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ABSTRACT. Let E, F C R? be two self-similar sets. Under mild conditions, we show
that F' can be C'! embedded into E if and only if it can be affinely embedded into E;
furthermore if ' can not be affinely embedded into E, then the Hausdorff dimension
of the intersection EN f(F) is strictly less than that of F for any C! diffeomorphism
f on R?. Under certain circumstances, we prove the logarithmic commensurability
between the contraction ratios of E and F if F' can be affinely embedded into E.
As an application, we show that dimgy E N f(F) < min{dimy F,dimy F} when E
is any Cantor-p set and F' any Cantor-qg set, where p,q > 2 are two integers with
logp/logq ¢ Q. This is related to a conjecture of Furtenberg about the intersec-
tions of Cantor sets.

RESUME. Soit E et F deux ensembles auto-similaires dans R%. Sous des hypotheses
raisonnables, nous montrons qu’il existe un plongement C'' de F' dans E si et seule-
ment s’il existe un tel plongement affine; de plus, s’il n’existe pas de plongement
affine de F dans E, alors pour tout difféomorphisme C' de R? la dimension de
Hausdorff de T'intersection E N f(F) est strictement inférieure & celle de F. Dans
certains cas, nous montrons que les logarithmes des facteurs de contraction de F
et F' sont commensurables lorsqu’il existe un plongement affine de F' dans E. En
application, nous montrons que dimy E N f(F) < min{dimy E,dimy F'} quand F
est un p-ensemble de Cantor et I’ est un ¢g-ensemble de Cantor, ot p et ¢ sont des
nombres entiers > 2 tels que logp/logqg ¢ Q. Ceci est relié & une conjecture de
Furstenberg sur les intersections d’ensembles de Cantor.
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1. INTRODUCTION

Let A, B be two subsets of RY. We say that A can be affinely embedded into B if
f(A) C B for some affine map f : R? — R? of the form f(x) = Mx + a, where M is

an invertible d x d matrices and a € R?. Similarly, we say that A can be C"'-embedded
into B if f(A) C B for some C*-diffeomorphism f on RY.

The objective of this paper is to study the relation between C'-embeddings and
affine embeddings for self-similar sets; and to study the necessary conditions under
which one self-similar set can be affinely embedded or C'-embedded into another
self-similar set. These questions are motivated from several projects in related areas,
including the classification of self-similar subsets of Cantor sets [6], the characteriza-
tion of Lipschitz equivalence and Lipschitz embedding of Cantor sets [3], 2], as well
as the study of intersections of Cantor sets [8 [3] and the geometric rigidity of xm
invariant measures [10].

Before stating our results, we recall some terminologies about self-similar sets. Let
® = {¢;}{_, be a finite family of contractive mappings on R?. Following Barnsley [1],
we say that ® is an iterated function system (IFS) on R?. Hutchinson [I3] showed
that there is a unique non-empty compact set K C RY, called the attractor of ®, such
that

Correspondingly, ® is called a generating IFS of K. One notices that K is a singleton
if and only if the mappings ¢;, 1 < ¢ < ¢, have the same fixed point. We say that ®
satisfies the open set condition (OSC) if there exists a non-empty bounded open set
V C R? such that ¢;(V), 1 <i </, are pairwise disjoint subsets of V. Similarly, we
say that ® satisfies the strong separation condition (SC) if ¢;(K) are pairwise disjoint
subsets of K. The SC always implies the OSC.

A mapping ¢ : R? — R? is called a similitude if ¢ is of the form ¢(z) = aR(z) +a
for z € R? where a > 0, R is an orthogonal transformation and a € R?. When all
maps in an IFS & are similitudes, the attractor K of ® is called a self-similar set; in
this case, the self-similar dimension of K is defined as the unique positive number s
so that Zle p; = 1, where p; denotes the contraction ratio of ¢;. It is well known
[13] that dimy K = s if ® consists of similitudes and satisfies the OSC, here dimy
denotes the Hausdorff dimension; the condition of OSC can be further replaced by

some significantly weaker separation condition in the case d =1 and s < 1 [I1].
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In the remaining part of this section, we assume that ® = {¢;}/_, and ¥ = {¢;},
are two families of contractive similitudes of R? of the form

(11) ¢Z($) = OKZRZ(LL’) + a;, 1@(1’) = ﬁjOj(l’) -+ bj, = 1, e ,6, j = 1, e,y

where 0 < a;,3; < 1, a;,b; € R and R;, O; are orthogonal transformations on R
Let E, F be the attractors of ® and W, respectively. To avoid triviality, we always
assume that E, F' are not singletons in this paper.

For any real invertible d x d matrix M, let k(M) denote the condition number of
M, that is,

(1.2) k(M) = max{

M
\‘Mu; :u,v € R with |u| = |v] :1}.
v

The first result of this paper is the following.

Theorem 1.1. Assume that ® satisfies the OSC, and the Hausdorff dimension of F
equals its self-similar dimension. Then F can be C'-embedded into E if and only if
F can be affinely embedded into E. Furthermore if F' can not be affinely embedded
mto E, then

for any C* diffeomorphism f on R?; moreover, for any L > 0,

sup dimg(E N f(F)) < dimpy F,
fEDIffL (Rd)
where Diffl(RY) denotes the collection of all Ct diffeomorphisms f on R? so that
k(D (f™1) < L for any x € E, in which D.(f~') denotes the differential of f~* at
x.

The proof of Theorem [I.1] is mainly based on the similarity of self-similar sets. In
what follows, we discuss when F' can be affinely embedded into E. It is natural to
expect that if F, I are totally disconnected and F' can be affinely embedded into F,
then the ratios o, 3; should satisfy some arithmetic conditions. We formulate the
following conjecture from this view point.

