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Abstract. The paper is devoted to the study of the multifractal structure of
disintegrations of Gibbs measures and conditional (random) Birkhoff averages. Our
approach is based on the relativized thermodynamic formalism, convex analysis and
especially, the delicate constructions of Moran-like subsets of level sets.

1. Introduction

The present paper is devoted to the study of the multifractal structure of
disintegrations of Gibbs measures and the conditional level sets of Birkhoff averages.

Before formulating our results, we first give some notation and backgrounds
about the multifractal analysis. Let 1 be a compactly supported Borel probability
measure on R? (or on a symbolic space). For x € R?, the local dimension of n at =
is defined by
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2 D.-J. Feng and L. Shu

provided the limit exists, where B(x,r) stands for the closed ball in R? of radius r
centered at x. For a > 0, define

Ey(a) ={z eR?: d(n,z)=a}.

The sets E,(«) are called the level sets of n, and dimg E,(«) are the dimension
spectra of 1 (where dimy denotes the Hausdorfl dimension). For ¢ € R, the L9-
spectrum of 7 is defined as

_ oo log (sup 32, n(B(xi,r))?)
7(n,q) = lig(%r}rf logr

3

where the supremum is taken over all the disjoint families { B(z;,7)}; of closed balls
with z; in the support of 7. It is easy to check that 7(7, ¢) is a concave function of
q over R.

For a given measure, it is usually very hard or impossible to calculate the
corresponding dimension spectra directly. The celebrated heuristic principle known
as the multifractal formalism, which was first introduced in [29, 30, 31], states that
the dimension spectra dimy E,(a) and the L9-spectra 7(7,q) form a Legendre-
transform pair, i.e.,

dimy E, (o) = 7" () := inf{aq — 7(n,q): ¢ € R}.

Although false in general, the multifractal formalism has been verified for many
interesting measures (see, e.g., [4, 14, 19, 25, 47, 50, 52] and references therein).
It still remains open to which extent the multifractal formalism could hold.

For a given measure on R?, it is interesting to study the possible finer version
of the multifractal formalism. To be more precise, suppose u is a Borel probability
measure on R? (or on a symbolic space) and let ¢ be a Borel measurable partition
of R in the sense of Rohlin [54]. Let {{ic}cee be the corresponding disintegration
of p with respect to £ (see, e.g., [54] or [49, Chapter IV] for the theory about
measurable partitions and disintegrations). A problem arises naturally: if u is
a measure having some good dynamical properties and satisfying the multifractal
formalism, and £ is a natural Borel partition, would uc satisfy the multifractal
formalism for typical C' in some good situations?

For the above problem, a simple and nontrivial model is the disintegration of
Gibbs measures on symbolic product spaces. Let (X,T) and (3,0) be two one-
sided full shift spaces, over the alphabets {1,...,I} and {1,...,m} respectively.
Let (X x X, T x o) be the product of (X,T) and (3,0). Endow X x 3 with the
metric

d((z,y), (2,7)) = m~ DHIEN: @y)#@5:)}

where z = (2;)21,% = (£;)72; € X and y = (¥:)52,,7 = (4:)2, € X. Let ¢ be a
real-valued Holder continuous function on X x ¥ and let ¢ = uy denote the Gibbs
measure associated with ¢ (see [13]). Consider the partition ¢ = {7~!(z): z € X}
of X x 3, where 7 is the canonical projection from X x ¥ to X given by (z,y) — .
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Disintegrations of Gibbs measures and conditional Birkhoff averages 3
For brevity, we write {u,} for the disintegration {fir—1(z)}tzex. Let v = po a1
be the projection of p under w. The family {u, } satisfies the following properties:
(i) for each x € X, u, is a Borel probability measure supported on 7~ (z); (ii) for
each Borel set A C X x X, u,(A) is Borel measurable and pu(A) = [ p,(A)dv(x)
(see [54]).

To study the multifractal property of {u.}, we write 7,,(q) = 7(ts, q) for z € X
and g € R. Our first result is the following theorem.

THEOREM 1.1. There is a Borel set T' C X with v(T') = 1 such that for each x € T,

(i) 7.(q) = 7(q) for any q € R, here 7 is a real-valued concave function satisfying

1

T(Q) = _logm (qhu(T) - qP(T X g, ¢) +PU(Q¢))7

where h,(T) denotes the measure-theoretic entropy of v, P(T x o,$) the
topological pressure of ¢ (see (4.2)), and P,(q) is the relativized topological
pressure of qb (see §2).

(i) E,,(8) # 0 if and only if B € [Bmin, Pmax), where Puin = limy_.oo 7(¢)/q and
Bmax = limg—._ o 7(q)/q. Furthermore for all 5 € [Bmin, Bmax|, we have

dimp E,, () = wf{fq—7(q)} (1.1)

= @ sup {hu(T x o) — h,(T)},

where the supremum is taken over the set of T X o-invariant measures [i
satisfying por * =v and [ ¢ dp = P(T x 0,¢) — h,(T) — Blogm.

The above theorem shows that for v-a.e. x € X, the measure u, satisfies the
multifractal formalism. Our proof of Theorem 1.1 is based on the study of the
conditional Birkhoff average of ¢. For x € X and a € R, we define

) 1 n—1 ) )
E.(a) = {y €Y nlgrolo - Z;dy(Tlx,g’y) = a} .
Clearly, E,(«) is the z-section of the level set
1 n—1
E(a) =1 (2’ Xx%: lim - Tia' oiy) =
(a) {(x W) EX X T lim — gaﬁ( «',a'y) a}

of the classical Birkhoff average of ¢. There is a simple relation between E,(«) and
E,.(B) (see Lemma 4.2(ii)). Hence to study the dimension spectra dimy E,, (o) of
iy, it suffices to study dimy E,(«). Set

Ay::{aeR: a:/qbdﬁforsomeﬁEMV(XXZ)},

where M, (X x X) denotes the set of all T' x o-invariant Borel probability measures
fi on X x ¥ such that fiom~! = v. We have the following result about the structure
and dimension of E,(«),.
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4 D.-J. Feng and L. Shu

THEOREM 1.2. There exists a Borel set ' C X with v(I') = 1 such that for any
zel,

(i) {a €R: Ey(a) #0) = A, ;
(i1) for any a € A,

dimpy F,(a)

. 1
~ logm ;gﬂ%{P,,(qu) —aqh = logm s%p {ha(T x o) = hu(T)} ,

where the supremum is taken over the set of all T X o-invariant measures i
such that por ' =v and [ ¢ dp = .

Theorem 1.1 is deduced from Theorem 1.2 and a variational principle between
7(q) and the relative entropies (see Proposition 4.4 and Corollary 4.5). It has some
natural geometric realizations (see §5).

The main purpose of this paper is to generalize Theorem 1.2 to random and high
dimensional cases and to remove the regularity assumption of ¢. For this purpose,
let (2, F,P) be a Lebesgue space with an ergodic transformation ¢ on Q. Let ® be
a bounded F ® B(X)-measurable R%valued function on  x ¥, where B(X) denotes
the Borel o-algebra on . Assume that ® is equi-continuous in the sense that for
any € > 0, there exists 6 > 0 such that for P-a.e. w € (,

|P(w,y) — P(w,y)| <e ifdy,y) <.

Let Mp(2x %) denote the collection of all probability measures ji on the measurable
space (Q x X, F ® B(X)) such that fi is ¥ x o-invariant and i o 7~ = P, where 7
denotes the projection (w,y) — w from Q x ¥ to Q. Now we define

Ap{/@dﬁ: ﬁEMp(QXZ)}.
For w € Q and a € R?, we denote
1
E,(a) = {y €X: lim ES”@(w,y) = a} ,

where S, ®(w,y) = Z?:_Ol ®(Yw,o'y). Under the above setting, we have the
following general result.

THEOREM 1.3. There exists I' € F with P(T") = 1 such that for any w € T,

(i) {a €Re: B, (a) # 0} = Ap;

(ii) for any o € Ap,

dimyy B, (0) = o inf {Pe(@) — (o )}
_ loglm sup {h(@IP) : fi € G(a)},
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Disintegrations of Gibbs measures and conditional Birkhoff averages 5

where Pp(q) = Pp({q,®)) denotes the relativized topological pressure of
g = (g, ®), here { - ) is the inner product on R? and ¢q(w,y) = (g, ®(w,y)),
h(i|P) denotes the relativized entropy of i and G(«) is defined by

Q(a)::{ﬁeMp(QxE):/@dﬁ:a}.

The reader may see §2 for the definitions of relativized topological pressure and
relativized entropy. We remark that in part (ii) of Theorem 1.1-1.3, the supremum
is always attained at some p. This fact is due to the upper semi-continuity of
hu(T x o) and h(f|P) in our settings. However the infimum may be not attained
for boundary points «.

It is worth pointing out that rather than random (conditional) Birkhoff averages,
the multifractal analysis of classical Birkhoff averages has been studied intensively
in a recent decade (see, e.g., [8, 22, 36, 45, 51, 55] and also [6, 9, 15, 26, 37, 48]).
The multi-dimensional case was first studied in [21] for Holder continuous potentials
and was further developed for arbitrary continuous functions in [22] for symbolic
spaces, in [26] for conformal repellers, and in [55] for dynamical systems satisfying
the specification condition. For instance, for an arbitrary R%valued continuous
function ® on symbolic product spaces, we have

dimy E(a) = lo;m stgp hp(T x o), (1.2)
where the supremum is taken over the collection of T'x o-invariant Borel probability
measures i with [ ®di = « (see e.g., [22, Theorem A]). Rather than considering
the Birkhoff average S,¢/n, Barreira, Saussol and Schmeling [7, 8] studied
the multifractal structure of the more general average S,¢/S,% and its multi-
dimensional version.

