4 ≤ α <
√
2−1 andCCCβ can be affinely embedded into CCCα, then log β/ logα ∈

Q. However, it is possible that log β/ logα 6∈ N.

(iii) If 1/α is a Pisot number and CCCβ can be affinely embedded into CCCα, then

log β/ logα ∈ Q; furthermore 1/β is a Pisot number.

The following result is an extension of Theorem 1.4(iii).
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Theorem 1.5. Assume that θ = 1/α is a Pisot number > 2. Furthermore in (1.1),

assume that d = 1, 2 ≤ ℓ < θ, αiRi(x) = αx and ai ∈ Z[θ] for 1 ≤ i ≤ ℓ, here Z[θ]

denotes the ring of θ over Z. If F can be affinely embedded into E, then log βj/ logα ∈
Q and 1/βj is a Pisot number for j = 1, . . . , m.

Our results are related to one of the conjectures of Furstenberg about the intersec-

tions of Cantor sets [8]. Let p ∈ N with p ≥ 2. Following Furstenberg, we call A a

Cantor p-set if A is the attractor of an IFS {x/p+ai}ℓi=1 on R, where {ai : 1 ≤ i ≤ ℓ}
is a proper subset of {0, 1, . . . , p − 1} containing at least two digits. Furstenberg

conjectured that if p, q are not powers of the same integer (i.e., log q
log p

6∈ Q), then

dimH(A ∩ f(B)) ≤ max{0, dimH A+ dimH B − 1},
where A is an arbitrary Cantor p-set and B a Cantor q-set, f is any affine map on R.

So far this conjecture is still open in its full generality. As a corollary of Theorems 1.1

and 1.5, we have the following related result, although it is still far from Furstenberg’s

conjecture.

Theorem 1.6. Suppose that p, q ≥ 2 are not powers of the same integer. Then for

any Cantor p-set A and Cantor q-set B, we have

sup
f

dimH(A ∩ f(B)) < min{dimH A, dimH B},

where the supremum is taken over the set of C1 diffeomorphisms on R.

For the convenience of the readers, we illustrate the rough ideas in the proofs

of Theorem 1.4 (ii) and (iii). Assume that CCCβ can be affinely embedded into CCCα

but log β/ logα 6∈ Q. Then by using the self-similarity structure of CCCα, CCCβ and

the irrationality of log β/ logα, we can show that for any λ ∈ (0, 1−2α
α

], there exists

c = c(λ) ∈ CCCα such that

(1.3) λCCCβ + c ⊂ CCCα.

Furthermore, we can show that for any c so that (1.3) holds, the symbolic coding

of c can not be periodic. To derive a contradiction, we first consider the case that

α <
√
2 − 1. By considering the beta expansions in base α, we can show that

there exists u ∈ (0, 1−2α
α

], so that there is a unique c ∈ CCCα so that u + c ∈ CCCα.

Furthermore, the symbolic coding of such c is periodic. However by (1.3), we should

have uCCCβ + c ⊂ CCCα, and thus the symbolic coding of such c can not be periodic. This

leads to a contradiction. Next we consider the case that 1/α is a Pisot number > 2.

Our argument involves classic harmonic analysis. By a well-known result of Salem
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and Zygmund, CCCα is a set of uniqueness (cf. Definition 5.1) and hence CCCα does not

support any Borel probability measure whose Fourier transform vanishes at infinity

(cf. Theorem 5.4). However, we can use (1.3) to construct a measure on CCCα whose

Fourier transform vanishes at infinity, leading to a contradiction.

We remark that Theorem 1.4 extends a previous result in [6]: if CCCβ can be affinely

embedded into CCC1/3, then 1/β should be an integer power of 3. The idea used in [6]

can be extended to prove that log β/ logα ∈ Q if α ≤ 1/3 and CCCβ can be affinely

embedded into CCCα; however it can not deal with the case α > 1/3. After we got

an initial draft of this paper, Pablo Shmerkin informed us an alternative dynamical

approach in proving the first part of Theorem 1.4(iii), which is based on the general

development in [12] about equidistributions of fractal measures.

The paper in organized as follows. In Section 2, we prove Theorem 1.1. In Section

3, we prove Theorem 1.3 and Theorem 1.4(i). In Section 4, we prove Theorem 1.4(ii).

In Section 5, we prove Theorem 1.4(iii) and Theorem 1.5.

2. Relation between affine embeddings and C1-embeddings

In this section we study the relation between C1-embeddings and affine embeddings

of self-similar sets, and prove Theorem 1.1.

Let Φ = {φi = αiRi + ai}ℓi=1 and Ψ = {ψj = βjOj + bj}mj=1 be two IFSs of the form

(1.1), and E, F the corresponding attractors. Assume that Φ satisfies the OSC, and

the Hausdorff dimension of F equals its self-similar dimension, i.e., dimH F = s with∑m
i=1 β

s
i = 1. With loss of generality, assume that

α1 = min{αi : 1 ≤ i ≤ ℓ}, β1 = min{βj : 1 ≤ j ≤ m}.

Write φI = φi1◦· · ·◦φin and αI = αi1 · · ·αin for I = i1 . . . in ∈ {1, . . . , ℓ}n. Similarly,

we use the abbreviations ψJ and βJ for J ∈ {1, . . . , m}n.
For any n ∈ N, let sn be the unique positive number satisfying

(2.1)
∑

J∈{1,...,m}n:J 6=1n

βsn
J = 1.

That is, (
∑m

i=1 β
sn
i )n − βnsn

1 = 1. Then

(2.2)
∑

J∈Γ
βsn
J ≤ 1 for any proper subset Γ of {1, . . . , m}n.

Clearly, limn→∞ sn = s.
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For any 0 < r < α1, denote

Ar := {I = i1 . . . in ∈ {1, . . . , ℓ}n : n ∈ N, αi1 . . . αin ≤ r < αi1 . . . αin−1
}.