Conjecture 1.2. Suppose that E, F are totally disconnected and F can be affinely
embedded into E. Then for each 1 < j < m, there exist non-negative rational numbers
ti; such that B; = Hle aﬁ”. In particular, if o; = « for1 < i <, thenlog 3;/loga €

Q for1 <j<m.
3



We remark that the above arithmetic conditions on «;, 8; do fulfill if £ and F’ are
Lipschitz equivalent and dust-like (i.e., ®, W satisfy the SC) [5]. Nevertheless, no
arithmetic conditions are needed for the Lipschitz embeddings. It was shown in [2]
that if £, F' are dust-like with dimy F' < dimyg F, then I’ can be Lipschitz embedded
into E.

In the following we give some partial answers to Conjecture

Theorem 1.3. Assume that ® satisfies the SC, a; = « for 1 <i < /¥, and dimg E <
1/2. If F can be affinely embedded into E, then log B;/loga € Q for 1 < j <m.

The main idea in the proof of Theorem is to show that if F' can be affinely
embedded into E but log 5;/loga ¢ Q for some j, then the set {|z —y|: z,y € E}
contains a non-degenerate interval, which contradicts the assumption that dimg £ <
1/2. The argument involves the theory of compact Lie groups.

We can further sharpen the above result when both F and F' are central Cantor
sets in R. For 0 < p < 1/2, let C, denote the attractor of the IFS {pz, pxr +1 — p}.
It is easy to check that

+o0o
C,= {a: = ZEi(l —p)p' ¢ € 40,1} for all 4 > O} .
i=0
Recall that a Pisot number is an algebraic integer > 1 whose algebraic conjugates
are all inside the unit disk. For instance, v/2 + 1 is a Pisot number (it has a unique

b ... —x—1for

algebraic conjugate v/2 — 1), so are the positive roots of 2" —
n > 2 and the positive roots of 2" (x—2)—1for n > 1. Of course, all integers greater
than 1 are Pisot numbers. The readers are referred to [16] for further properties of

Pisot numbers.
Theorem 1.4. Let 0 < f < o < 1/2. Then the following statements hold.

(i) Ifa < 1/4, then Cp can be affinely embedded into C\, if and only iflog B/ log o €
N.
(ii) If1/4 < a < v/2—1 and Cs can be affinely embedded into C, thenlog 3/ loga €
Q. However, it is possible that log 3 /loga ¢ N.
(ili) If 1/av is a Pisot number and Cgz can be affinely embedded into C,, then
log 5/loga € Q; furthermore 1/ is a Pisot number.

The following result is an extension of Theorem [LA4Y(iii).
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Theorem 1.5. Assume that @ = 1/« is a Pisot number > 2. Furthermore in (I.T]),
assume that d =1, 2 < 0 < 0, a;R;(z) = ax and a; € Z[0] for 1 < i < {, here Z[0]
denotes the ring of 8 over Z. If F' can be affinely embedded into E, then log f;/log o €
Q and 1/p; is a Pisot number for j =1,...,m.

Our results are related to one of the conjectures of Furstenberg about the intersec-
tions of Cantor sets [§]. Let p € N with p > 2. Following Furstenberg, we call A a
Cantor p-set if A is the attractor of an IFS {z/p+a;}{_, on R, where {a; : 1 <i < ¢}
is a proper subset of {0,1,...,p — 1} containing at least two digits. Furstenberg

conjectured that if p, ¢ are not powers of the same integer (i.e., %Zgg Z Q), then

dimg (AN f(B)) < max{0,dimy A + dimy B — 1},

where A is an arbitrary Cantor p-set and B a Cantor ¢-set, f is any affine map on R.
So far this conjecture is still open in its full generality. As a corollary of Theorems [[1]
and [L5] we have the following related result, although it is still far from Furstenberg’s
conjecture.

Theorem 1.6. Suppose that p,q > 2 are not powers of the same integer. Then for
any Cantor p-set A and Cantor g-set B, we have

supdimgy (AN f(B)) < min{dimy A, dimy B},
f
where the supremum is taken over the set of C* diffeomorphisms on R.

For the convenience of the readers, we illustrate the rough ideas in the proofs
of Theorem [[4] (ii) and (iii). Assume that Cj can be affinely embedded into C,
but log 8/loga ¢ Q. Then by using the self-similarity structure of C,, Cp and
the irrationality of log 3/loga, we can show that for any A\ € (0, 1_a2°‘
¢ =c(\) € C,, such that
(1.3) )\CB—I-CCCOC.

Furthermore, we can show that for any ¢ so that (3] holds, the symbolic coding

|, there exists

of ¢ can not be periodic. To derive a contradiction, we first consider the case that
a < V2 —1. By considering the beta expansions in base «, we can show that
there exists u € (0, 1‘;“], so that there is a unique ¢ € C, so that u + ¢ € C,.
Furthermore, the symbolic coding of such ¢ is periodic. However by (3], we should

have uCs +c¢ C C,,, and thus the symbolic coding of such ¢ can not be periodic. This

leads to a contradiction. Next we consider the case that 1/a is a Pisot number > 2.

Our argument involves classic harmonic analysis. By a well-known result of Salem
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and Zygmund, C,, is a set of uniqueness (cf. Definition [5.1]) and hence C, does not
support any Borel probability measure whose Fourier transform vanishes at infinity
(cf. Theorem [(.4]). However, we can use (3] to construct a measure on C, whose
Fourier transform vanishes at infinity, leading to a contradiction.