Theorem 1.3 provides a finer and random version of the variational principle
(1.2). One of the main difficulties for studying E,,(«) rather than E(a) comes from
the fact that E,(«) is much sensitive to w and is not o-invariant.

The reduction of Theorem 1.3(ii) to the deterministic case strengthens (1.2). Let
A:={[®dp: p—T x o invariant}. When d = 1, it is known [45] that for a € A,

qiélﬂgd{P(<q, ®)) —{xq)} = sup hi(T x ),

n (1.2), where P(-) is the usual pressure function. When d > 2, the equality is
only known (cf. [21]) to hold for those points « in the range of gradients of P(-).
By using a technique from convex analysis, we are able to set up the variational
principle for all « including the boundary points.

We point out that Theorem 1.1 strengthens a previous result of Kifer ([39,
Theorem 5.1]) who proved, under a more general setting of random Gibbs measure,
that 7(q) is analytic over R; and for any given 8 = 7/(¢), (1.1) holds for a.e. z.
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6 D.-J. Feng and L. Shu

Kifer took a direct approach by the thermodynamic formalism for random shifts,
which is not enough to deal with the boundary points Bnin and Gmax whenever they
are not included in the range of 7/. We remark that an analogue of Kifer’s result
was also obtained by Fan [20] (see also Fan and Shieh [24]) in the setting of infinite
products through a large deviation approach, and some further study was given by
Barral, Coppens and Mandelbrot in [5] to the multiplicative martingale measures,
for which the potential can have a dense countable set of discontinuities.

We remark that under the setting of Theorem 1.3, the relativized topological
pressure function Pp(q) may be not differentiable. For those o € Ap not
corresponding to the gradients of FPp, one can not prove the lower bound
of dimyg E,(a) directly through the classical approach using the relativized
thermodynamic formalism or the large deviation principle. Hence some new ideas
are needed to overcome this difficulty. In the following we sketch our main steps
and key ideas for the proof of Theorem 1.3.

The proof of part (i) of Theorem 1.3 is based on the relativized thermodynamic
formalism and the construction of Moran-like subsets of level sets of random
Birkhoff averages. For the construction of Moran-like subsets, we extend an idea
used in [21, 22]. Nevertheless our construction depends on the recurrence and
ergodic properties of the random transformation and is much more subtle. To
prove (ii), we define

fulesn,€) = #{y1 . yn: 1S2®(w,y) — na| < ne for some y = ()32, € X}
for w e Q, a € Ap, n € N and € > 0, where #A denotes the cardinality of A. We
first prove that there is an upper semi-continuous and concave function A on Ap
such that for P-a.e. w € ),

1 1
lim lim inf — log f,,(a; n,€) = liII(l) limsup — log f,(a;n,e) = Aa), VYV a € Ap.
€ n

e—0 n—oo n —0 n-oco

A delicate Moran construction (depending on w) is also used in the proof of the

concavity of A. Then we show that for P-a.e. w, dimy E,(a) = loglmA(a) for all

a € Ap. In this step, the proof of the lower bound is crucial and the main idea
is to construct Moran-like subsets of F,, («) with the Hausdorff dimension equal to
loglnLA(a)' Our next step is to prove a duality principle between Pp(q) and h(p|P)
(i.e. the second equality in (ii)) by convex analysis. In the last step, we show that

logm o, {Pe(0) = (o 0)}-

sup {h(E[P): 7i € G(a)} < Ala) <

The second inequality just follows from a box principle, whilst the first inequality
is derived from a relativized version of Shannon-Mcmillian-Brieman theorem [10],
using the concavity and upper semi-continuity of A.

The paper is arranged in the following way: in §2, we give some preliminaries
about the relativized thermodynamic formalism for random shifts. In §3, we prove
Theorem 1.3. In §4, we prove Theorem 1.1. In §5, we give some geometric
realizations of theorem 1.2 and some remarks.
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Disintegrations of Gibbs measures and conditional Birkhoff averages 7

2. Preliminaries

In this section, we outline the classical relativized thermodynamical formalism for
random shift which is needed in the proofs of our main theorems. The reader is
referred to [10, 11, 38, 40] for more details.

Let (2, F,P) be a probability space with an ergodic P-preserving transformation
9 on it. Furthermore, we assume that (Q,F,P) is a Lebesgue space, i.e., it is
measurably isomorphic to an interval (maybe empty) with the completion of the
Borel o-algebra and the Lebesgue measure on it together, maybe, with countably
many atoms (cf. [54]). Fix an integer m > 2. Let ¥ = {1,2,...,m}" be the
product space endowed with the metric

d(w,y) = m~mESA for & = ()72, y = ()72 € 5. (2.1)

It is known (see [13]) that ¥ is compact. Consider the shift map o: (2;)52, —
(zi+1)$2; on X. The dynamical system (X, o) is called the one-sided full shift on m
symbols. Let B denote the Borel og-algebra on ¥. Our target system is the product
space (2 x ¥, F ® B) with the measurable transformation © := ¥ x o, which can
be viewed as a special random dynamical system (RDS) over X.

2.1.  Invariant measures for RDS Let 7 : Q) x X —  be the canonical projection
(w,z) — w. A measure p on the measurable space (2 x X, F ® B) is said to have
marginal P on Q if pow~! = P. Denote by Pp(Q x ¥) the space of probability
measures on ! X ¥ having marginal P on 2. Let Mp(Q2 x ) denote the set of
O-invariant elements of Pp( x X). It is clear that Pp(Q x ¥) and Mp(Q2 x X)
are convex. Let &p(Q x ) denote the set of ergodic measures in Mp(Q2 x X) with
respect to ©.

Denote by L'(Q,C(X)) the space of measurable in w and continuous in z
functions ¢(w,x) on Q x 3 such that

loll = /:‘gg |p(w, ) |dP(w) < co.

For p, 1, € Pp(2 x X), n = 1,2,..., we say that u, converge to p if [¢ du, —
[ ¢ du as n — oo for any ¢ € L'(2,C(X)). This convergence introduces a weak*
topology in Pp( x X).

PROPOSITION 2.1. (i) Pp(Q2xX) is compact in this weak* topology, and Mp(x
Y) is a non-empty compact convex subset of Pp(Q X X);

(ii) Ep(Q X X) coincides with the set of extreme points of Mp(Q x X);

(1it) For any p € Mp(2xX), there is a unique probability measure Q,, on Ep(AxX)
such that

6 du = / 6 dn dQ,(n), ¥ 6 € LM(Q,C(S)).
OxZ Ep(QAxX) JOAxXXZ
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8 D.-J. Feng and L. Shu

Proof. See [40, Lemma 2.1(i)] for a proof of (i), and see [17, Lemma 6.19] for (ii).
Part (iii) follows from (i), (ii) and Choquet’s representation theorem (cf. [16]). O

2.2.  Disintegrations of measures A map p: Q x B — [0,1], (w, B) — pu(B), is
said to be a random probability measure on % if it satisfies (i) for each B € B,
w +— py,(B) is measurable, (ii) for P-almost every w € Q, B — p,(B) is a Borel
probability measure. The connection between Pp(£2 x X) and random measures is
given by the following proposition (see [17, Proposition 3.6] for a proof).

PROPOSITION 2.2. For each ju € Pp(2x ), there exists a random measure w +— i,
such that

[ o) dufea) = /Q / b, ) dpte(z) dP(w)

for every bounded measurable ¢ : Q2 x ¥ — R. The random measure w — p, is
unique P-a.e.

The random measure w +— p,, in the above proposition is often named as the
disintegration of .

2.3.  Relativized topological pressure and relativized entropy Let ¢ € L' (22, C()).
For w € Q and n € N, define

Pp(¢)(w,n) = Z sup exp(Spp(w, )),
Aegn €A
where Spp(w,x) = Z;:Olqb o Oi(w,z), &" denotes the partition {[iy...d,]
i1...0n € {1,...,m}"} of &, and [i; ...iy,] is the n-cylinder {(z;)2, € X: xp =
iy, for 1 < k < n}. The relativized topological pressure of ¢ for the RDS is defined
by

Pp(¢) = limsup % /log Pp(¢)(w,n) dP(w).

n—oo

Since P is ergodic, we have (see, e.g., [40, Proposition 1.6])

nan;o % log Pp(¢)(w,n) = Pp(¢) P-a.e. (2.2)

Now let R™ denote the partition {2 x A: A € £"} of Q x 3. For given
p € Mp(Q2 x ¥), the conditional entropy of R™ given the o-algebra 7= 1(F) is
defined by

H, (R x 1 (F)) = / H,, (€") dP(w),

where H,, (§") = — ) 4een bw(A)logu,(A) denotes the usual entropy of the
partition &” and w — . is the random measure corresponding to p as in
Proposition 2.2. The relativized entropy of u for the RDS is defined by

.1 i —
BP) = Tim —H,(R" |7~ (F)).
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Disintegrations of Gibbs measures and conditional Birkhoff averages 9
The above limit exists by the subadditivity of the conditional entropy. Thus
M) = inf _H, (R (F)). (2.3)
(cf. [38, Theorem 1.1, p. 40]). Moreover, if p is ergodic with respect to ©, then

lim ~ log 1 (€"()) = h(ulP) for pae. (w,y) (2.4)

n—oo N

(cf. [10, Theorem 4.2]), where £™(y) denotes the member in " that contains y.
The Abramov-Rohlin formula states that h,(0) = h(u|P) + hp(?) (see [2]), where
h,.(©) and hp(1¥) are the ordinary entropies of the corresponding measure preserving
transformations.