Lemma 2.1. There exists N0 ∈ N such that for any 0 < r < α1 and I ∈ Ar,

#{J ∈ Ar : dist(φI(E), φJ(E)) ≤ r} ≤ N0,

where #A denotes the cardinality of A.

Proof. Since Φ satisfies the OSC, there exists a non-empty bounded open set V ⊂ Rd

such that φi(V ) (1 ≤ i ≤ ℓ) are disjoint subsets of V . Clearly,
⋃ℓ

i=1 φi(V ) ⊆ V ; hence

E ⊆ V . It is not hard to check that for any 0 < r < α1, φI(V ) (I ∈ Ar) are disjoint

subsets of V . Since V is a bounded open set, there are two closed balls B1, B2 such

that B1 ⊂ V ⊂ B2. Let R1, R2 denote the radii of B1 and B2 respectively.

Now fix 0 < r < α1 and I ∈ Ar. Let J1, . . . , Jk be elements in Ar so that

dist(φI(E), φJt(E)) ≤ r for t = 1, . . . , k. Then dist(φI(V ), φJt(V )) ≤ r. Hence φJt(V )

(1 ≤ t ≤ k) are contained in a ball of radius 4rR2 + r, and each of them contains a

ball of radius ≥ rα1R1. A volume argument shows that

k ≤ (1 + 4R2)
d

αd
1R

d
1

.

This finishes the proof of the lemma by taking N0 to be an integer greater than the

right-hand side of the above inequality. �

For any d×d real matrix M , we use ‖M‖ to denote the usual norm ofM , and []M []

the smallest singular value of M , i.e.,

‖M‖ = max{|Mv| : v ∈ Rd, |v| = 1} and

[]M [] = min{|Mv| : v ∈ Rd, |v| = 1}.
(2.3)

Recall that Diff1
L(R

d) denotes the collection of all C1 diffeomorphisms f on Rd

so that the condition number of Dx(f
−1) does not exceed L (i.e. ‖Dx(f

−1)‖ ≤
L[]Dx(f

−1)[]) for any x ∈ E. The following proposition plays a key role in our proof

of Theorem 1.1.

Proposition 2.2. Let n ∈ N and f ∈ Diff1
L(R

d) for some L > 1. Assume that

dimH(E ∩ f(F )) > sn,

where sn is given as in (2.1). Let N0 be the integer given in Lemma 2.1. Then there

exist affine mappings g1, . . . , gk with k ≤ N0 such that the linear parts of gi have
7



condition number not exceeding L and

ψJ (F ) ∩
(

k⋃

i=1

gi(E)

)
6= ∅, ∀J ∈ {1, . . . , m}n.

Proof. Denote h = f−1. Then h is a C1 diffeomorphism on Rd. Hence there exists

δ > 0 so that for any x, y ∈ E with |h(x) − h(y)| < δ, we have |(Dxh)(x − y)|/2 ≤
|h(x)− h(y)| and hence

(2.4) []Dxh[] · |x− y|/2 ≤ |h(x)− h(y)|.

Since h is a C1 diffeomorphism on Rd, dimH(F ∩ h(E)) = dimH(f(F ) ∩ E) > sn.

We claim that for any j ∈ N, there exists a word Wj on {1, . . . , m} with length

|Wj| ≥ j such that

(2.5) ψWjJ(F ) ∩ h(E) 6= ∅, ∀ J ∈ {1, . . . , m}n.
Assume on the contrary that the above claim is false. Then there exists p0 ∈ N such

that for any word W on {1, . . . , m} with length |W | ≥ p0, there exists at least one

J ∈ {1, . . . , m}n such that ψWJ(F ) ∩ h(E) = ∅. For q ∈ N, denote

t(q) :=
∑

UJ1···Jq∈Γq

(diam(ψUJ1···Jq(F )))
sn =

∑

UJ1···Jq∈Γq

(diam(F ))sn(βUJ1···Jq)
sn,

where Γq denotes the set of words UJ1 . . . Jq on {1, . . . , m} so that |U | = p0, |Ji| = n

for 1 ≤ i ≤ q, and ψUJ1...Jq(F ) ∩ h(E) 6= ∅. Notice that for any word UJ1 . . . Jq−1 ∈
Γq−1, there exists at least one J with |J | = n so that UJ1 . . . Jq−1J 6∈ Γq. Hence by

(2.2), we have t(q) ≤ t(q − 1) ≤ . . . ≤ t(1). Since for each q ∈ N, {ψI(F ) : I ∈ Γq} is

a cover of F ∩ h(E), we have dimH(F ∩ h(E)) ≤ sn, leading to a contradiction. This

proves our claim (2.5).

According to (2.5), we have

(2.6) ψJ(F ) ∩ ψ−1
Wj

◦ h(E) 6= ∅ for all j ∈ N, J ∈ {1, . . . , m}n.
Denote ρ = minx∈E[]Dxh[]. Pick p1 ∈ N so that

2diam(F )( max
1≤i≤m

βi)
p1 < min

{
2δ

ρ
, α1

}
· ρ.

For any j ≥ p1, denote rj = 2diam(F )βWj
ρ−1. Then 0 < rj < min{2δ

ρ
, α1}. By (2.4),

we derive that if x, y ∈ E with |x− y| > rj, then |h(x)− h(y)| > ρrj/2. To see this,

notice that ρrj/2 < δ; if |h(x)− h(y)| < ρrj/2 then by (2.4),

|x− y| ≤ 2|h(x)− h(y)|/[]Dxh[] ≤ 2(ρrj/2)/ρ = rj ,
8



leading to a contradiction. Hence for x, y ∈ E with |x− y| > rj,

|ψ−1
Wj

◦ h(x)− ψ−1
Wj

◦ h(y)| = β−1
Wj

|h(x)− h(y)| > β−1
Wj
ρrj/2 = diam(F ).