We remark that Theorem [[.4] extends a previous result in [6]: if Cs can be affinely
embedded into C 3, then 1/ should be an integer power of 3. The idea used in [6]
can be extended to prove that log3/loga € Q if o < 1/3 and Cp can be affinely
embedded into C,; however it can not deal with the case a@ > 1/3. After we got
an initial draft of this paper, Pablo Shmerkin informed us an alternative dynamical
approach in proving the first part of Theorem [[4{(iii), which is based on the general
development in [I2] about equidistributions of fractal measures.

The paper in organized as follows. In Section P2l we prove Theorem [Tl In Section
Bl we prove Theorem [[.3 and Theorem [[L4)i). In Section [ we prove Theorem [L4Y(ii).
In Section [l we prove Theorem [[4](iii) and Theorem [Tl

2. RELATION BETWEEN AFFINE EMBEDDINGS AND C'-EMBEDDINGS

In this section we study the relation between C''-embeddings and affine embeddings
of self-similar sets, and prove Theorem [L.T]

Let ® = {¢; = ;R + a; }i_; and U = {¢; = 3,0, + bj Y7, be two IFSs of the form
(L), and E, F the corresponding attractors. Assume that ® satisfies the OSC, and
the Hausdorff dimension of F' equals its self-similar dimension, i.e., dimy F' = s with
>, 87 = 1. With loss of generality, assume that

ap = min{a; : 1 <i </}, fr =min{f; : 1 < j <m}.

Write ¢y = ¢;,0---0¢;, and ay = oy, -+ -, for I =iy .. .4, € {1,...,¢}". Similarly,
we use the abbreviations ¢; and §; for J € {1,... ,m}"™.

For any n € N, let s,, be the unique positive number satisfying
(2.1) > Bsm =1,
JE{l,..,m}nT£1n
That is, (>, 8i")" — f7*" = 1. Then
(2.2) Z By <1 for any proper subset I' of {1,...,m}™
Jer

Clearly, lim,, .o S, = s.



For any 0 < r < a4, denote
A ={l=iy...0,e{l,....0}": neN a;...0, < <0, ..., ,}.
Lemma 2.1. There exists Ny € N such that for any 0 <r < ay and I € A,,
#{J € Ay : dist(¢1(E), ¢s(E)) <1} < No,
where #A denotes the cardinality of A.

Proof. Since ® satisfies the OSC, there exists a non-empty bounded open set V C R?
such that ¢;(V) (1 <1 < /) are disjoint subsets of V. Clearly, Ule ¢;(V) C V; hence
E C V. It is not hard to check that for any 0 < r < ay, ¢;(V) (I € A,) are disjoint
subsets of V. Since V is a bounded open set, there are two closed balls By, By such
that By C V C By. Let Ry, Ry denote the radii of By and Bs respectively.

Now fix 0 < r < ay and I € A,. Let Ji,...,J, be elements in A, so that
dist(¢r(E), ¢s,(E)) <rfort=1,...,k Then dist(¢;(V), ¢ (V)) < r. Hence ¢, (V)
(1 <t < k) are contained in a ball of radius 4r Ry + 7, and each of them contains a
ball of radius > ra; R;. A volume argument shows that
(1+ 4Ry)4

afR{

This finishes the proof of the lemma by taking Ny to be an integer greater than the

k<

right-hand side of the above inequality. U

For any d x d real matrix M, we use || M]| to denote the usual norm of M, and | M|
the smallest singular value of M, i.e.,
| M| = max{|Mv|: v € R% |v] =1} and

2.3
(2:3) [M] = min{|Mv|: veR? |v] =1}

Recall that Diff} (RY) denotes the collection of all C* diffeomorphisms f on R?
so that the condition number of D,(f™') does not exceed L (i.e. |D.(f™1| <
L|D,(f~Y)]) for any z € E. The following proposition plays a key role in our proof
of Theorem [LT]

Proposition 2.2. Let n € N and f € Diff} (R?) for some L > 1. Assume that
dimg(E N f(F)) > s,,

where s, is given as in (2.1)). Let Ny be the integer given in Lemmal2dl. Then there

exist affine mappings g1, ..., gr with k < Ny such that the linear parts of g; have
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condition number not exceeding L and
k
¢ (F)N (ngE)) 40, VIe{l...m}".
i=1

Proof. Denote h = f~!. Then h is a C' diffeomorphism on R?. Hence there exists
9 > 0 so that for any z,y € F with |h(x) — h(y)| < 9, we have [(D, h)(x —y)|/2 <
|h(z) — h(y)| and hence

(2.4) [Dah] - |z —yl/2 < |h(x) — h(y)].

Since h is a C! diffeomorphism on R?, dimy(F N A(E)) = dimg(f(F) N E) > s,.
We claim that for any j € N, there exists a word W, on {1,...,m} with length
|W;| > j such that

Assume on the contrary that the above claim is false. Then there exists py € N such
that for any word W on {1,...,m} with length |W| > pg, there exists at least one
J e {1,...,m}" such that ¢y ;(F) N h(E) = 0. For ¢ € N, denote
t(q) := Z (diam(¢p g,...7,(F)))™" = Z (diam(F))™ (Bog,-0,)"
UlJy-Jg€ly UJy-Ja€ly

where I';, denotes the set of words UJ; ... J, on {1,...,m} so that |U| = py, |J;| =n
for 1 <i < ¢, and Yyy,..5,(F) N h(E) # . Notice that for any word UJ; ... J 1 €
I',—1, there exists at least one J with |J| = n so that UJ; ... J,_1J ¢ I';. Hence by
(22]), we have t(q) <t(¢—1) <...<t(1). Since for each ¢ € N, {¢;(F): I € I';} is
a cover of F'Nh(E), we have dimy(F NA(E)) < s,, leading to a contradiction. This
proves our claim (2.3]).