The following variational principle, connecting the relativized topological
pressure and the relativized entropy, was proved by Bogenschiitz in [10, Theorem
6.1]. Tt is a generalization of the (deterministic) relativized variational principle of
Ledrappier and Walters [42].

PROPOSITION 2.3. Pp(¢) = sup {h(uUP’) + /gb dp: p € Mp(Q x E)} .

We point out that the relativized entropy map p — h(u|P) is affine and upper
semi-continuous on Mp (2 x ). (The proof of the affinity is similar to that for the
usual entropy map (cf. [56, Theorem 8.1]), while the upper semi-continuity follows
from (2.3) and Lemma 2.1(iii) in [40]. The reader is referred to [43] for details.)
Hence the supremum in the above variational formula is always attained at some
member of Mp(Q2 x ¥). Furthermore, as an application of Choquet theorem (cf.
[563] or [56, p. 186]), we have

() = [ hrlP)dQ ), (25)

where p = [n dQ,(n) is the ergodic decomposition of u.

3. The proof of Theorem 1.3

In this section, we provide a full proof of Theorem 1.3. For the convenience of
the reader, we recall some basic notation. Let (2, F,P) be a Lebesgue space with
an ergodic transformation ¥ on Q. Let (X,0) be the one-sided full shift space
over m symbols. Denote © = 9 x 0. Fix d € N. Denote by C(X,R?) the set of
R?-valued continuous functions on ¥. Let ® be a bounded F ® B(X)-measurable
function taking values in R? such that (i) ®(w,-) € C(Z,R?) for P-a.e. w € Q; (ii)
w — P(w, ) is equicontinuous, i.e., for any € > 0, there exists § > 0 such that for
P-a.e. w € Q,

|®(w,y) — ®(w,y')| < e whenever d(y,y") < 4. (3.1)
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10 D.-J. Feng and L. Shu

It is clear that for any ¢ € RY, (q,®) € L1(Q,C(X)) (see §2.1). Here (-,-) is the
inner product on R%. Now define

Apz{/@du:ueMp(QxE)}, (3.2)
where Mp(£) x ¥) is defined as in §2.1. For w € Q and o € RY, denote
.1
E,(a) = {y €X: lim ESTL(I)(w,y) = a} ,
where S, ®(w,y) == Y7, @ 0 OF(w,y). Write

G(a) = {MEMP(QXZ) :/<I> du:a}. (3.3)

The proof of Theorem 1.3 is rather long and will be divided into a sequence of
lemmas and propositions in the remainder of this section.

3.1. The set {a € R?: E,(a) # 0} In this subsection, we prove the following
proposition.

PROPOSITION 3.1. There exists a measurable set H C Q with P(H) = 1 such that
{a eRY: E, (a) # 0} = Ap for allw € H, where Ap is defined by (3.2).
We divide the proof into several lemmas.

LEMMA 3.2. For P-a.e. w € Q we have {a € R?: E,(a) # 0} C Ap.

Proof. By Proposition 2.3, Pp(q) = Pp({(g, ®)) is a real convex function of ¢ over
R?. Hence it is continuous on R%. According to (2.2), we have for any q € R,

lim 1 log Pp({(q, ®))(w,n) = Pp(q) P-a.e. (3.4)

n—oo n

Let {q;}22, be a countable sequence dense in R? and let ' be the set of points w in
Q such that the equality in (3.4) holds for all ¢;. Clearly P(T") = 1. We show below
that {a € RY: E, (o) #0} C Ap for w € T.

We first show that for any w € T,
. 1
lim - log Pp({g, ®))(w,n) = Pp(q), Vg eRY

n—oo

Fix w € I and q € R?. There exists a subsequence {g;, } converging to g. Observe
that

1 1
- log Pe({gi,, ®))(w,n) — —log Pe({q, @) (w, )| < [di, — @ )| < lai —al - @0
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Disintegrations of Gibbs measures and conditional Birkhoff averages 11

for all n, k € N, where [|®]lc = sup, yycaxs |P(w,y)|. This implies that

.1 .
lim —log Pr({g, ®))(w,n) = lim Pe(qi,) = Pr(q),

n—oo N

and we are done.

Next, fix w € I'. Assume that a € R? satisfies F,,(a) # 0, we show a € Ap. By
the assumption on «, there is y € ¥ such that

1
lim =S, ®(w,y) =«
n—oo n
and hence

lim L 8,(g, B)(w,y) = (0,q), ¥qeRL

n—oo 1

By the definition of Pp((q,®))(w,n), we have limsup,,_, ., < log Pp({g,®))(w,n) >
(e, q), and hence

Pe(q) > (a,q), VgeR: (3.5)

Suppose o ¢ Ap. Since Ap is a compact convex subset of R?, there must exist
e € R? such that

(o, e) > sup (0, e).
BeAp

That is, there exists a hyperplane separating « and Ap (cf. [32, Theorem 4.1.1]).
Take ¢ = te (t € RT). Then for sufficiently large ¢,

(o, q) > sup (3,q) + 2logm. (3.6)
BEAp

However by Proposition 2.3,

Pe(q)

IN

10gm+sup{/(q,<1>> du: pe Mp(Qx E)}

= logm + sup (6,q).
BEAp

This together with (3.6) yields (a,q) > Pp(q) + logm, which contradicts (3.5).
Hence o € Ap. O
To prove the other direction of Proposition 3.1, we need a few more lemmas.

LEMMA 3.3. Let o € Ap and p € G(a) (see (3.3)). For any € > 0, there exists
keN, py,...,pr >0 with Zle p; = 1 and ergodic measures 1, ..., u, € Ep(2XY)

such that
‘ / ddu—

where i = Zle Di [

<e and h(g|P) > h(pP) —¢,
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12 D.-J. Feng and L. Shu

Proof. By Proposition 2.1(iii), there is a probability measure @, on & (2 x £) such

that
Jodu= [  [oaa.m.
E:(QXE)

Recall that n — [ ® dn is continuous on &p(Q x ) under the weak* topology,
and &p(2 x X)) is compact (see Proposition 2.1(ii)). Hence by the open covering
theorem, there exist k € N and a Borel partition {&1,...,&} of &(Q2 x X) such

that
’/(I)dn—/q)dn’

For i =1,...,k, choose u; € & such that Q,(&)h(u;|P) > f&: (h(nP) — €)dQ (1),
and put p; = Q,(&;). Then by (2.5), i = Zle pip; satisfies our requirement. O

<€, Vn n €&

LEMMA 3.4. There exists A € F with P(A) = 1 such that lim,,—,o Vi, (A, ®)/n =0,
where V, (A, ®) is defined by

Vo(A, @) = sup {|S,®(w,y) — Sn®(w,y)|: we A, y, ¥y €X withyl, =9 |n}

With Yln == Y1+ . Yn.
Proof. Tt follows directly from the assumption (3.1). m]

Let A be a set such that Lemma 3.4 holds. Since P is ¥-invariant, we have
P(N;en ¥ “(A)) = 1, i.e., the set of points whose forward orbits are contained in
A has full measure. Hence it is of no harm to assume that Lemma 3.4 holds for
A = Q in the sequel since we are concerning P-a.e. conclusions. We simply write
V(@) for V, (22, ®).

For w € Q, a € R% n € N and € > 0, denote
F,(asn,e) ={I € &, : |S,P(w,y) — nal < ne for some y € [I]}

and
fula;n,€) = #F,(a;n,€). (3.7)
The following lemma plays a key role in the proof of Proposition 3.1.
LEMMA 3.5. Let ai,as € RY. Assume that P({w € Q : E,(a;) # 0}) = 1 for
i=1,2. ThenP{w e Q: E,((a1 +a2)/2) # 0}) = 1.
Proof. For i € {1,2} and k,j € N, denote
Aipj={weQ: fulai;n,1/k) > 1 for all n > j}.

Let H denote the set of all points w satisfying

n—1
1
Tim =3, (70) = P(Aieg), Vi€ (L2} kjpgeN.  (38)
s=0
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Disintegrations of Gibbs measures and conditional Birkhoff averages 13

(Here x4 denotes the characteristic function of the set A.) By Birkhoff ergodic
theorem, P(H) = 1. In the following we show that E,((c; + a2)/2) # 0 for all
weH.

Construct a sequence {e;}32, by €; = 1/k. By the assumption of the lemma,
we have for each 7 € {1,2} and € > 0,

P{w € Q: liminf f,(a;;n,e) > 1}) = 1.

As a consequence, we can choose a sequence of integers {ny} T oo such that for any
i € {1,2} and k € N, the set

Gig:=Aikn, ={weQ: folain,e) > 1 for n > ny} (3.9)

has measure P(G; ) > 1 —27F.

Fix w € H. By (3.8) and (3.9), we have

1 n—1 B
lim_— D X, WOIR) =P(Gig) > 1-27F, Vi€ {1,2}, k,geN. (3.10)
s=0

In the following we show that Eg((a1 4+ a2)/2) contains a non-empty Moran-like
subset of ¥. First we construct inductively a sequence of even integers {my}7>, 1T oo
(depending on @) as follows. By (3.10), we can choose an even integer m; large
enough such that m; > 2"2 and for ¢ € {1,2},

1 mlfl
— G, (0"*@) >1-2"1  and
o ZO XGoy (071°5)
=
7 XG0 E) 2 1272 VL2 fn, 0 g <my— 1.
s=0
Suppose my, ..., mg_1 have been constructed. By (3.10) again, we choose an even
number my, large enough such that
my, > max{2™k-1 2™+11  and for i € {1,2}, (3.11)
1 e k=1 _ k
= D" X, @S E) > 127k, and (3.12)
Mk s=0 Y
142 m
! S NG (FHI5) > 127k > nkfl’ 0<q<mp—1. (3.13)
s=0

In this way we obtain a sequence {m}32,. Now for any k € Nand 1 < j < my,
we denote

j (7 = Dnx if k=1,
N k = '14

and construct a subset Yy, ; of X, by

T, — F,,gN(k,j)a,(atj;nk, Ek) if 9NEIG € th7k7
kg DI, otherwise,
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14 D.-J. Feng and L. Shu
where ¢; is defined by

t = 1 if j is odd,
77 2 if jis even.