As a consequence, if I, J ∈ Arj satisfy dist(φI(E), φJ(E)) > rj, then

dist(ψ−1
Wj

◦ h ◦ φI(E), ψ
−1
Wj

◦ h ◦ φJ(E)) > diam(F );

thus at most one of ψ−1
Wj

◦h ◦φI(E), ψ
−1
Wj

◦ h ◦φJ(E) can intersect F . This combining

with Lemma 2.1 yields that

#{I ∈ Arj : ψ
−1
Wj

◦ h ◦ φI(E) ∩ F 6= ∅} ≤ N0.

Let Ij,1, . . . , Ij,kj be all the words in Arj so that ψ
−1
Wj

◦h◦φIj,t(E)∩F 6= ∅ for 1 ≤ t ≤ kj.

Then kj ≤ N0. By (2.6),

(2.7) ψJ(F ) ∩




kj⋃

t=1

ψ−1
Wj

◦ h ◦ φIj,t(E)


 6= ∅ for all j ≥ p1, J ∈ {1, . . . , m}n.

Notice that α1rj ≤ αIj,t ≤ rj for 1 ≤ t ≤ kj and rj = 2diam(F )βWj
ρ−1. We have

(2.8) 2diam(F )ρ−1α1 < β−1
Wj
αIj,t ≤ 2diam(F )ρ−1.

For each j ≥ p1 and 1 ≤ t ≤ kj , we denote hj,t := ψ−1
Wj

◦h ◦φIj,t . The mappings hj,t
can be viewed as a kind of rescalings of h. Fix x0 ∈ E. Define affine mappings Aj,t

on Rd by

Aj,t(x) = hj,t(x0) +Dx0
hj,t(x− x0),

where Dx0
hj,t denotes the differential of hj,t at x0. By our assumption on h, we have

(2.9) ‖Dx0
hj,t‖/[]Dx0

hj,t[] ≤ L.

According to (2.8), there exist positive constants c1, c2 (independent of j and t) so

that

(2.10) c1 ≤ []Dx0
hj,t[] ≤ ‖Dx0

hj,t‖ ≤ c2.

Since h is a C1-diffeomorphism on Rd and E is compact, there exists a sequence

(dj) of positive numbers with dj ↓ 0 as j → ∞, such that

|h(u)− h(v)− (Dvh)(u− v)| ≤ dj|u− v|
for any u, v ∈ E with |u− v| ≤ rjdiam(E). It follows that for any j ≥ p1, 1 ≤ t ≤ kj
and x ∈ E,

|h ◦ φIj,t(x)− h ◦ φIj,t(x0)− (Dx0
(h ◦ φIj,t))(x− x0)| ≤ djαIj,t |x− x0| ≤ djrjdiam(E).

9



Hence we have for each j ≥ p1,

sup
x∈E, 1≤t≤kj

‖Aj,t(x)− hj,t(x)‖

= β−1
Wj

sup
x∈E, 1≤t≤kj

∣∣h ◦ φIj,t(x)− h ◦ φIj,t(x0)− (Dx0
(h ◦ φIj,t))(x− x0)

∣∣

≤ djβ
−1
Wj
rjdiam(E) = djC,

(2.11)

where C := 2diam(E)diam(F )ρ−1.

For j ≥ p1 and 1 ≤ t ≤ kj, since hj,t(E) ∩ F 6= ∅, by (2.10)-(2.11), we see that the

translation part of Aj,t is uniformly bounded. Combining this fact with (2.10), we see

that for each sequence of indices (jℓ, tℓ) with 1 ≤ tℓ ≤ kjℓ , there exists a subsequence

(jℓ′ , tℓ′) so that Ajℓ′ ,tℓ′
converges to some affine map g on Rd; by (2.9) and (2.11),

the linear part of g has condition number ≤ L, and hjℓ′ ,tℓ′ (E) converges to g(E) in

Hausdorff distance as ℓ′ → ∞.

As a refinement of the above argument, we see that there exists a subsequence (jℓ)

of N such that kjℓ ≡ k for some k ≤ N0, and moreover for each 1 ≤ t ≤ k, Ajℓ,t → gt
for some affine map gt as ℓ→ ∞. In particular,

kℓ⋃

t=1

ψ−1
Wjℓ

◦ h ◦ φIjℓ,t
(E) =

k⋃

t=1

hjℓ,t(E) →
k⋃

t=1

gt(E)

in Hausdorff distance as ℓ→ ∞. Now the proposition follows from (2.7). �

Proof of Theorem 1.1. It suffices to show that for any L > 1, if

sup
f∈Diff1

L
(Rd)

dimH(E ∩ f(F )) = dimH F,

then F can be affinely embedded into E. Indeed assume that the above identity holds.

Then by Proposition 2.2, for any n ∈ N, there exists a family of affine mappings

{g(n)i }kni=1 so that kn ≤ N0, the linear parts of g
(n)
i have condition number ≤ L,

g
(n)
i (E) ∩ F 6= ∅, and

ψJ(F ) ∩
(

kn⋃

i=1

g
(n)
i (E)

)
6= ∅ ∀J ∈ {1, . . . , m}n.

A compactness argument shows that there exist affine maps g1, . . . , gk with k ≤ N0

such that F ⊆ ⋃k
i=1 gi(E). A version of Baire category theorem states that there

exist an open set V ⊂ Rd and i ∈ {1, . . . , k} such that ∅ 6= F ∩ V ⊂ gi(E). However,

F ∩ V ⊃ ψJ(F ) for some word J on {1, . . . , m}; hence F ⊂ ψ−1
J ◦ gi(E), i.e., F can

be affinely embedded into E. �

10



3. Affine embeddings and the logarithmic commensurability

In this section, we will prove Theorem 1.3 and Theorem 1.4(i).