According to (2.3]), we have
(2.6) by (F) Ny 0 h(E) # 0 forall jeN, Je{l,...,m}".
Denote p = mingep|D,h|]. Pick p; € N so that

2diam(F)( max f3;)' < min {2—5, al} - p.
p

1<i<m
For any j > pi, denote r; = 2diam(F)Sy,p~". Then 0 < r; < min{%, o }. By (24),
we derive that if z,y € E with | — y| > r;, then |h(x) — h(y)| > pr;/2. To see this,
notice that pr;/2 < 0; if |h(x) — h(y)| < pr;j/2 then by (2.4]),

|z —y| < 2[h(z) - h(y)\/sﬂDmhﬂ < 2(pry/2)/p =15,



leading to a contradiction. Hence for z,y € E with |z — y| > r;,
6! 0 h(z) — Gzt o h(y)| = Bl [h(w) — h(y)] > flpr;/2 = diam(F).
As a consequence, if I,.J € A, satisfy dist(¢;(E), ¢;(E)) > r;, then
dist(lpv_vi_ oho¢(E), wv_vi oho¢y(F)) > diam(F);

thus at most one of w;vi ohog¢r(FE), wv_vi- oho¢y(E) can intersect F. This combining
with Lemma 2] yields that

#{I € Ay vyl oho gy (B)NF # 0} < No.

Let I, ..., 1y, beall the words in A, so that wv‘vi_ohoqﬁlj’t(E)ﬂF Z0for1 <t <k
Then k; < Ny. By (2.6,
k;
27) Y (F) N ([ Jvn! ohoos, (E) | #0 for all j > py, J e {1,...,m}"
=1

Notice that ayr; < ap,, <rjfor 1 <t <kjandr; = 2diam(F)ﬁij_1. We have

(2.8) 2diam(F)p~ton < fyrar,, < 2diam(F)p~

it —

For each j > p; and 1 <t < k;, we denote h;; := w‘}% oho¢r,,. The mappings h;,
can be viewed as a kind of rescalings of h. Fix xy € E. Define affine mappings A;,
on R? by

Ajp(x) = hjp(zo) + Daghje(x — o),
where D, h;, denotes the differential of h;; at xy. By our assumption on h, we have

(2.9) [ Dby el /1D byl < L.

According to (2.8]), there exist positive constants ci, ¢ (independent of j and ¢) so
that

(2.10) ¢1 < [Daghje] < [[Daghijell < co.
Since h is a C'-diffeomorphism on R? and E is compact, there exists a sequence
(d;) of positive numbers with d; | 0 as j — oo, such that
|h(u) = h(v) = (Dyh)(u —v)| < djfu —v|

for any u,v € E with |u — v| < rjdiam(E). It follows that for any j > pi, 1 <t < k;
and z € F,

|ho o, (1) —hoor (x0) = (Day(hoor,)) (@ —x0)| < djay,, |z — 20| < djrjdiam(E).
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Hence we have for each j > py,
sup  [[Aji(z) — hy(2)]]

©€E, 1<t<k;

(2.11) =Bw, sup_|hoor,(x) = hodr,(x0) = (Day(h o ¢1,,))(x — 0)|

wEB, 1<t<k;
< djﬁ‘;%rjdlam(E) = de,
where C' := 2diam(E)diam(F)p~'.

For j > p; and 1 <t < k;, since h;(E) N F # 0, by [2.10)-2.II), we see that the
translation part of A, is uniformly bounded. Combining this fact with ([2Z10), we see
that for each sequence of indices (jo, ) with 1 <t, < k;,, there exists a subsequence
(jer, te) so that Aj, ., converges to some affine map g on R% by ([29) and 2.1,
the linear part of g has condition number < L, and h;,,, (&) converges to g(£) in
Hausdorff distance as ¢/ — oc.

As a refinement of the above argument, we see that there exists a subsequence (7y)
of N such that k;, = k for some k£ < Ny, and moreover for each 1 <t <k, Aj,; — g

for some affine map ¢g; as ¢ — oo. In particular,

ke k L
Ui, oo 01, (B) = UhioB) > U(P)
t=1 t=1 =1

in Hausdorff distance as ¢ — co. Now the proposition follows from (2.7)). O

Proof of Theorem [I1 It suffices to show that for any L > 1, if
sup dimg(E N f(F)) = dimy F,
feDift] (R4)
then I’ can be affinely embedded into . Indeed assume that the above identity holds.
Then by Proposition 221 for any n € N, there exists a family of affine mappings
{g" ¥ so that k, < N, the linear parts of ¢ have condition number < L,
g"(EYNF # 0, and

Yy (F)N (Ugln)(E)) £ () VJe{l,...,m}".

A compactness argument shows that there exist affine maps gy, ..., gx with & < N
such that F* C Ule g:(E). A version of Baire category theorem states that there
exist an open set V C R? and i € {1,...,k} such that ) # F NV C ¢;(F). However,
FNV D,(F) for some word J on {1,...,m}; hence F C ¥;' o g;(E), i.e., F can

be affinely embedded into F. O
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3. AFFINE EMBEDDINGS AND THE LOGARITHMIC COMMENSURABILITY
In this section, we will prove Theorem [[L3] and Theorem [[4](i).

Proof of Theorem[1.3 Since F' can be affinely embedded into E, there is an affine
map ¢g(x) = Mz + b with det(M) # 0 such that g(F') C E.

We first consider the case that 3; = § for j = 1,...,m. Assume on the contrary
that 1252 & Q. We show below that dimy(F — E) > 1, which implies that

log v

ie., dimy £ > 1/2, leading to a contradiction.