By the definition of G; j, we have Yy, ; # (.

Define T = ]2, H;’Z‘l T ;. It is the subset of ¥ consisting of the points y of

the form
Yy = 11,1 . ILml 1271 e IQ,mz ‘e Ik71 ve Ik,mk ey (315)

where Iy, ; € T}, ;. By the definition of Y ; and Lemma 3.4, we have for y € T,

< ey + Vi, (@) if 9VEIDG € Gy .
(3.16)

Sn, @ (ﬁN(k’j)(cTJ), JN(k’j)y) — Npy,

Let a = (a1 + a2)/2. We show E(a) D Y. To see this, take y € T and write y
in the form (3.15). We will show below that |S,®(&,y) — nal = o(n).

Given n € N with n > myn; + mang, let k = k, and j = j, € [1, mg41] be the
integers such that N(k+1,75) <n < N(k+1,j+1), where we adopt the convention
N(k+1,mgs1 + 1) := N(k+2,1). We have

15, ®(@,y) — nal < [Syk1@(@,y) — N(k,1)al

<§ Sn, @ (ﬁN(k’p)Z}, UN(k’p)y)> — MpNEo

p=1

+

+

J
(Z Sy ® (ﬁN(kJrl,;D)&’ JN(k+1,p)y)> — e

p=1
+ 141 (|20 + ) (where [|®]|o := sUP,cqxx [P(u)])
=(I) + (IT) + (ITT) + (IV).

By (3.11), we have (I) = O(N(k,1)) = o(N(k+1,1)) = o(n) and (IV) = O(ng4+1) =
o(my) = o(n). According to (3.16) and (3.12), we have

mg

Z (Snkfﬁ (ﬁN(k’p)@JN(k’p)y) — nkatp)

p=1

<mpnger + miVy, (®)
+24{1 <p <my: IVEPG Z Gy i} ni(| @)oo + )

<mpnger + miVp, (®)

(1) =

2
123 #{L<p<mp: VEPT Z )il + Jal)

=1
<mgni€r + mkVnk (CI))
+4- 27" mng (| ]| eo + |a)

=o(n).
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Disintegrations of Gibbs measures and conditional Birkhoff averages 15

Similarly by (3.16) and (3.13), we have

J
3 <Snk+1‘1> (19N(k+1,p)&7UN(k+1,p)y) _ nk+1atp>

p=1

(II) < + npg1las — oy

<jngsi€rsr + J Voo () + nppafas — o
+2#{1<p<j: ONFTIIG Z Gy} g (1200 + [a])

<gnitr€rt1 + 3 Voo (@) + npgafag — aq
2

423 #<p < OVETIPE G} - i (19]) oo + Jal)

i=1
<gnryr€rsr + 3 Vo, (@) + nigrfag —aa| +4- 2_’“_1%“ N1 (| P o + |t])
=o(n),

where we have used the inequality #{1 < p < j : INEHLP)G o Gik+1} <

27k=l_n_ To see it, in (3.13) we take £ = [

Nk+1

} and g € [0,nk+1) so that
k41
g=N(k+1,1)( mod ngy1). (Here [a] denotes the integer part of a for a € R.)

Therefore we have shown that |S,®(@,y) — na| = o(n), i.e., y € Ez(a). Since y
is taken from Y arbitrarily, we have E;(a) D T # (). The lemma is proved. |

We remark that the proof of the above lemma involves the construction of Moran-
like subsets of E,(a) (depending on w), which is a key technique in this paper.
Indeed it will be used several times more in this section.

LEMMA 3.6. There exists a countablejubset A of Ap such that A is dense in Ap
and P({w € Q: E, (o) # 0 for all « € A}) = 1.

Proof. By Lemma 3.3, there exists a sequence of ergodic measures {y;}52; on Qx 3
with p; o ! = P such that the set of all finite rational convex combinations of
a; := [ ® du; is dense in Ap.

By Birkhoff ergodic theorem, for each i € N the set

{(w,y) €ENQxX: lim lSn<I>((,u,y) = al}

n—oo N

has full p; measure. Since p; o~ ! =P, we have P({w € Q: E, (o) # 0}) = 1.
Hence by Lemma 3.5, we have

PlweQ: E,(a)#0}) =1

for any a in the following set

T T Sy .
A:: U {12712. bl,...,an G{Oéi.ZEN}}.
n=1
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16 D.-J. Feng and L. Shu

Clearly, A is dense in the set of all rational convex combinations of {a; : i € N}, and
thus dense in Ap. Since A is countable, we have P({w € Q: E,(a) # 0 for all a €
A}) =1 a

LEMMA 3.7. There exists a measurable set H C Q with P(H) = 1 such that
{a eRY: E, (o) #0} D Ap for each w € H.

Proof. The lemma will be proved in a way similar to that of Lemma 3.5. Let A be
constructed as in Lemma 3.6. For a € A and k,j € N, denote

Agr; ={weQ: fu(a;n,1/k) > 1for all n > j}.

Let H denote the set of all points w such that

n—1

1
lim — > Xawu, P T0) =P(Aa k), Ya €A kjpgeN. (3.17)
s=0

Then P(H) = 1 by Birkhoff ergodic theorem. Thus to prove the lemma, it suffices
to show that F,,(8) # 0 for all w € H and 8 € Ap.

Fix § € Ap. Take a sequence {ax}72, C A such that limg_,o ap = (. Define
ex = 1/k for k € N. By Lemma 3.6,

P{w € Q: liminf f,(ag;n,ex) > 1}) = 1.

Therefore we can choose a sequence of integers {ny} 1 co such that for any k € N,
the set

Gr = Aoy by, ={w e Q: folag;n,ex) > 1 for n > ny} (3.18)
has measure P(G}) > 1 —27F,

Fix @ € H. By (3.17) and (3.18), we have

n—1
1 -
lim — Y xa, (" T9@0) =P(Gy) > 1-27%, k,geN. (3.19)
n—oo N =0

We construct inductively a sequence of integers {m}32, T 0o (depending on @) as
follows. By (3.19), we can choose an integer m; large enough such that m; > 2m2
and

1 ml—l
my > xe, (0™ ®)>1-27",  and
1
s=0
12 m
D X@ WM TIG) > 1-272 V> — 0<g<np— L
Y4 =0 Up)
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Disintegrations of Gibbs measures and conditional Birkhoff averages 17

Suppose my, ..., mg_1 have been constructed. By (3.19) again, we choose my, large
enough such that

my > max{27k-1 2"k 1

mi—

1
L XGy (ﬂ"kSJrZ;:ll "jmj&) >1-2"%  and
Mk s=0
= N -
Y X (TR > 1 =27 Y > ,0< g < nppq — 1.
¢ s=0 Mht1

In this way we obtain a sequence {my}7> ;. Now for any k € N and 1 < j < my,
define N(k, j) the same as in (3.14) and construct Yy ; C X, by

T, . — FﬂN(k,j)w(Olk;nk,ﬁk) if ﬁN(k’j)&V} € Gk,
hd DI, otherwise.

By the definition of Gy, we have Ty ; # 0.

Define T = ]2, [T} Tk,;. We can show that Ez(3) O T by an estimation
analogous to that in the proof of Lemma 3.5. This finishes the proof. O

Proof of Proposition 3.1. It follows directly from Lemma 3.2 and Lemma 3.7. O

3.2. A formal formula for dimy E,(a) For w € Q and a € Ap, we define

1
A (o) = liH(l) liminf — log f,,(a;n,€)
€e— n—oo N
and A, (a) by taking the upper limit, where f,(a;n,€) is defined as in (3.7). By
Proposition 3.1, we have A, () > 0 for P-a.e. w € Q. In this subsection, we prove
the following two propositions.

PROPOSITION 3.8. There is a function A : Ap — [0,00) such that for any o € Ap,
we have A (a) = A,(a) = Ala) for P-a.e. w € Q. Furthermore the function A is
concave and upper semi-continuous on Ap.

PROPOSITION 3.9. There exists a measurable set H C Q with P(H) =1 such that

1

dimpy E,(a) = Togm

Ala), YweH, aeAp.

The proposition 3.8 just follows from the following three lemmas.

LEMMA 3.10. There are two functions A, A from Ap to [0,00) such that for any
o€ AP,

A (o) =A(a) and A,(a)=A(a) for P-ae. weQ.
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18 D.-J. Feng and L. Shu

Proof. Let w € Q, o € Ap and € > 0. Let n be an integer larger than (]| ®||eo+|a|)/e,
where [|[®[[oc = sup(,, 4 [P(w, y)|. Suppose that |S;,—1(Jw,y) —(n—1)a| < (n—1)e
for some y € 3. Then for z € 0~1(y), we have

[Sn®(w, 2) — na| < |Sp—10(Vw,y) — (n — Da| + || Pl + | < 2ne.
It follows that f,(a;n,2¢) > foo(a;n —1,¢€). Letting n — oo and € — 0, we have
Au(a) > Ay (), Au(@) > Mg ().