Proof of Theorem 1.3. Since F can be affinely embedded into E, there is an affine

map g(x) =Mx+ b with det(M) 6= 0 such that g(F ) ⊆ E.

We first consider the case that βj = β for j = 1, . . . , m. Assume on the contrary

that log β
logα

6∈ Q. We show below that dimH(E −E) ≥ 1, which implies that

2 dimH E = dimH E × E ≥ dimH(E − E) ≥ 1,

i.e., dimH E ≥ 1/2, leading to a contradiction.

Let δ := mini 6=j d(φi(E), φj(E)) and Γ := max{diam(MO(F )) : O ∈ O(d)}, where
O(d) denotes the collection of orthogonal transformations on Rd. Then 0 < δ,Γ <

+∞. Fix p,N ∈ N such that αp < δ
Γ
and log β

logα
N ≥ p.

Now for n ∈ N with n ≥ N , g(ψ1n(F )) ⊂ g(F ) ⊆ E. Notice that ψ1n(F ) is

of the form βnOn
1 (F ) + en for some en ∈ Rd. We have βnMOn

1 (F ) + b′ ⊆ E with

b′ :=Men + b. Let ℓn be the integer part of log β
logα

n. Then

diam(βnMOn
1 (F ) + b′) ≤ βnΓ < δαℓn−p.

By the definition of δ, we see that βnMOn
1 (F ) + b′ intersects ψI(E) for only one

I ∈ {1, . . . , ℓ}ℓn−p, and thus

βnMOn
1 (F ) + b′ ⊆ ψI(E).

Hence there exists Pn ∈ O(d) and rn ∈ Rd such that βnMOn
1 (F ) ⊆ αℓn−pPn(E) + rn.

This implies

αp+{γn}P τ
nMOn

1 (F )−
rn

αℓn−p
⊆ E,

where γ := log β
logα

, and {x} denotes the fractional part of x. Fix a nonzero vector

v ∈ F − F . Then

E −E ⊇ αp+{γn}P τ
nMOn

1 (F − F ) ⊇ αs+{γn}P τ
nMOn

1 v

for n ≥ N . Denote U := {|x1 − x2|2 : x1, x2 ∈ E}. Then
(3.1) U ⊇ {α2(p+{γn})|MOn

1 v|2 : n ≥ N}.

Now we consider the closure W of {(e2πinγ, On
1 ) : n ≥ N} in the compact Lie

group S1 × O(d). It is clear that W is a closed subgroup of S1 × O(d). Hence

by Cartan Theorem (cf. [15, Theorem 3.3.1]), W is also a Lie group. Let W0 be

the connected component of W containing the unit element (1, I). Then W0 is a
11



connected compact Lie group, and it is also open in W (cf. [15, Lemma 2.1.4]). It

implies that W has only finitely many connected branches. Let π : S1 ×O(d) → S1

be the naturally coordinate projection. Since γ is an irrational number, π(W ) = S1,

and hence π(W0) is a subgroup of S1 with positive Haar measure (for W has only

finitely many connected branches). It follows that π(W0) = S1. Then there is one

parameter subgroup t ∈ R 7→ (e2πit, φ(t)) ∈ W0, where φ : R → O(d) is an analytic

group homomorphism (cf. [15, Theorems 2.2.10, 2.2.12]). Therefore φ is an analytic

function. By (3.1), we have

(3.2) U ⊇
{
α2(p+{t})|MOv|2 : (e2πit, O) ∈ W

}
⊇
{
α2(p+{t})|Mφ(t)v|2 : t ∈ R

}
.

Put f(t) = α2(p+t)|Mφ(t)v|2, t ∈ R. Then f is a positive analytic function on R since

φ is analytic. Notice that limt→+∞ f(t) = 0. Hence f is not constant on any non-

degenerate interval of R. Then J := {f(t) : t ∈ [0, 1
2
)} is a non-degenerate interval of

R. Clearly U ⊇ J . Thus dimH(E − E) ≥ dimH U ≥ dimH J = 1.

Next we consider the case that βj , 1 ≤ j ≤ m, might be different. Without

loss of generality, we show that log β1/ logα ∈ Q. Since F is not a singleton, there

exists j ≥ 2 such that the fixed point of ψj is different that of ψ1. Let F1 be the

attractor of the IFS {ψ1 ◦ ψj , ψj ◦ ψ1}. Then F1 ⊂ F is not a singleton and can be

affinely embedded into E, hence log(β1βj)/ logα ∈ Q. Similarly considering the IFS

{ψ2
1 ◦ ψj , ψj ◦ ψ2

1}, we have log(β2
1βj)/ logα ∈ Q. Hence log β1/ logα ∈ Q. This ends

the proof of Theorem 1.3. �

Applying Theorem 1.4 to the case that E, F are central Cantor sets with 0 < β <

α < 1
4
, we see that if CCCβ can be affinely embedded into CCCα then log β

logα
∈ Q. Theorem

1.4(i) sharpens this result.

Proof of Theorem 1.4(i). Let 0 < β < α < 1
4
. If log β

logα
∈ N, then it is clear that

CCCβ ⊆ CCCα, hence CCCβ can be affinely embedded into CCCα.

Conversely, assume that CCCβ can be affinely embedded into CCCα. Assume that log β
logα

6∈
N. We will derive a contradiction as below.

Since 0 < α < 1/4, we have
√
α < 1 − 2α. If log β

logα
6∈ N, then there exists a prime

number ℓ ∈ N such that log γ
logα

6∈ N and
√
α < 1−2α

1−2γ
, where γ = βℓ. Since CCCβ contains

a nontrivial affine image of CCCγ, CCCα contains a nontrivial affine image of CCCγ . That is,

there exists a ∈ [0, 1] and λ 6= 0 such that a+ λCCCγ ⊆ CCCα. We can assume that λ > 0

(since λ+ (−λ)CCCγ = λCCCγ).
12



Next, we are to show that there exist m,n ∈ N such that

(3.3) α < λ
γm

αn
<

1− 2α

1− 2γ
.