Let 0 := min;»; d(¢;(E), ¢;(E)) and I' := max{diam(MO(F)) : O € O(d)}, where
O(d) denotes the collection of orthogonal transformations on R?. Then 0 < 6,1’ <
+00. Fix p, N € N such that of < £ and [22N > p.

log v
Now for n € N with n > N, g(¢1-(F)) C g(F) C E. Notice that ¢n(F) is
of the form B"OF(F) + e, for some e, € RY. We have f"MO?(F) + ¥ C E with

b := Me, + b. Let ¢, be the integer part of %n. Then

diam(B" MO (F) + V') < BT < o' P.

By the definition of d, we see that f"MOT(F) + V' intersects ¢;(E) for only one
Ie{l,...,¢}*P and thus

BTMOY(F) + V' C ¢ (E).

Hence there exists P, € O(d) and r,, € R? such that 3" MO (F) C o PP, (E) + r,,.

This implies
/rn

o/’“”“P;MO?(F) _

CE,

azn_p -
where v = ngw
v e F —F. Then

E—E Do’ ™ PTMOY(F — F) 2 o't 0™ PT MO
for n > N. Denote U := {|zr; — 25|* : x1,29 € E}. Then

(3.1) U D {*PH0m) | MO i n > N}

and {x} denotes the fractional part of z. Fix a nonzero vector

Now we consider the closure W of {(e*™ O}) : n > N} in the compact Lie
group S' x O(d). Tt is clear that W is a closed subgroup of S' x O(d). Hence
by Cartan Theorem (cf. [I5] Theorem 3.3.1]), W is also a Lie group. Let W} be

the connected component of W containing the unit element (1,7). Then W is a
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connected compact Lie group, and it is also open in W (cf. [15, Lemma 2.1.4]). It
implies that 7 has only finitely many connected branches. Let 7 : St x O(d) — S*
be the naturally coordinate projection. Since 7 is an irrational number, 7(W) = S,
and hence 7(Wj) is a subgroup of S' with positive Haar measure (for W has only
finitely many connected branches). It follows that 7(W,) = S'. Then there is one
parameter subgroup t € R — (€™ ¢(t)) € Wy, where ¢ : R — O(d) is an analytic
group homomorphism (cf. [I5, Theorems 2.2.10, 2.2.12]). Therefore ¢ is an analytic
function. By (31), we have

(32) U2 {a®PHD|MOv*: (2™,0) e W} D {*PHD|Me(t)v|* : t € R}.

Put f(t) = o®P|M¢(t)v|?, t € R. Then f is a positive analytic function on R since
¢ is analytic. Notice that lim, ., f(t) = 0. Hence f is not constant on any non-
degenerate interval of R. Then J := {f(t) : t € [0,1)} is a non-degenerate interval of
R. Clearly U D J. Thus dimy(F — E) > dimy U > dimy J = 1.

Next we consider the case that 3;, 1 < j < m, might be different. Without
loss of generality, we show that log 8;/loga € Q. Since F' is not a singleton, there
exists j > 2 such that the fixed point of ¢; is different that of ¢;. Let I} be the
attractor of the IFS {¢; o 1;,1; oY1 }. Then Fy C F is not a singleton and can be
affinely embedded into E, hence log(f31/;)/loga € Q. Similarly considering the IF'S

{4? o p;,; 0 3}, we have log(5753;)/loga € Q. Hence log 51/ loga € Q. This ends
the proof of Theorem O

Applying Theorem [L.4] to the case that E, F' are central Cantor sets with 0 < 8 <
o < 1, we see that if Cs can be affinely embedded into C\, then % € Q. Theorem
[L4li) sharpens this result.

Proof of Theorem[TJ|(i). Let 0 < f < a < +. If 188 ¢ N, then it is clear that

4 log v
Cs C C,, hence C3 can be affinely embedded into C,,.

Conversely, assume that Cz can be affinely embedded into C,,. Assume that % ¢

N. We will derive a contradiction as below.

Since 0 < a < 1/4, we have \/a < 1 —2a. If 252 & N, then there exists a prime

log v

number ¢ € N such that igil ¢ N and a < ij‘;‘, where v = 3%, Since C contains
a nontrivial affine image of C,, C\, contains a nontrivial affine image of C,. That is,
there exists a € [0, 1] and A # 0 such that a + A\C', € C,. We can assume that A > 0

(since A + (—=\)C,, = XC,).

12



Next, we are to show that there exist m,n € N such that

mo1-2
(3.3) a <\ < i
a” 1—-2y

log v

. m _ 1 _ . . .
Notice that 17 = e(mlogy—nloga) — loga(miga—n)  yWhep {ggl is an irrational number,

then {m% —n:m,n € N} is dense in R. So there exist m,n € N such that

}:3‘;‘ since o < =52 Next assume that %ggl € Q. Since % ¢ N,
there exist two coprime integers p > ¢ > 2 such that v = a?/?. Since A\a*/7 \, 0
when k 7 +oo and A\a*/? 7 400 when k N\, —oo, there exist » € Z such that
o' < % and \a"—D/¢ > 1220 Thyg \q//e > 1=2001/a > 1220 (1/2 5 That is
—2v 1-2~ 1-2~ 1-2~ ?

a < 'l < % Hence we can find m,n € N such that
1 -2«
1—2v’
since {2+ :m,n € N} = {a*/9: k € Z}. This proves (33).

Notice that ® = {¢; = ax, ¢3 = ax + (1 — )} is a generating IFS of C,. Denote
A= {or(Ca) : T €{1,2}"}

for k € N. Clearly, Ay is a cover of C,, and any two different sets in A, have a
distance > o*~ (1 — 2a).