This combining with Birkhoff ergodic theorem yields the desired result. O

LEMMA 3.11. The functions A, A in the above lemma coincide on Ap.

Proof. We only need to show that A > A on Ap. Fix a € Ap and v > 0, we show
below that A(a) > A(a) — 2.

Without loss of generality we assume A(a) — 2y > 0. Let € > 0. Take § > 0 such
that

(1-26)(K(a)=7) > K(a) =2y and  §(|P]e +al) <. (3.20)

By Lemma 3.4, there exists Ny € N such that V,,(®) < ne for all n > Ny. Since

A, (a) = A(a) for P-a.e. w € €, there exist two integers Ny, No with No > Ny > Ny
such that the set

A= {w € Q: thereis ¢ € [Nq, No| such that f,(a;4,¢) > ee(X(a)_v)}

has measure P(A4) > 1 — 4. Now denote

n—1
1 .
H = {w cO: nh—{lgo - ZXA(WW) = P(A)} .

=0

Then P(H) = 1 by Birkhoff ergodic theorem.

Fix w € H. We construct a sequence of integers {£;}7° ; inductively as follows.
First we determine ¢;. If w ¢ A, we let {1 = 1; otherwise we let £; be an integer
between Ny and Ny such that fz(a;ly,€) > e (@)= Now, suppose £1, ..., lr_1
have been constructed for some k£ > 2. We determine ¢, in the following way: if
Yot & A we let £, = 1; otherwise, we let £}, be an integer between N; and
N5 such that B

Jotrtten_ig(as by, €) > ele (M) =),

In this way, we can construct the sequence {{}}7°, well.

For j € N, we define ; C ¥y, by

g _[> it 0 =1,
7l Fyersoveyag(as €y, €)  otherwise.
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Since & € H and P(A) > 14, there exists N3 € N such that 2 37" 1 x4 (9'%) >

1 -6 for n > Ns.

Now fix n such that

n > max{Ns, No(||®]lsc + |a])/e}. (3.21)

Let k = k,, be the unique integer such that

Then
#1<j<k:

Hence

£1+...+€k§n<£1+...+€k+1.

=1}y =#{1<j<k: 9TTh15¢g A}
<#HO<i<n—1:9'0¢A} (3.22)
< in.

Z b >n— Ly — Z 1

1<j<k, £;>1 1<5<k, £;=1 (3.23)

Now let us estimate

>n— Ny —nd=n(l—7§)— Na.

fo(azn,4e).  To do this, consider [[*

j=1%Y.  For each

Ie Hf:l Q; and y € [I], by the definition of ©;, we have

|S€jq)(19£1+...+e]‘_1&’O_ElJr...Jrfj_ly) _ g]a|

<lje+ Vi, (¢) <2lje  whenever 1 < j <kand/{; >1.

Hence

1Sn®(w,y) —nal <

<
<
It follows that
fz(a;n,de)
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1<j<k, £;>1
+ > Sy @@t g, oty — (4l
1<j<k, £;=1

Sty RO TG Gy — (n— — = 4)a

S 2e |+ F#HI<G <k, £ =11+ Na) (| @]l + |a)
1<j<k, £;>1

2ne + (nd + No)(||®]|oo + |a]) < 4ne. (by (3.22), (3.20), (3.21))

k
> #HQJ > H eéj(K(a)—'Y)

j=1 1<5<k, £;>1
> (n(1=9)-N2)(A(x)-7) (by (3.23))
> g N2(A@)=) | gn(A(e)=27) (by (3.20))
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Letting n — oo, we have liminf, .. L log fz(a;n, 4e) > A(a) — 2.

Since @ is taken from H arbitrarily and P(H) = 1, we have
liminf, oo L log fu(c;n,4€) > A(a) — 27 for P-a.e. w € Q. Meanwhile since €
can be taken arbitrarily small, we have A_(a) > A(a) — 27 for P-a.e. w € 2. By
Lemma 3.10, we have A(a) > A(a) — 2, as desired. O

LEMMA 3.12. Let A denote the common functions A, A. Then A is upper semi-
continuous and concave on Ap.

Proof. It suffices to show that A is upper semi-continuous on Ap and

A (O‘ ; 5) > %A(a) + %A(ﬂ) for any «, 8 € Ap. (3.24)

First we show the upper semi-continuity of A. Let o € Ap and v > 0. By
Proposition 3.1 and Lemma 3.10, there exist k¥ € N and a measurable set A C Q)
with P(A) > 0 such that

1
0 <liminf —log f,(a;n,1/k) < Ala) +7v, VweA. (3.25)
n—oo M
Now assume o € Ap is such that |o’ — a| < 1/(2k). Then we have
foldsn,1/(2k)) < fula;n, 1/k), VweA
(since |Sp®(w,y) — na/| < n/(2k) implies |S,®(w,y) — na| < n/k). This fact,
combining with Proposition 3.1 and (3.25), yields
1
0 < lim inf - log f,(a/;n,1/(2k)) < A(a) +7, for P-ae. w € A.

Therefore we have A (o) < A(a) + v for P-a.e. w € A. Since P(A) > 0, by Lemma
3.10 we have A(a’) = A(¢’) < A(a) + ~. This proves the upper semi-continuity of
A.

To show (3.24), let «, B € Ap. We show that for any €,y > 0,

a+pf

lim inf 1 log f. ( in, 4e> > %A(a) + %A(ﬂ) — 2y (3.26)
n

n—oo

for P-a.e. w € Q, from which (3.24) follows. To see (3.26), fix €,y > 0. Without
loss of generality, we assume $A(a) + 3A(3) — 2y > 0. Choose § > 0 such that

5(|@lloc + laf +18]) <€ and (1 =6)(Ala) +A(B) = 27) = (Ala) + A(B) — 47).
Choose a sufficiently large integer ¢ such that Vp(®) < el and the set
A= {w €0 folaslye) > MO f (B0 €) > eé(A(ﬁ)_W)}

has measure P(A) > 1 — §. Denote

n—1
1 .
H:= Q: lim = L) =P(A) 5.
{we Jim 2 xa () <>}
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Then P(H) = 1 by Birkhoff ergodic theorem. Fix @ € H. Construct a sequence of
sets ©; C Xy by

Fyi-veg(a;lye)  if 990 € A and j is odd,
Q; =13 Fyo-nes(Bi4,e)  if 907D € A and j is even,
T if WUV & A.

Let Ny be an integer such that * Zl o Xa(W*w) > 1 -4 for n > Ny. Now fix n
such that n > Ny and ne > 2€(||<I>||Oo + |a| +|8])- Let k be the unique integer such
that ¢k < n < £(k 4+ 1). Then a direct estimate (similar to that in the proof of
Lemma 3.11) shows that [S,®(&,y) — n(a + 5)/2| < 4ne for any I € H§=1 Q; and
y € [I]. Tt follows that

k
fa((a+ B)/2;n, 4e) H > n((A@)+A(8)/2-27)

where the last inequality also follows from an argument similar to that used in
the proof of Lemma 3.11. Letting n — oo, we obtain (3.26) for all @ € H. This
completes the proof. O

Now we turn to the proof of Proposition 3.9. First we prove a lemma.

LEMMA 3.13. There is a countable subset A1 of Ap such that for each o € Ap,
there exists {a;}52, C Ay with lim; oo @; = @ and lim;_, A(ey;) = Aa).

Proof. The result follows from the upper semi-continuity of A on Ap. For each
k € N, we can cover Ap by a finite family of closed balls {B(zx,1/k)}?%, with
centers in Ap and radii 1/k. For each ball B(z;, 1/k), by the upper semi-continuity
of A, we can choose ay; € B(zk,,1/k) N Ap such that A(ag,;) = sup{A(z) : z €
B(zk,i,1/k) N Ap}. Now define

Alz{akﬂ‘: keN, 1§i§€k}.

Then A, satisfies the desired property. To see this, let o € Ap. For each k € N,
pick an integer ny with 1 < nj < £ such that o € B(zn,,1/k). This implies
| — agp,| < 2/k and hence limy oo afn, = o Meanwhile, A(a) < A(agn,)-
However by the upper semi-continuity, we have A(a) > limsupy,_, ., Ao pn, ). This
forces A(a) = limg_ o0 Ay, )- a

In our proof of Proposition 3.9, we need to estimate the Hausdorff dimension of
a class of Moran-like subsets in symbolic spaces. Let ¥ be endowed with a metric d
asin (2.1). Let {£,}52, be a sequence of positive integers. For each n € N, suppose
T, is a non-empty subset of ¥;,. Denote T = [[°, T, C X. The following is a
special version of a general theorem in [27]. The reader is referred to [21] for a
short proof.
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ProproOSITION 3.14. ([27])

1 " log #£7;
dimy T > lim inf 2=t E#Y s
logm n—oo ijl l;

where #S denotes the cardinality of S.

Proof of Proposition 3.9. By the definition of A, (), we have dimpFE, (o) <

A, (a) whenever E,(a) # (), where dimp denotes the upper box-counting
dimension (see [19] for the definition). Hence we have dimpy E, (o) < ﬁ&(a)
whenever F, () # 0. According to Proposition 3.1 and Proposition 3.8, we have
for P-a.e. w € Q, dimy E, (o) < ﬁA(a) for all v € Ap. In the following we show
that the reverse inequality also holds.

logm

The proof we give below is similar to the proof of Lemma 3.7. Let A; be a
countable subset of Ap given as in Lemma 3.13. For o € A; and k,j € N, denote

Aakj = {w €Q: folo n,1/k) > " MO=VE) for all n > j} .