Notice that γm

αn = e(m log γ−n logα) = elogα(m
log γ
logα

−n). When log γ
logα

is an irrational number,

then
{
m log γ

logα
− n : m,n ∈ N

}
is dense in R. So there exist m,n ∈ N such that

α < λγm

αn < 1−2α
1−2γ

since α < 1−2α
1−2γ

. Next assume that log γ
logα

∈ Q. Since log γ
logα

6∈ N,

there exist two coprime integers p > q ≥ 2 such that γ = αp/q. Since λαk/q ց 0

when k ր +∞ and λαk/q ր +∞ when k ց −∞, there exist r ∈ Z such that

λαr/q < 1−2α
1−2γ

and λα(r−1)/q ≥ 1−2α
1−2γ

. Thus λαr/q ≥ 1−2α
1−2γ

α1/q ≥ 1−2α
1−2γ

α1/2 > α. That is,

α < λαr/q < 1−2α
1−2γ

. Hence we can find m,n ∈ N such that

α < λ
γm

αn
= λαr/q <

1− 2α

1− 2γ
,

since
{

γm

αn : m,n ∈ N
}
=
{
αk/q : k ∈ Z

}
. This proves (3.3).

Notice that Φ = {φ1 = αx, φ2 = αx+ (1− α)} is a generating IFS of CCCα. Denote

Ak := {φI(CCCα) : I ∈ {1, 2}k}
for k ∈ N. Clearly, Ak is a cover of CCCα, and any two different sets in Ak have a

distance ≥ αk−1(1− 2α).

Let (m,n) be a pair in N2 so that (3.3) holds. Then

H := a+ λγmCCCγ ⊂ a+ λCCCγ ⊆ CCCα =
⋃

A∈An+1

A.

Since diam(H) = λγm > αn+1 by (3.3), H intersects at least two elements in An+1.

Therefore H contains a “hole” of length ≥ αn(1 − 2α). However by the geometric

structure of CCCγ , the longest “hole” in H is of length λγm(1− 2γ), which is less than

αn(1 − 2α) by (3.3). Hence we derive a contradiction. This finishes the proof of

Theorem 1.4(i). �

4. Unique beta expansions and affine embeddings

In this section, we first show that there exist 0 < β < α < 1
2
with log β

logα
∈ Q\N such

that CCCβ can be affinely embedded into CCCα. Then we derive some unusual behavior

if CCCβ can be affinely embedded into CCCα and logβ
logα

6∈ Q. In the end, we combine

these behaviors and certain uniqueness property of beta-expansions to prove Theorem

1.4(ii).
13



Lemma 4.1. For k ≥ 2, let αk > 0 be the unique positive solution of the equation
√
x = x+ x2 + · · ·+ xk.

Set βk = α
(2k+1)/2
k . Then 1

2
> α2 > α3 > · · · , lim

k→+∞
αk = 3−

√
5

2
, and CCCβk

can be

affinely embedded into CCCαk
.

Proof. Fix k ≥ 2. Denote λk = 1−αk

1−βk
. For any z =

∑+∞
i=0 ǫi(1 − βk)β

i
k ∈ CCCβk

with

ǫi ∈ {0, 1} for i ≥ 0, we have

λkz =

∞∑

j=0

(1− αk)
(
ǫ2jβ

2j
k + ǫ2j+1β

2j+1
k

)

=

∞∑

j=0

(1− αk)
(
ǫ2jα

(2k+1)j
k + ǫ2j+1α

(2k+1)j+k
k

√
αk

)

=
∞∑

j=0

(1− αk)
(
ǫ2jα

(2k+1)j
k + ǫ2j+1α

(2k+1)j+k
k (αk + · · ·+ αk

k)
)

=

∞∑

j=0

(1− αk)
(
ǫ2jα

(2k+1)j
k + ǫ2j+1α

(2k+1)j+k+1
k + · · ·+ ǫ2j+1α

(2k+1)j+2k
k

)
.

Hence λkz ∈ CCCαk
. Thus λkCCCβk

⊂ CCCαk
. �

Let 0 < β < α < 1/2. Let (Σ, σ) denote the full shift over the alphabet {0, 1}.
That is, Σ = {0, 1}N and σ is the left shift on Σ. Let π : Σ → [0, 1] be the coding

map defined as

π(z) = (1− α)
∞∑

i=0

ziα
i, z = (zi)

∞
i=0 ∈ Σ.

Clearly, π is one-to-one and π(Σ) = CCCα. Notice thatCCCα has a generating IFS {S0, S1},
where S0(x) = αx, S1(x) = αx+ 1− α. It is direct to check that

π(z) = lim
n→∞

Sz0 ◦ · · · ◦ Szn−1
(0)

for z ∈ Σ.

Lemma 4.2. Assume that log β
logα

6∈ Q and there exist a ≥ 0, λ > 0 such that

a+ λCCCβ ⊆ CCCα.(4.1)

Let z = π−1(a). Then the following properties hold.

(i) For any n, k ∈ N, π(σnz) + λ βk

αnCCCβ ⊆ CCCα provided that λβk

αn < 1−2α
α

.
14



(ii) For any u ∈ [0, 1−2α
α

], there exists w ∈ {σnz : n ∈ N} such that

π(w) + uCCCβ ⊆ CCCα.

(iii) dimH(π({σnz : n ∈ N})) ≥ 1− dimH CCCα > 0.