Let (m,n) be a pair in N? so that (8.3]) holds. Then

H:=a+M"C,Ca+)\C,CC,= U A.
AcAni1
Since diam(H) = My™ > o™ by [B3), H intersects at least two elements in A, 1.
Therefore H contains a “hole” of length > a”(1 — 2a). However by the geometric
structure of C,, the longest “hole” in H is of length \y™(1 — 27), which is less than
a™(1 — 2a) by ([B3). Hence we derive a contradiction. This finishes the proof of
Theorem [L4(i). O

1—2«

a < N <
(e}

a < AL = \a"/1 <
an

4. UNIQUE BETA EXPANSIONS AND AFFINE EMBEDDINGS

In this section, we first show that there exist 0 < f < a < % with 225 ¢ Q\N such

log v
that Cz can be affinely embedded into C,. Then we derive some unusual behavior

if Cs can be affinely embedded into C, and % ¢ Q. In the end, we combine

these behaviors and certain uniqueness property of beta-expansions to prove Theorem

CA(Gi).
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Lemma 4.1. For k > 2, let ay, > 0 be the unique positive solution of the equation

Ve=z+z* - +a"

Set By = a2 Then Lsay>ay >, lim ap =35
k——+o00

affinely embedded into C,

, and Cpg, can be

Proof. Fix k > 2. Denote \, = 1:;1’2 For any z = :rog &i(1 — By) B € Cp, with
e; € {0,1} for i > 0, we have
Az = 1 — (Qgﬁk + e BT )

o (2k+1 (2k+1)j+k
= 1 — Oék €9 + €254+10, \/ O

_ Z (1— <€ (2k+1 +enjat oz,(fkﬂ)ﬁk( NI QZ))

2k+1) 2k+1)j+k-+1 2k+1)j+2k
= Z 1 — Oék EQjOé](g ) + 62]'_|_1Oé](€ )i + -+ 62]_|_1Oé](€ i >
=0
Hence A\yz € C,,. Thus \,Cp, C C,,. O

Let 0 < f < o < 1/2. Let (X,0) denote the full shift over the alphabet {0,1}.
That is, ¥ = {0, 1} and o is the left shift on ¥. Let 7 : ¥ — [0, 1] be the coding

map defined as

m(z) =(1— ) Z ziad, 2= (21)2y € Z.
i=0
Clearly, 7 is one-to-one and 7(X) = C,. Notice that C, has a generating IF'S {5y, S1 },
where Sy(x) = az, Si(x) = ax + 1 — a. It is direct to check that

7(z) = 7}1—{20 S,o0---08, (0
for z € 3.
Lemma 4.2. Assume that logﬁ - & Q and there exist a > 0, X > 0 such that
(4.1) a+ M\Cs CC,.
Let z = 7 Y(a). Then the following properties hold.

(i) For anyn,k € N, w(c"z) + Ag—:CB C C,, provided that Z_ﬁj <
14



1—2«
«

(ii) For any u € |0, |, there exists w € {o"z : n € N} such that

m(w) +uCp C C,.
(ili) dimgy(7r({o"z:n € N})) > 1 —dimyC, > 0.

Proof. Let k,n € N satisfy A% < (1 —2a)a""1. Notice that a € S,,0---05,, ,(C,)
and

dist (C’a \S,yo0---085, ,(Cy), S;yo---o0 Sznfl(C’a)) > (1— 2a)a"_1.

Since a + A3*Cs C a + A\Cs C C,, and the diameter of a + A\G*Cj is less than
(1 —2a)a™ !, we have

a+A3*Cs C S, 0---S., (C.).

Hence, (S,,0---5.,_,) '(a) + %05 CC, ie., w(c"z) + ZL:C’B C C,. This proves

(i).

To prove (i), let u € [0, =22]. Since {gig ¢ Q, there exist pairs (k;,n;) € N? such
k; _ k; . .
that ’\f% < 1222 and ’\aﬁl — u as i — +oo. By (i),

k;

m(o™z) + )\5

Qi

C;CC..

Let w be an accumulation point of (¢"z). Then we have m(w) + uCs C C,. This
proves (ii).

By (ii), for any u € [0, 1=22],
uCp C Cp, — m({o"z : n € N}).

Hence

1—-2 -_—
lO, - a} CC,—7m({o"z:n € N}).
It follows that dimy (C’a —n({o"z:n € N})) > 1, thus

dimy C,, + dimpy 7T({O'"Z ‘n e N}) > 1.

This finishes the proof of (iii). O

1- .
Proposition 4.3. Let 0 < a < v/2 — 1 and u* = T a Set z; = (—1)" fori > 0.
a

Then we have the following statements.
15



(i) 2 := (%), is the unique element in {0,1, -1} so that
(4.2) (1—a) Z zia = u*.
i=0

(ii) Leta= (1—a) > pa*tandb= (1—a) ) - a*. Then (a,b) is the unique
point in C, x Cy so that u* =b— a.

Proof. Tt is direct to verify ([@2). Assume w = (w;)$2, is a point in {0, 1, =1} so that
(1—a) Y wal =u* (le. Y w;a’ =1/(1+ «)). We show below that w = 2.
Since 0 < av < v/2 — 1, we have 2a 4+ a® < 1, and thus

oo oo 1

ZwiaiSZai: lfa < Tt

i=1 =1

It follows that wy = 1. Similarly,

wo—i—Zwla >1—Za—1— 1i0z

It follows that w; = —1. Now we have

Zwio/ =1/(1+a) — (wy +wia) = a?/(1 + a).

Hence > o2, w;a'™? = 1/(1 + «). It follows that wy = 1 and w3z = —1. Repeating the
above argument, we have w = z. This finishes the proof of (i).