Let H denote the set of all points w such that

n—1
1
lim_— > Xaww, P TI0) =P(Aa k), Y a €A kjpqgeN. (3.27)
s=0

Then P(H) = 1 by Birkhoff ergodic theorem. We will show that dimy E,(8) >
L_A(B) for all w € H and 3 € Ap.

logm

Fix f € Ap. By Lemma 3.13, there is a sequence {a}72, C A; such that
ar — [ and Alag) — A(B), as k — oco. Let ¢, = 1/k for k € N. By Proposition
3.8,

P ({w e liminfl log f.(ak;n, €ex) > A(ak)}> =1

n—oo N

Therefore we can choose a sequence of integers {n;} 1 oo such that for any k € N,
the set

Gy i= A = {w € Q1 fularin, @) = "0 forn>mi | (3.28)

has measure P(G},) > 1 —27F.

Fix © € H. By (3.27) and (3.28), we have

n—1
lim_ > Xe, (0 TIR) =P(Gr) > 1-27%, VkgeN (3.29)
s=0

We construct inductively a sequence of integers {m}7>, T 0o (depending on @) as
follows. By (3.29), we can choose an integer m; large enough such that m; > 2m2
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and
1 mi—1
— Z xa, (0" 0) > 1-271  and
mi
s=0
14 m
- na2s+qz; _ 92 I _
EZOXGZ(’ﬁ 25HIG) >1-272 VI> o 0<qg<ny—1.
o
Suppose my, ..., my_1 have been constructed. By (3.29) again, we choose my, large
enough such that
my > max{2"k-1 2"k
1 mp—1 o1
— 3" xa (0" RIS Gy > 127k and
my
s=0
1 m
7 ZXGk+1(19nk+ls+q&) >1- 2_k» Vi i ,0<¢g < Nk+1 — 1.
¢ s=0 Nk+1

In this way we obtain a sequence {my}3>,. Now for any £ € N and 1 < j < my,
define N(k, j) the same as in (3.14) and construct Yy ; C X, by

T, — F,&N(k,j)m(()(k§7’lk—,€k) if ﬂN(k’j)&v) € Gk,
I S, otherwise.

By the definition of Gy, we have #Yj ; > ek (Mak)—er)

Define T = [[;2, [}, Yx,;. We can show that Ez(3) D T by an estimation
analogous to that in the proof of Lemma 3.5. Now relabel the sequence

Tl,l? e 7T17m13 T271, e ,TvaQ, e
as {T,}22,, and relabel the sequence
NnNiye ooy, N2y .o, N2,y ..
—_———— ———
ma mo
as {€,}5°. It is obvious that T = []>7, T,. Note that T} ; is just relabeled as

Yini+...4my_1+j- By Proposition 3.14, we have

1 " log #Y
dimg T > lim inf Zl:l ?rgl# Ly

=1 "

To estimate the lower limit, for a large n we write n =mj +mo + ...+ mg + j so
that 1 <7 < mygy1. Then we have

S log#7s, < S mani(A(ew) =€) + gmur1 (Aons1) — 1)
S T mang g+ e + g

Since ngt2 = o(mps1) and A(ay) — A(B), by taking the lower limit we obtain
dimyg YT > —1-A(B). Hence dimy E,(3) > dimg T > —1-A(B). This finishes the

logm logm

proof. |
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3.3. A duality principle To prove Theorem 1.3, we need a duality principle
between Pp(g) and A(u|P). In this subsection, we will present a more general
duality principle, which is based on convex analysis and includes the above duality
relation.

Let Y, Z be two locally convex topological vector spaces, and let Y* and Z*
denote the dual spaces of Y and Z respectively with the weak* topology (cf.
[67]). Let f: Y — Z be a continuous linear transformation. Assume that D is
a compact convex subset of Y. Suppose t: D — R is a real function such that

sup,ep [t(y)| < oo and t is affine on D, i.e., t(py: + (1 —p)y2) = pt(y1) + (1 —p)t(y2)
for any p € (0,1) and any y1,y2 € D. Define w : Z* — R by

w(z") =sup{(f(y),2") +t(y): y € D}, Vz"e€Z"
Let g: f(D) — R be defined as
g9(z) =sup{t(y): y € f7(2)}, z € f(D).

PROPOSITION 3.15. Under the above setting, w is a real-valued convex function on
Z*. Furthermore

(i) if g is upper semi-continuous at some zg € f(D), then

o {w(z") = (20,2")} = g(=0); (3.30)

(ii) in particular, if t is upper semi-continuous on D, then (3.30) holds for all

2o € f(D)

Proof. Tt is routine to verify that w is a real-valued convex function. To prove (i)
and (ii), we need some result from convex analysis. Let R = RU {+o0o}. Recall
that for u: Z — R with dom(u) := {z € Z: u(z) < 40} # 0, the function

u*: ZF = R, u*(z*) =sup{{z,2*) —u(z): z € Z},

is called the conjugate of u. Similarly for v: Z* — R with dom(v) # (), the conjugate
of v is defined as

v Z — R, v*(2) =sup{(z, ") —v(z*): z* € Z*}.

It is well-known (cf. [58, Theorem 2.3.4]) that if u: Z — R is convex with non-
empty domain dom(u) and if w is lower semi-continuous at zg € dom(u), then

uw** (z0) = u(z0). (3.31)

Now we return to the proof of (i) and (ii). From the definition of g, it is easy to
see that ¢ is a real concave function on f(D). Extend g to be a concave function g
on Z by setting g = g on f(D) and g = —oo on Z\ f(D). It is easy to check that
for any z* € Z*,

w(z") = sup{(f(y),2") +t(y): y € D} = sup{(2,2") +9(2): z € Z} = (=9)"(z7).
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Note that —g: Z — R is convex with dom(—g) = f(D). Assume g is upper semi-
continuous at zy € f(D). Then —g is lower semi-continuous at zy. Hence by (3.31),
(=9)**(20) = —g(z0). Therefore

inf {w(=") — (202"} = " (20) = ~(=)"" (20) = ~(=3)(20) = F(z0) = glz0)-

This proves (i). To see (ii), it is enough to observe that g is upper semi-continuous
on f(D) when ¢ is upper semi-continuous on D. ]

3.4. A wariational principle for A(a) and the proof of Theorem 1.8 In this
subsection, we first prove the following variational principle, then we provide a
proof of Theorem 1.3.

THEOREM 3.16. For any a € Ap, we have
Aa) = inf{Pp(q) — (@, q): ¢ € R} = sup{h(ulP) : pu € G(a)},

where G(«) is defined as in (3.3).

The proof of the above theorem is based on some propositions.

PROPOSITION 3.17. Let o € Ap. Then

inf{Pp(q) — (@, q): g € RY} = sup{h(u[P) : € G(a)}.

Proof. 1t is a direct application of Proposition 3.15. Indeed in the setting of
Proposition 3.15, we can take Y to be the dual of L'(Q2,C(X)) endowed with the
weak™* topology, and take Z = R%. Let D denote Mp(Q2 x ). Then by Proposition
2.1, D is compact convex set of Y. Write ® = (¢1,...,¢4). Define f: Y — Z by
f@) = ((¢1,9),...,{da,y)). Let t: D — R be defined by t(y) = h(y|P). Then f is
continuous and linear, and ¢ is affine and upper semi-continuous on D (see §2.3).
Applying Propositions 2.3 and 3.15 yields the desired result. O

PROPOSITION 3.18. Let o € Ap and pu € G(a). Then A(a) > h(u|P).

Proof. We first assume that p € G(a) is ergodic. Let {u, }ueq be the disintegration
of p with respect to P. Let £ = {[1],...,[m]} be the canonical partition of ¥.. By
Proposition 3.8, (2.4) and Birkhoff ergodic theorem, there exists a measurable set
A C Q with P(A) = 1 such that for any w € A, the following properties hold:

A, (@) = Ay(a) = Aa);

2w

1
lim ——logu, (" (y)) = h(uP)  for pe-ae. y; (3.32)

n—oo N

1
lim —S,P(w,y) =a for p,-a.e. y.

n—oo N,
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Fix w € A and let € > 0. Then there exist N € N and a Borel set B C ¥ with
o (B) > 1/2 such that for all y € B and n > N, we have

e MBI <y (en(y)) < e BB S B(w,y) —nal <ne.  (3.33)
Define B, := {I € Z,: [I]N B # 0} for n > N. Then by (3.33), we have
fw(aana 6) Z #Bn and

(#By,) - e "MwP=) > 1y (B) > 1/2,

which gives limsup,,_,.(1/n)log f,(a,n,€) > h(u|P) — €. Since € > 0 is arbitrary,
we have by (3.32) that

1
A(a) = lim limsup — log f,, (o, n, €) > h(p|P).
€E— n

n—oo

Now assume that p € G(«) is not ergodic. Let v > 0. Since A(:) is upper

semi-continuous on Ap, there exists 0 < € < v/2 such that
Ala) > A(d) — % whenever o’ € A and |a — /| <e.