Proof. Let k, n ∈ N satisfy λβk < (1− 2α)αn−1. Notice that a ∈ Sz0 ◦ · · · ◦ Szn−1
(CCCα)

and

dist
(
CCCα \ Sz0 ◦ · · · ◦ Szn−1

(CCCα), Sz0 ◦ · · · ◦ Szn−1
(CCCα)

)
≥ (1− 2α)αn−1.

Since a + λβkCCCβ ⊆ a + λCCCβ ⊆ CCCα, and the diameter of a + λβkCCCβ is less than

(1− 2α)αn−1, we have

a+ λβkCCCβ ⊆ Sz0 ◦ · · ·Szn−1
(CCCα).

Hence, (Sz0 ◦ · · ·Szn−1
)−1(a) + λβk

αn CCCβ ⊆ CCCα, i.e., π(σ
nz) + λβk

αn CCCβ ⊆ CCCα. This proves

(i).

To prove (ii), let u ∈ [0, 1−2α
α

]. Since log β
logα

6∈ Q, there exist pairs (ki, ni) ∈ N2 such

that λβki

αni
< 1−2α

α
and λβki

αni
→ u as i→ +∞. By (i),

π(σniz) + λ
βki

αni
CCCβ ⊆ CCCα.

Let w be an accumulation point of (σniz). Then we have π(w) + uCCCβ ⊆ CCCα. This

proves (ii).

By (ii), for any u ∈ [0, 1−2α
α

],

uCCCβ ⊂ CCCα − π({σnz : n ∈ N}).

Hence [
0,

1− 2α

α

]
⊆ CCCα − π({σnz : n ∈ N}).

It follows that dimH

(
CCCα − π

(
{σnz : n ∈ N}

))
≥ 1, thus

dimH CCCα + dimH π
(
{σnz : n ∈ N}

)
≥ 1.

This finishes the proof of (iii). �

Proposition 4.3. Let 0 < α <
√
2 − 1 and u∗ =

1− α

1 + α
. Set zi = (−1)i for i ≥ 0.

Then we have the following statements.
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(i) z := (zi)
∞
i=0 is the unique element in {0, 1,−1}N so that

(4.2) (1− α)
∞∑

i=0

ziα
i = u∗.

(ii) Let a = (1−α)∑∞
i=0 α

2i+1 and b = (1−α)∑∞
i=0 α

2i. Then (a, b) is the unique

point in CCCα ×CCCα so that u∗ = b− a.

Proof. It is direct to verify (4.2). Assume w = (wi)
∞
i=0 is a point in {0, 1,−1}N so that

(1− α)
∑∞

i=0wiα
i = u∗ (i.e.

∑∞
i=0wiα

i = 1/(1 + α)). We show below that w = z.

Since 0 < α <
√
2− 1, we have 2α+ α2 < 1, and thus

∞∑

i=1

wiα
i ≤

∞∑

i=1

αi =
α

1− α
<

1

1 + α
.

It follows that w0 = 1. Similarly,

w0 +

∞∑

i=2

wiα
i ≥ 1−

∞∑

i=2

αi = 1− α2

1− α
>

1

1 + α
.

It follows that w1 = −1. Now we have
∞∑

i=2

wiα
i = 1/(1 + α)− (w0 + w1α) = α2/(1 + α).

Hence
∑∞

i=2wiα
i−2 = 1/(1 + α). It follows that w2 = 1 and w3 = −1. Repeating the

above argument, we have w = z. This finishes the proof of (i).

To show (ii), we first notice that u∗ = b−a. Now assume that u∗ = b′−a′ for some

pair (b′, a′) ∈ CCCα ×CCCα. Then there exist e = (ei)
∞
i=0 and f = (fi)

∞
i=0 ∈ {0, 1}N such

that b′ = π(f) and a′ = π(e). Hence

u∗ = b′ − a′ = (1− α)
∞∑

i=0

(fi − ei)α
i.

By (i), we have fi − ei = (−1)i for i ≥ 0. This forces that

ei =

{
1 if i is odd

0 if i is even
and fi =

{
0 if i is odd

1 if i is even
.

Hence b′ = b and a′ = a. This proves (ii) and we are done. �

Proof of Theorem 1.4(ii). Assume that 1/4 < α <
√
2 − 1 and 0 < β < α. Assume

that CCCβ can be affinely embedded into CCCα. By Lemma 4.1, we see that it is possible

that log β/ logα 6∈ N. In the following we show that log β/ logα ∈ Q.
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Assume on the contrary that log β/ logα 6∈ Q. Define u∗ as in Proposition 4.3.

Then u∗ ∈ (0, 1−2α
α

). By Lemma 4.2(ii), there exists a ∈ CCCα such that

(4.3) a+ u∗CCCβ ⊆ CCCα.

In particular, b := a+u∗ ∈ CCCα. Hence u
∗ = b−a with a, b ∈ CCCα. By Proposition 4.3,

we must have a = (1 − α)
∑∞

i=0 α
2i+1. Let z = π−1(a). Then z = (01)∞ is a periodic

point in Σ = {0, 1}∞. Hence dimH(π({σnz : n ∈ N})) = 0. However, according to

(4.3) and Lemma 4.2(iii), we must have dimH(π({σnz : n ∈ N})) > 0. This leads to

a contradiction. �

5. Sets of uniqueness and affine embeddings in the Pisot case

In this section, we prove Theorem 1.4(iii) and Theorem 1.5. Our proofs make use

of the theory of sets of uniqueness for trigonometric series. In the following we give

some necessary definitions and theorems (see, e.g., [16, 14] for details).

Definition 5.1. A set E ⊆ [0, 2π] is called a set of uniqueness if every trigonometric

series
∑+∞

n=0

(
an cos(nx) + bn sin(nx)

)
which converges to zero on [0, 2π]\E is identi-

cally 0, i.e., an = bn = 0 for all n ≥ 0. Otherwise E is called a set of multiplicity.