To show (ii), we first notice that u* = b —a. Now assume that u* = b’ —a’ for some
pair (0/,a’) € C, x C,. Then there exist e = (e;)%°, and f = (fi)2, € {0, 1} such
that b’ = w(f) and @’ = 7(e). Hence

ut =0 — 1 -« Z - ez
=0
By (i), we have f; —e; = (—1)" for ¢ > 0. This forces that
1 if7is odd 0 ifiis odd
€i = and  f; = .
0 ifiis even 1 if 7 is even
Hence &/ = b and o’ = a. This proves (ii) and we are done. O
Proof of Theorem[T.7(ii). Assume that 1/4 < a < /2 —1and 0 < 8 < a. Assume

that C can be affinely embedded into C,. By Lemma [£.]] we see that it is possible

that log 5/loga ¢ N. In the following we show that log 8/ loga € Q.
16



Assume on the contrary that log f/loga € Q. Define u* as in Proposition [£3]
Then u* € (0, +=2%). By Lemma E2(ii), there exists a € C, such that

(4.3) a+uCp CC,.

In particular, b := a+u* € C,. Hence v* = b—a with a,b € C,. By Proposition (.3,
we must have a = (1 — ) > o2, o® . Let z = 77 '(a). Then z = (01)> is a periodic
point in ¥ = {0,1}*°. Hence dimgy(7({oc"z:n € N})) = 0. However, according to
(43) and Lemma [.2(iii), we must have dimg(7({c"z : n € N})) > 0. This leads to
a contradiction. U

5. SETS OF UNIQUENESS AND AFFINE EMBEDDINGS IN THE PISOT CASE

In this section, we prove Theorem [[4(iii) and Theorem [ Our proofs make use
of the theory of sets of uniqueness for trigonometric series. In the following we give
some necessary definitions and theorems (see, e.g., [16], [14] for details).

Definition 5.1. A set E C [0, 27| is called a set of uniqueness if every trigonometric
series > % (a, cos(nx) + by, sin(nz)) which converges to zero on [0,27]\E is identi-
cally 0, i.e., a, = b, =0 for alln > 0. Otherwise E 1is called a set of multiplicity.

Remark 5.2. [t is clear that any subset of a set of uniqueness is still a set of unique-
ness.

One fundamental problem in classical harmonic analysis is to characterize the sets of
uniqueness. So far this problem is still open in its full generality. A major achievement
was made by Salem and Zygmund in 1955 to characterize when a homogeneous Cantor
set is a set of uniqueness.

Theorem 5.3 (Salem and Zygmund, cf. Chap. VII of [16]). Let 0 < o < 1/2.
Suppose that E C [0,27] is the attractor of an IFS {ax + a;}i_,, where 2 < £ < 1/«

=1’
and 0 =a; <as < ...<ap=1—«a.l Then E is a set of uniqueness if and only if

(i) @ = 1/« is a Pisot number,
and
(ii) ay,...,a, are algebraic numbers in the field of 0 over Q.
TAn additional assumption that a;41 — a; > a was put by Salem and Zygmund. Nevertheless,

their proof did not use this assumption.
17



Besides using the above theorem, we are going to use the following properties of
the sets of uniqueness.

Theorem 5.4 (cf. pp. 2, 71 of [14]). (i) The union of countably many closed sets
of uniqueness is also a set of uniqueness.
(ii) The sets of uniqueness are closed under translations, dilations and contrac-
tions. That is, if E, F C [0,27] and E = A\F + a is an affine copy of F, then
E is a set of uniqueness if and only if F' is a set of uniqueness.

Theorem 5.5 (Menshov, cf. p. 46 of [16]). If E C [0,27] is a closed set of uniqueness,
then n(n) 4 0 as |n| — +oo for any Borel probability measure n supported on E,
where 7(n) = [ e "™ du(x) are the Fourier coefficients of 0.

Now we are ready to prove Theorem [LA4Y(iii).

Proof of Theorem [1.7)(iii). Let 0 < f < a < 1/2 and 1/a be a Pisot number. By
Theorem[5.3] C, is a set of uniqueness. Now assume that C'3 can be affinely embedded
into C,. By Theorem (4)(ii), Cp is also a set of uniqueness. Thus by Theorem [5.3]
1/ is a Pisot number.

log 8
log v

derive a contradiction as follows.

Denote b = % By Lemma [.2(ii), for any u € [0, b], there exists ¢ € R such that

€ Q. Assume on the contrary that 1225 ¢ Q. We will

log v

Next we prove that

(5.1) uCs+cCC,.

Define f : [0,b] — C, by f(u) =sup{d € R: uCsz+d C C,}. A compactness
argument shows that f is upper semi-continuous.

log 2
log(1/)

Cp. For u € [0,0], define h, : R — R by h,(z) = ux + f(u). Let n = %fob,u o hy'du,
ie.,

Let 1 denote the normalized -dimensional Hausdorff measure restricted on

o) = [ oAy

for any Borel set A C R. Since uCp + f(u) C C,, for each u € [0,b], n is supported

on C,.
18



Now let us estimate the Fourier coefficients of . For n € Z,

Aln) = / e~ / / ey o h= () du
. / A O g

:—/ fi(un)e”Wnqy,
b Jo

where 7i(§) := [ e ®*du(z) for £ € R. Hence
bln|

(5.2) / |(un)|du < — b| | |f(z)|dz

—bln|
for n # 0. However, since p does not contain atomics, by Wiener Theorem [17],

1 T
lim sup T/ |7i(x)|?dx = 0.

T—4o00 -7
Applying the Cauchy-Schwartz inequality, we have limsupy_,, = f p(z)|dx = 0.
Thus by (£2), 7(n) — 0 as |n| — oco. However, this contradicts Theorem B0 since
C,, is a set of uniqueness and 7 is supported on C|,. O

Remark 5.6. As an extension of Theorem [1.)(iii), the following statement can be
proved by using the same argument: Suppose that B C R is a compact set of unique-
ness and A C R a compact set which supports a continuous Borel probability measure.
Then for any € > 0, there exists € (0,¢€) such that B does not contain any translation

of 5A.