By Lemma 3.3, there exists a convex combination i = $¥_ p;u; € Mp(Q x ) of
some ergodic measures i1, ..., i such that

‘/@dﬁa

Write a; = [ @ dp; for 1 <i <k and o/ = Elepiai. Then |a — /| < € and thus
A(a) > A(a’)—~/2. By the concavity of A (Lemma 3.12) and the previous argument
for ergodic elements of G(a), together with the affine property of n — h(n|P), we

< e h(ilP) > h(ulP) - c.

have

k k
A@) = Y pib(a) = Y pi (h(uilP)) = h(EIP) = h(u|P) - e.
=1 =1

It follows that A(a) > h(u|P) — e —v/2 > h(u|P) — ~. Since v > 0 is arbitrary, we
have A(a) > h(u|P), as desired. o

PROPOSITION 3.19. Let o € Ap. Then A(a) < inf{Pp(q) — (o, q): ¢ € R9}.
Proof. Let a € Ap and w € Q. Let ¢ € R, By the definition of Pp((g, ®))(w,n)
(see §2.3), we have for any n € N and € > 0,

Pe({q,®))(w,n) = fulosn,e)exp(n({o, q) —€lq])),

where f,(a;n,€) is defined as in (3.7). It follows that

lim sup 1 log Pe((q, ®))(w,n) > Ay (a) + (a, q).

n—oo M

Hence by Proposition 3.8 and (2.2), we have Pp(q) = Pp({g, ®)) > A(a) + (e, ¢). O
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Proof of Theorem 3.16. It follows from Propositions 3.17, 3.18 and 3.19. O

Proof of Theorem 1.3. Part (i) follows just from Proposition 3.1, and part (ii)
follows from Proposition 3.9 and Theorem 3.16. O

4.  The Multifractal analysis for disintegrations of Gibbs measures

Throughout this section, we let (3,0) be the full shift space over the alphabet
{1,...,m}, and let (X,T) be the full shift space over another alphabet, say,
{1,...,l}. Write ¥, = {1,...,m}" and X,, = {1,...,I}" for n € N. Let ¢ be
a real Holder continuous function on X x ¥ and let 4 = pg denote the Gibbs
measure associated with ¢, i.e., u is the unique T X o-ergodic measure such that
one can find constants ¢; > 0, co > 0 and P € R such that

pIn () X Jn(y)) .
= exp(—Pr+ Spd(wy) ~

where I,(z) = {u = (u)2y € X: u; = x;fori = 1,...,n}, Ju(y) = {# =
(zi)21 € Bt z; =y fori = 1,...,n}, and S,¢(z,y) = Z?gol ¢(T'z,o'y) (see
[13] for details). The constant P involved in (4.1) is just equal to the classical
topological pressure P(T x o, ¢) of ¢ with respect to T' x o, which is defined by

VeeX, ye¥ andneN, (4.1)

1
P(T x 0,¢) = limsup — log Z Z sup  exp(Sno(z,v)), (4.2)
n—oo M X Jew, TEULYEL]
where [I[]={v e X: uy...up, =I}and [J]={veX: v;...v,=J}for I € X,
and J € X,,.

Let 7 : X x¥ — X be the projection given by (z,) — x and denote v = por1.

In this section, we analyze the multifractal structure of the disintegration {u,} of
p with respect to (X, T,v). Since p, is supported on {z} x ¥ for each z € X, we
shall sometimes write p.(B) for p,({z} x B), whenever B C X is Borel measurable.

Denote C ={[I| x [J]: I € X,,,J € Eg,n, k € N}.

LEMMA 4.1. There exists a Borel measurable set H C X with v(H) = 1 such that
for each point x € H,

! x
(1) pe(A) =lim, W for any A e€C;

(it) limy, o0 Llogv(1,(2)) = —h,(T), where h,(T) denotes the measure-theoretic
entropy of v with respect to T .

Proof. Part (ii) just follows from Shannon-McMillan-Breiman Theorem (cf. [56, p.
93]), so we only need to prove (i). Since C is countable, it suffices to prove that
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for every A € C, we have p,(A4) = lim,_ MT{;—W for v-a.e. x € X. To
see this, fix A € C and define f = 4. Define g(z) — pa(A) = [ f dup, for z € X.
Then g is B(X)-measurable and g(z) = E(f|n'B(X))(z,y) for p-a.e. (z,y) (see
§2.2 and Proposition 2.2). Here B(X) denotes the Borel o-algebra on X. Hence for
any B C B(X),

M(Aﬂw_l(B)):/l(B)fdM:/I(B) E(flx'B(X)) duz/Bgdv.

In particular, taking B = I,,(z) (z € X,n € N) we obtain

WANT (L) 1 )
V@) @) /W) g dv.

Taking the limit on n and applying the differentiation theory of measures (which
is valid on X) (see, e.g., [44, Theorem 2.12]), we have

i AAN T (0 (2))
e UI@)

=g(z) = pa(A)

for v-a.e. z € X, as desired. O

For any two families of positive numbers {a;};cz, {b;i}icz, we write, for brevity,
a; ~ b; to mean the existence of a constant C' > 0 such that C~la; < b; < Ca, for
each i € 7.

LEMMA 4.2. Let H be given as in Lemma 4.1. Then for all x € H,

(i) 1 (Jn () ~ EIRE2RO) ~ oxp(S,6(x,y) — nP(T X 0,0)) ;i for any
y € X (the involved constants in = are independent of n,x and y);

(ii) For B € R,
{y ex: lim 108He(n(y)) :ﬁ}
n—oo log(m=n)
= {y €Y nllj{.lo %an’)(x,y) = —flogm+ P(T X 0,¢) — hl,(T)} .

(iii) For each ¢ € R, > ;5 pa([J])? =~ exp(nP(T x o0,q¢) — ngP(T x
7, 0) el

S o) where v = 1@ o 71 and p(? denotes the Gibbs measure
associated with q¢ (the constant involved in = is independent of n and x).

Proof. We remark that some variances of (i) were obtained in [11, 18, 35] under
some more general settings. Here we provide a simple and self-contained proof. Let
= ()2, € X and y = (y;)2; € E. Let n,k € N. According to (4.1), we have

pllzr o Togr] X W1 Ynti))

(4.3)
%M([xl . .Tn] X [yl s yn]) ’ M([xn-i-l .- -xn-‘rk] X [yn-i-l <o yn+k])7
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here the involved constant in = is independent of x,y,n and k. By (4.3), we have

v([xy .. . Tpik)) = Z w([z1 .o k] X [21 - Zngk])

21 2ntk €Stk

~ Y plerwa] X[ z) (4.4)

21 Znt Kk €EXntk
. M([$n+1 N $n+k] X [ZTL+1 N Zn+k])
~v(ley .. xn])  v([Tner - Togk))-
Now we turn to the proof of (i). Assume z € H. By Lemma 4.1, we have
Ik (2) X In(y))
Ho(In(y)) = B =="705) (4.5)

However, by (4.3) and (4.4) we have

ok (@) X To@) = D> pllwr - Tagk] X [y yn21 - 2])

21...25 €2

~ (e xn] X Y1 yn)) Z w([Tpg1 - Tppr] X (210 28])

21...2kEX L
(e xn] X [y ynl])  v([Tng1 - Togk])

~ [z xn] X [yr-yn]) - v([Tn - zngk]) /v ([ 2n)),

from which we deduce that

Lotk () X Jn(y)) ~ p(In(z) X Jn(y))
V(Intk()) v(In(z)

This together with (4.5) and (4.1) yields (i). The statement (ii) just follows from
(i) and the fact that lim, . logv(I,(x))/n = —h,(T). To see (iii), by (i) we have

> (]
JeX,

v(I,(z))™? Z sup exp (¢Sné(x,y) — ngP(T x 0,¢)) (4.6)
Jes, el

v(In(z))" exp(nP(T x 7,q¢) = ngP(T x 0,9))
: Z sup exp (¢Sp¢(z,y) — nP(T X 0,q¢))

Q

Q

Jex,, yeU]
~ v(In(2) T exp(nP(T x 0,q¢) — ngP(T x 0,¢)) > p'?(I,(x) x [J])
Jex,
~ v(I,(2)) Texp(nP(T x 0,q¢) — ngP(T x o,$))'D (I, (z)), (4.7)
as desired. O

LEMMA 4.3. There is a real-valued concave function 7 on R such that for v-a.e.
reX,
7.(q) = 7(q), VqeR.
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Proof. A standard argument shows that 7,.(q) is concave about ¢ for each = € X.
Let H be given as in Lemma 4.1. By (4.6), 7.(¢q) € Rif ¢ € R and x € H (for
which lim,, .o logv(I,(z))/n = —h,(T)). Hence for each « € H, the function 7, is
concave and continuous on R.

Using an argument similar to the proof of (4.4), we can show that for each g € R,
the measure v(9) has the same quasi-Bernoulli property. Hence by Kingman’s sub-
additive ergodic theorem,

1 1
lim —log\D(I,(z)) = lim [ =logv'D(I,,(&)) dv(Z), for v-a.e. z € X.
n—oo n n—oo n
(4.8)

With this, Lemma 4.1(ii) and Lemma 4.2(iii), we conclude that there is a function
7 : R — R such that for each ¢, 7.(q) = 7(q) for v-a.e. x € X.

Take a countable set @ dense in R. Then there exists a v-null set A C X such
that

m(q) =7(¢)  VaeeHN(X\A), ¢eQ. (4.9)
Since for each z € H the function 7,(-) is concave and continuous on R, it is
uniformly continuous on each relatively compact subset of Q. So is 7, by (4.9).

Therefore 7 :  — R has a unique continuous extension 7 : R — R. By (4.9) again,
we have 7,(q) = 7(q) for any z € H N (X\A) and ¢ € R. Hence 7 = 7. m

PROPOSITION 4.4. Let T be given as in the above lemma. For any q € R, we have

q) = _loglm sup {q <hV(T) ~P(T % 0,0) + /¢> dﬁ) +h(T x o) — hl,(T)} ,

where the supremum is taken over the set of T X o-invariant measures [ with

pom l=uv.