Remark 5.2. It is clear that any subset of a set of uniqueness is still a set of unique-

ness.

One fundamental problem in classical harmonic analysis is to characterize the sets of

uniqueness. So far this problem is still open in its full generality. A major achievement

was made by Salem and Zygmund in 1955 to characterize when a homogeneous Cantor

set is a set of uniqueness.

Theorem 5.3 (Salem and Zygmund, cf. Chap. VII of [16]). Let 0 < α < 1/2.

Suppose that E ⊂ [0, 2π] is the attractor of an IFS {αx+ ai}ℓi=1, where 2 ≤ ℓ < 1/α

and 0 = a1 < a2 < . . . < aℓ = 1− α. 1 Then E is a set of uniqueness if and only if

(i) θ = 1/α is a Pisot number,

and

(ii) a1, . . . , aℓ are algebraic numbers in the field of θ over Q.

1An additional assumption that ai+1 − ai > α was put by Salem and Zygmund. Nevertheless,
their proof did not use this assumption.
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Besides using the above theorem, we are going to use the following properties of

the sets of uniqueness.

Theorem 5.4 (cf. pp. 2, 71 of [14]). (i) The union of countably many closed sets

of uniqueness is also a set of uniqueness.

(ii) The sets of uniqueness are closed under translations, dilations and contrac-

tions. That is, if E, F ⊂ [0, 2π] and E = λF + a is an affine copy of F , then

E is a set of uniqueness if and only if F is a set of uniqueness.

Theorem 5.5 (Menshov, cf. p. 46 of [16]). If E ⊂ [0, 2π] is a closed set of uniqueness,

then η̂(n) 6→ 0 as |n| → +∞ for any Borel probability measure η supported on E,

where η̂(n) =
∫
e−inxdµ(x) are the Fourier coefficients of η.

Now we are ready to prove Theorem 1.4(iii).

Proof of Theorem 1.4(iii). Let 0 < β < α < 1/2 and 1/α be a Pisot number. By

Theorem 5.3, CCCα is a set of uniqueness. Now assume thatCCCβ can be affinely embedded

into CCCα. By Theorem 5.4(ii), CCCβ is also a set of uniqueness. Thus by Theorem 5.3,

1/β is a Pisot number.

Next we prove that log β
logα

∈ Q. Assume on the contrary that log β
logα

6∈ Q. We will

derive a contradiction as follows.

Denote b = 1−2α
α

. By Lemma 4.2(ii), for any u ∈ [0, b], there exists c ∈ R such that

uCCCβ + c ⊆ CCCα.(5.1)

Define f : [0, b] → CCCα by f(u) = sup{d ∈ R : uCCCβ + d ⊆ CCCα}. A compactness

argument shows that f is upper semi-continuous.

Let µ denote the normalized log 2
log(1/β)

-dimensional Hausdorff measure restricted on

CCCβ. For u ∈ [0, b], define hu : R → R by hu(x) = ux+ f(u). Let η = 1
b

∫ b

0
µ ◦ h−1

u du,

i.e.,

η(A) =
1

b

∫ b

0

µ ◦ h−1
u (A)du

for any Borel set A ⊆ R. Since uCCCβ + f(u) ⊆ CCCα for each u ∈ [0, b], η is supported

on CCCα.
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Now let us estimate the Fourier coefficients of η. For n ∈ Z,

η̂(n) =

∫

R

e−inxdη(x) =
1

b

∫ b

0

∫

R

e−inxdµ ◦ h−1
u (x)du

=
1

b

∫ b

0

∫

R

e−in(ux+f(u))dµ(x)du

=
1

b

∫ b

0

µ̂(un)e−if(u)ndu,

where µ̂(ξ) :=
∫
e−iξxdµ(x) for ξ ∈ R. Hence

|η̂(n)| ≤ 1

b

∫ b

0

|µ̂(un)|du ≤ 1

b|n|

∫ b|n|

−b|n|
|µ̂(x)|dx(5.2)

for n 6= 0. However, since µ does not contain atomics, by Wiener Theorem [17],

lim sup
T→+∞

1

T

∫ T

−T

|µ̂(x)|2dx = 0.

Applying the Cauchy-Schwartz inequality, we have lim supT→+∞
1
T

∫ T

−T
|µ̂(x)|dx = 0.

Thus by (5.2), η̂(n) → 0 as |n| → ∞. However, this contradicts Theorem 5.5, since

CCCα is a set of uniqueness and η is supported on CCCα. �

Remark 5.6. As an extension of Theorem 1.4(iii), the following statement can be

proved by using the same argument: Suppose that B ⊂ R is a compact set of unique-

ness and A ⊂ R a compact set which supports a continuous Borel probability measure.

Then for any ǫ > 0, there exists δ ∈ (0, ǫ) such that B does not contain any translation

of δA.

Lemma 5.7. Let θ > 1 be a Pisot number and A be a finite subset of Z[θ]. Then

there exists a constant C > 0 such that for any n ∈ N and t1, . . . , tn ∈ A,

either
n∑

i=1

tiθ
i = 0 or

∣∣∣∣∣

n∑

i=1

tiθ
i

∣∣∣∣∣ ≥ C.

Proof. The result was essential due to Garsia [9, Lemma 1.52]. For completeness, we

provide a proof.

We denote by θ(1), . . . , θ(k) the algebraic conjugates of θ, and by t(1), . . . , t(k) the

conjugates of t ∈ A. Since θ is a Pisot number,

ρ := max
1≤j≤k

|θ(j)| < 1.