Lemma 5.7. Let 0 > 1 be a Pisot number and A be a finite subset of Z[0]. Then
there exists a constant C' > 0 such that for anyn € N and t1,...,t, € A,

zn: t;0°
i=1

Proof. The result was essential due to Garsia [9, Lemma 1.52]. For completeness, we
provide a proof.

either Ztlﬂi =0 or > (.

We denote by 81, ... 6% the algebraic conjugates of 8, and by t&, ... t*) the
conjugates of t € A. Since 6 is a Pisot number,

— ()
pi= 1r£1a<xk|9 | < 1.

Corresponding, for each t € A, we denote by t1), ... t*) the conjugates of t.
19



Let ty,...,t, € A. Assume that Y ., ;0 # 0. Then

(Zn: ti9i> (H Zn: tl(j)(e(j))i>

j=1 i=1

is a non-zero integer. Hence

Xn:tiei > L > - —. C.
[T i, [ (0))i] — max{[t@]f: 1 <5 <k, t €A}
This finishes the proof. O

Proof of Theorem[LA Denote D ={a;: i =1,...,¢} and

A= {Ztie": n e N, tl,...,tneD—D}.

i=1
Then A — A ={> " t:#': neN, t,....t, € A}, with A := (D - D) — (D — D).
By Lemma B.7 A — A is uniformly discrete. Hence A N[0, 1] is a finite set.

In the following we first prove Theorem in the case that F' is homogeneous in
the sense that §;0;(x) = Bz for some f > 0 and all 1 < j < m. Since F' can be
affinely embedded into F, there exist a, A € R such that A # 0 and a + \F C E.
Without loss of generality, we may assume that A > 0 (notice that —F is also a
homogeneous self-similar set). By Theorem 03] E' is a set of uniqueness. Hence by
Theorem [5.4] F' is also a set of uniqueness. Applying Theorem to F', we see that
1/6 is a Pisot number. Assume that log 3/loga € Q. We derive a contradiction as
below.

We claim that for any u € (0, 1/diam(F)], there exists ¢ = ¢, € R such that
(5.3) uF+cC E+F,
where F := AN [0,1]. To see this, let u € (0,1/diam(F)]. Since logf/loga ¢ Q,

there exist pairs (k;,n;) € N? such that ABH 1/diam(F) and MYy as i — 4o00.

anl a’lli

However, for each i € N, we have
a+ My (F)Cat\FCE= ] ¢i(B).
1e{1,....03m
Notice that a + Mk, (F) = A\3¥ F + d; for some d; € R, and
U @(B)=a"(E+D,),

Ie{1,... 0y
20



with D,,, = {Z?;lt]@j Sty .ty € D}. Let ¢; be the smallest element in D,,, so
that (ABYE + d;) N a"(E + ¢;) # 0. As the diameter of A\3¥ F + d; is less than o™,
we have (A\BMF +d;) Na™(E +t) = () for any t € D,,. satisfying t < ¢; or t > ¢; + 1.
Thus,

MBHE 4+ d; C o™ (E+c;+ (Dp, — ¢;) N[0,1]) C o™ (E +c¢; + F).

Therefore A\gFia ™ F 4+ e¢; € E + F for some ¢; € R. Letting i — oo, we have
uF' + ¢ C E+ F, where ¢ is an accumulation point of (e;). This proves the claim.

Since F is a set of uniqueness and F is a finite set, by Theorem (5.4l F 4+ F is also
a set of uniqueness. By (5.3) and Remark 5.6, we get a contradiction. Therefore, we
have proved Theorem in the case that F' is homogeneous.

Next we consider the case that 3;, 1 < j < m, might be different. Without loss
of generality, we show that log 5;/loga € Q and 1/ is a Pisot number. We first
repeat some argument used in the last paragraph of the proof of Theorem Since
F is not a singleton, there exists j > 2 such that the fixed point of 1); is different
that of ¢1. Let F} be the attractor of the IFS {t; o ¢;,; o¢y1}. Then F; C F is
not a singleton and can be affinely embedded into E, hence log(5:5;)/loga € Q.
Similarly considering the IFS {4} o ¢;,1; 0 ¢?}, we have log(5%0;)/log a € Q. Hence
log f1/loga € Q.

To see that 1/, is a Pisot number, we notice that for any n,m € N, BB is
a Pisot number (since the attractor of the homogeneous IFS {¢f o ¢f*, ¥ o 7}
can be affinely embedded into E). We also notice that log 3;/logf € Q (since
log f;/log v, log B1/loga € Q). Write f5; = 1"/v, where wu,v are co-prime positive
integers. Then for any n € N, 37" = "3, is a Pisot number. Let f(x) be
the minimal integer polynomial for £ := 1/5;. Let &i,...,& denote the algebraic

conjugates of £, and set &y := £. Take an integer p > u so that

e @&/ 0 j Sk

Then &) i = 0,...,k, are distinct. As the Galois group of the minimal polynomial
f for & is tramsitive, so for any 1 < ¢ < k, there is an automorphism h of the
Galois group mapping & to ;. Let g be the minimal integer polynomial for ¢”. Then
g(&0) = g(h(&)P) = h(g(&P)) = 0. Hence & (i = 1,...,k) are algebraic conjugates of
&P . Since &P is a Pisot number, we have || < 1 for 1 < i < k. Hence |¢;| < 1 for

1 <i < k. It follows that £ = 1/f; is a Pisot number. O
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