Proof. By (4.7), (4.8) and Lemma 4.3, we have

) = = e (4(7) = 4P(T X 0.0) + P(T X 0,00) + Jim ~1og (0, (0) )
(4.10

)

for v-a.e. x € X. However,

V(I () = Z p (I, (2)x[J]) = exp(—nP(Txa, qp))- Z sup exp(gSn¢(z,y)).

Jes, Jex,, VELJ]
It follows that

1 1
lim sup — log 9 (I,,(x)) = — P(T x o,q$) + limsup — log < Z sup exp(qS, ¢(x, y)))

n
n—o0 n— 00 Jex, yeJ

=:— P(T X 0,q¢) + limsuplog P, (q¢)(x, n).

n—oo
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Note that limsup,,_,. log P,(¢¢)(z,n) = P,(q¢) for v-a.e. x (see (2.2)), and
hu(T x o) — hy,(T) = h(p|v) by the Abramov-Rohlin formula. This together with
(4.10) yields

1

m(q) = “logm (qghy(T) — qP(T x 0,¢) + P,(q9)) - (4.11)

Combining it with Proposition 2.3, we obtain the desired formula. O

Combining Proposition 4.4 with Proposition 3.15, we obtain the following result.

COROLLARY 4.5. Write Bmin = limg—o0 7(¢)/q and Bmax = limg—,_ oo 7(q)/q. Let
D := M, (X xX) be the space of all T X o-invariant measures 11 on X X X satisfying

pon ! =v, endowed with the weak* topology. Then

(i) Bmin = @ (P(T x 0,¢) — hy(T) — maxzep [ ¢ dix) and
Bmax = @ (P(T x ,¢) — h,(T) — mingep f¢ dﬁ) .

(“) For any ﬂ € [ﬁmina ﬂmax];

inf {0~ 7(0)} =

q€R ogm

sup {hu(T x o) — h,(T)},

where the supremum is taken over the set of p € D satisfying [ ¢ dp =
P(T x 0,¢) — h,(T) — Blogm.

Proof. Tt is direct to derive (i) from Proposition 4.4, using the boundedness of
hiu(T x o) — hy,(T). To see (ii), let B € [Bmin, Pmax) and denote a = P(T x 0, $) —
h,(T) — Blogm. Then by (i), we have o € { [ ¢ dii: € D}. Moreover by (4.11),

we have

(logm) inf{fg — 7(q)} = inf{F, (g¢) — ag}-
However by Theorem 3.16,
qig{&{Py(q@ —aq} =sup{h(p|v): g€ D and /¢ din = a}.

This completes the proof of (ii). a

Proof of Theorem 1.1. Assertion (i) follows from Lemma 4.3 and (4.11). In the
following we prove assertion (ii).

By Lemma 4.2(ii), there exists a Borel set H C X with v(X) = 1 such that
E,, (8) # 0 <= E,(—Blogm+ P(T x 0,¢) —h,(T)) # 0, Vxe H geR
Let I' C X be given as in Theorem 1.2. Then

E,. (8) #0 <= —plogm+ P(T x 0,¢) — h,(T) € Ap, Veze HNT, B €R,
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where Ap = {[¢dfi: i€ D} and D = M, (X x ¥). However by Corollary 4.5(i),
we have —flogm+ P(T x 0,¢) —h,(T) € Ap if and only if 3 € [Bmin, Omax)- Hence
we obtain the result

Eﬂz(ﬁ)#(z):)ﬁe[ﬁminaﬁmax] VI’GHQF,BER.

By Lemma 4.2(ii), Theorem 1.2 and Corollary 4.5(ii), we have for x € HNT,
ﬁ c [ﬁminaﬂmax]a

dimyg E,,, (8) = dimy E,(—Flogm+ P(T x 0,¢) — h,(T)) = ggé{ﬁq —7(q)}.

This finishes the proof of Theorem 1.1. g

5.  Geometric realizations and some remarks

In Theorem 1.1, when p = py is a product measure on X x ¥ (correspondingly,
¢(x,y) only depends on the first coordinates of (z,y)), the disintegration {u,} has
a simple form and the corresponding function 7 can be determined explicitly. To
be more precisely, let p = (p;j)i1<i<i,1<j<m be a probability vector and let u = pY
be the product measure on X x 3. Denote by a = (a;)1<i<i, where a; = Z;ﬂ:l Dij-
Then v = pom~1 is just the product measure a¥ on X. By Lemma 4.1(i), for v-a.e.
r=(2;)2, € X,

n—o0 v(I(x

. I, (x) x J il
/J’I(Jk:(y)) = lim M( ( )X );(y)) :gpIiyi/aIi

for all y = (y;)2, € £ and k € N. By the definition of 7,(¢) and using Birkhoff
Ergodic theorem, we obtain the following explicit formula

l m
1
T(q) = Z a; log Zpgj — qa; log a; for v-a.e. x € X.
j=1

7logm

i=1

We remark that the multifractal formalism also holds for the disintegrations of
Gibbs measures on a class of self-affine sets in the plane. Fix numbers 0 < a;;,b; <1
and 0 < ¢,d; < 1, for j = 1,...,m; and ¢ = 1,...,1 such that the rectangles
Qij = [di, d; + b;] x [cij, ¢ij + ai;] are pairwise disjoint subsets of [0, 1]%. Set

D={(i,j): 1<j<myand1<i<I}.

Denote Tj; < v > = ( bi 0 ) ( v ) + ( di >, so that 7T;; maps the unique
Y 0 aij Yy Cij

square onto );;. These maps are contractions, so by Hutchinson [33] there exists
a unique compact set K satisfying

K= |J T;K).
(i,5)€D
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The Hausdorff dimension of K was determined by Lalley and Gatzouras [41] under
an additional assumption a;; < b; (see [3] for an extension). Define R : DN — K
by

d; (b, 0 by, 0 d;
R((ik: jr) iz :< " >+ < . )( " )( et >
(( )k 1) Cija kz::l 0 Qiy gy 0 Qi i, Ciry1ins1

The map R is clearly one-to-one. Let ji, be the Gibbs measure on DY corresponding
to a Holder continuous function ¢. Set i = ps o R™!. Then f is a planar
measure supported on K. Denote 7 = ji o 7!, where 7 is the projection defined
by m(x,y) = x. Let {{iz}2zer = {fixr—1(2)}zer be the disintegration of zi. Then
1t satisfies the multifractal formalism for v-a.e. = € R. Whenever n; and
a;; are independent of ¢, j, this result follows directly from Theorem 1.1. In
the general case, we may prove the result by taking a suitable modification in
our proof of Theorem 1.1. We just omit the details for brevity. For example,
let p = (pij)i<i<ii<j<m; be a probability vector and let a = (a;)1<i<;, where
a; = Z;":ll pij- Let g = p" be the product measure on DN. Then fi = pgo R}
is a self-affine measure on K corresponding to p. In this case, 7,.(q) satisfies

1 m;
Z(ai log Zp?jai_j”@ —qa;loga;) =0 for v-a.e. x € X.

i=1 j=1

We can say something about the structure of the irregular points. Take Theorem
1.3 for example. For a, § € Ap, define

1 1
Ey,(a,pB) = {liminf ﬁSnCI)(w,y) = q, limsup Ean)(w, y) = ﬁ} )

n—00 n— oo

We can show for P a.e. w,

dimg By (o, f) = min{dimE,,(«),dimE,(8)}, ¥V a, B € Ap. (5.1)
We give a sketch of the idea for the proof. For a € Ap, define
1
E,(a) = {y : liminf ﬁSnCI)(w,y) = a} , (5.2)
— 1
Eu(a) = {y ¢ limsup — S, ®(w,y) = a} ) (5.3)
n—oo N
~ 1
E,(a) = {y 2 dn; Toost. lim —S,, ®(w,y) = a} . (5.4)
11— 00 n/L

Let I be as in Theorem 1.3. By standard Box-counting arguments, using the
cylinder covers from F,,(c;n,€), we obtain

dimy By (a) < Ay(a).
Hence we have for w € T,

dimpE, (o) = dimp Ey (o) = dimpg Ey () = dimg By (a),
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from which the “ <7 direction of (5.1) follows immediately. For the other direction,
we simply let agp = a, aggr1 = 0 for k € N in the proof of Proposition 3.9. Follow
the construction there, we can obtain a Moran set T C E,,(a, §) which satisfies

dimg (1) > min {dimg Fy, («), dimg E,(5)}.

Thus (5.1) holds. Note that from (5.1), we can deduce that for P a.e. w, the set of
divergence points

1 1
D, (®) = {y : liminf =S, ®(w,y) # limsup Sné(w,y)}
n—oo n n—oo 1
is either empty or has the same Hausdorff dimension as ¥ (cf. [26, 9] for the proof
in the deterministic case).

We point out that in Theorems 1.2-1.3, ® may be relaxed to be any uniformly
bounded equi-continuous Banach-valued functions. We refer the reader to [23] for
the corresponding statement and discussions in this aspect in the deterministic case.

Furthermore, in Theorems 1.1-1.3, (X,0) can be relaxed to be a subshift
satisfying the specification condition (see [34] for the definition). More generally,
our method is valid to study the topological entropy (in the sense of Bowen [12])
of random level sets corresponding to compact dynamical systems satisfying the
specification condition and to set up a random version of the result in [55]. In
some spirit, our work on the disintegration of measures is related to the multifractal
analysis of random statistical self-similar measures (see, e.g., [1, 4, 28, 46]) and
multiplicative martingale measures (see, e.g., [5]). Our approach in this paper may
provide some new insights for the possible improvement of the results for those
topics.
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