Corresponding, for each t ∈ A, we denote by t(1), . . . , t(k) the conjugates of t.
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Let t1, . . . , tn ∈ A. Assume that
∑n

i=1 tiθ
i 6= 0. Then

(
n∑

i=1

tiθ
i

)(
k∏

j=1

n∑

i=1

t
(j)
i (θ(j))i

)

is a non-zero integer. Hence
∣∣∣∣∣

n∑

i=1

tiθ
i

∣∣∣∣∣ ≥
1

∏k
j=1

∑n
i=1 |t

(j)
i (θ(j))i|

≥ (1− ρ)k

max{|t(j)|k : 1 ≤ j ≤ k, t ∈ A} =: C.

This finishes the proof. �

Proof of Theorem 1.5. Denote D = {ai : i = 1, . . . , ℓ} and

Λ :=

{
n∑

i=1

tiθ
i : n ∈ N, t1, . . . , tn ∈ D −D

}
.

Then Λ − Λ = {∑n
i=1 tiθ

i : n ∈ N, t1, . . . , tn ∈ A}, with A := (D − D) − (D − D).

By Lemma 5.7, Λ− Λ is uniformly discrete. Hence Λ ∩ [0, 1] is a finite set.

In the following we first prove Theorem 1.5 in the case that F is homogeneous in

the sense that βjOj(x) = βx for some β > 0 and all 1 ≤ j ≤ m. Since F can be

affinely embedded into E, there exist a, λ ∈ R such that λ 6= 0 and a + λF ⊆ E.

Without loss of generality, we may assume that λ > 0 (notice that −F is also a

homogeneous self-similar set). By Theorem 5.3, E is a set of uniqueness. Hence by

Theorem 5.4, F is also a set of uniqueness. Applying Theorem 5.3 to F , we see that

1/β is a Pisot number. Assume that log β/ logα 6∈ Q. We derive a contradiction as

below.

We claim that for any u ∈ (0, 1/diam(F)], there exists c = cu ∈ R such that

(5.3) uF + c ⊆ E + F ,
where F := Λ ∩ [0, 1]. To see this, let u ∈ (0, 1/diam(F)]. Since log β/ logα 6∈ Q,

there exist pairs (ki, ni) ∈ N2 such that λβki

αni
< 1/diam(F) and λβki

αni
→ u as i → +∞.

However, for each i ∈ N, we have

a+ λψ1ki (F ) ⊂ a+ λF ⊆ E =
⋃

I∈{1,...,ℓ}ni

φI(E).

Notice that a+ λψ1ki (F ) = λβkiF + di for some di ∈ R, and
⋃

I∈{1,...,ℓ}ni

φI(E) = αni (E +Dni
) ,
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with Dni
:=
{∑ni

j=1 tjθ
j : t1, . . . , tni

∈ D
}
. Let ci be the smallest element in Dni

so

that (λβkiF + di) ∩ αni(E + ci) 6= ∅. As the diameter of λβkiF + di is less than α
ni,

we have (λβkiF + di) ∩ αni(E + t) = ∅ for any t ∈ Dni
satisfying t < ci or t > ci + 1.

Thus,

λβkiF + di ⊆ αni (E + ci + (Dni
− ci) ∩ [0, 1]) ⊆ αni (E + ci + F) .

Therefore λβkiα−niF + ei ∈ E + F for some ei ∈ R. Letting i → ∞, we have

uF + c ⊆ E + F , where c is an accumulation point of (ei). This proves the claim.

Since E is a set of uniqueness and F is a finite set, by Theorem 5.4, E +F is also

a set of uniqueness. By (5.3) and Remark 5.6, we get a contradiction. Therefore, we

have proved Theorem 1.5 in the case that F is homogeneous.

Next we consider the case that βj , 1 ≤ j ≤ m, might be different. Without loss

of generality, we show that log β1/ logα ∈ Q and 1/β1 is a Pisot number. We first

repeat some argument used in the last paragraph of the proof of Theorem 1.3. Since

F is not a singleton, there exists j ≥ 2 such that the fixed point of ψj is different

that of ψ1. Let F1 be the attractor of the IFS {ψ1 ◦ ψj , ψj ◦ ψ1}. Then F1 ⊂ F is

not a singleton and can be affinely embedded into E, hence log(β1βj)/ logα ∈ Q.

Similarly considering the IFS {ψ2
1 ◦ψj, ψj ◦ψ2

1}, we have log(β2
1βj)/ logα ∈ Q. Hence

log β1/ logα ∈ Q.

To see that 1/β1 is a Pisot number, we notice that for any n,m ∈ N, β−n
1 β−m

j is

a Pisot number (since the attractor of the homogeneous IFS {ψn
1 ◦ ψm

j , ψ
m
j ◦ ψn

1 }
can be affinely embedded into E). We also notice that log βj/ log β1 ∈ Q (since

log βj/ logα, log β1/ logα ∈ Q). Write βj = β
u/v
1 , where u, v are co-prime positive

integers. Then for any n ∈ N, β−n−u
1 = β−n

1 β−v
j is a Pisot number. Let f(x) be

the minimal integer polynomial for ξ := 1/β1. Let ξ1, . . . , ξk denote the algebraic

conjugates of ξ, and set ξ0 := ξ. Take an integer p > u so that

e2πi/p 6∈ {ξi/ξj : 0 ≤ i, j ≤ k}.

Then ξpi , i = 0, . . . , k, are distinct. As the Galois group of the minimal polynomial

f for ξ is transitive, so for any 1 ≤ i ≤ k, there is an automorphism h of the

Galois group mapping ξ to ξi. Let g be the minimal integer polynomial for ξp. Then

g(ξpi ) = g(h(ξ)p) = h(g(ξp)) = 0. Hence ξpi (i = 1, . . . , k) are algebraic conjugates of

ξp . Since ξp is a Pisot number, we have |ξpi | < 1 for 1 ≤ i ≤ k. Hence |ξi| < 1 for

1 ≤ i ≤ k. It follows that ξ = 1/β1 is a Pisot number. �
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