
Ergod. Th. & Dynam. Sys. (2008), XX, 1–36
Printed in the United Kingdom c© 2008 Cambridge University Press

Multifractal analysis for disintegrations of

Gibbs measures and conditional Birkhoff

averages

DE-JUN FENG† and LIN SHU‡

† Department of Mathematics, The Chinese University of Hong Kong, Shatin,
Hong Kong and

Department of Mathematical Sciences, Tsinghua University, Beijing 100084,
People’s Republic of China

(e-mail: djfeng@math.cuhk.edu.hk)
‡ School of Mathematical Sciences, Peking University, Beijing 100871,

People’s Republic of China
(e-mail: lshu@math.pku.edu.cn)

(Received 3 January 2008)

Abstract. The paper is devoted to the study of the multifractal structure of
disintegrations of Gibbs measures and conditional (random) Birkhoff averages. Our
approach is based on the relativized thermodynamic formalism, convex analysis and
especially, the delicate constructions of Moran-like subsets of level sets.

1. Introduction

The present paper is devoted to the study of the multifractal structure of
disintegrations of Gibbs measures and the conditional level sets of Birkhoff averages.

Before formulating our results, we first give some notation and backgrounds
about the multifractal analysis. Let η be a compactly supported Borel probability
measure on Rd (or on a symbolic space). For x ∈ Rd, the local dimension of η at x
is defined by

d(η, x) = lim
r→0+

log η(B(x, r))
log r
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2 D.-J. Feng and L. Shu

provided the limit exists, where B(x, r) stands for the closed ball in Rd of radius r
centered at x. For α ≥ 0, define

Eη(α) = {x ∈ Rd : d(η, x) = α}.

The sets Eη(α) are called the level sets of η, and dimH Eη(α) are the dimension
spectra of η (where dimH denotes the Hausdorff dimension). For q ∈ R, the Lq-
spectrum of η is defined as

τ(η, q) = lim inf
r→0+

log (sup
∑
i η(B(xi, r))q)
log r

,

where the supremum is taken over all the disjoint families {B(xi, r)}i of closed balls
with xi in the support of η. It is easy to check that τ(η, q) is a concave function of
q over R.

For a given measure, it is usually very hard or impossible to calculate the
corresponding dimension spectra directly. The celebrated heuristic principle known
as the multifractal formalism, which was first introduced in [29, 30, 31], states that
the dimension spectra dimH Eη(α) and the Lq-spectra τ(η, q) form a Legendre-
transform pair, i.e.,

dimH Eη(α) = τ∗(α) := inf{αq − τ(η, q) : q ∈ R}.

Although false in general, the multifractal formalism has been verified for many
interesting measures (see, e.g., [4, 14, 19, 25, 47, 50, 52] and references therein).
It still remains open to which extent the multifractal formalism could hold.

For a given measure on Rd, it is interesting to study the possible finer version
of the multifractal formalism. To be more precise, suppose µ is a Borel probability
measure on Rd (or on a symbolic space) and let ξ be a Borel measurable partition
of Rd in the sense of Rohlin [54]. Let {µC}C∈ξ be the corresponding disintegration
of µ with respect to ξ (see, e.g., [54] or [49, Chapter IV] for the theory about
measurable partitions and disintegrations). A problem arises naturally: if µ is
a measure having some good dynamical properties and satisfying the multifractal
formalism, and ξ is a natural Borel partition, would µC satisfy the multifractal
formalism for typical C in some good situations?

For the above problem, a simple and nontrivial model is the disintegration of
Gibbs measures on symbolic product spaces. Let (X,T ) and (Σ, σ) be two one-
sided full shift spaces, over the alphabets {1, . . . , l} and {1, . . . ,m} respectively.
Let (X × Σ, T × σ) be the product of (X,T ) and (Σ, σ). Endow X × Σ with the
metric

d((x, y), (x̃, ỹ)) = m− inf{i∈N: (xi,yi) 6=(x̃i,ỹi)},

where x = (xi)∞i=1, x̃ = (x̃i)∞i=1 ∈ X and y = (yi)∞i=1, ỹ = (ỹi)∞i=1 ∈ Σ. Let φ be a
real-valued Hölder continuous function on X ×Σ and let µ = µφ denote the Gibbs
measure associated with φ (see [13]). Consider the partition ξ = {π−1(x) : x ∈ X}
of X×Σ, where π is the canonical projection from X×Σ to X given by (x, y) 7→ x.
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Disintegrations of Gibbs measures and conditional Birkhoff averages 3

For brevity, we write {µx} for the disintegration {µπ−1(x)}x∈X . Let ν = µ ◦ π−1

be the projection of µ under π. The family {µx} satisfies the following properties:
(i) for each x ∈ X, µx is a Borel probability measure supported on π−1(x); (ii) for
each Borel set A ⊂ X × Σ, µx(A) is Borel measurable and µ(A) =

∫
µx(A)dν(x)

(see [54]).

To study the multifractal property of {µx}, we write τx(q) = τ(µx, q) for x ∈ X
and q ∈ R. Our first result is the following theorem.

Theorem 1.1. There is a Borel set Γ ⊂ X with ν(Γ) = 1 such that for each x ∈ Γ,

(i) τx(q) = τ(q) for any q ∈ R, here τ is a real-valued concave function satisfying

τ(q) = − 1
logm

(qhν(T )− qP (T × σ, φ) + Pν(qφ)) ,

where hν(T ) denotes the measure-theoretic entropy of ν, P (T × σ, φ) the
topological pressure of φ (see (4.2)), and Pν(qφ) is the relativized topological
pressure of qφ (see §2).

(ii) Eµx(β) 6= ∅ if and only if β ∈ [βmin, βmax], where βmin = limq→∞ τ(q)/q and
βmax = limq→−∞ τ(q)/q. Furthermore for all β ∈ [βmin, βmax], we have

dimH Eµx(β) = inf
q∈R
{βq − τ(q)} (1.1)

=
1

logm
sup {hµ̃(T × σ)− hν(T )} ,

where the supremum is taken over the set of T × σ-invariant measures µ̃

satisfying µ̃ ◦ π−1 = ν and
∫
φ dµ̃ = P (T × σ, φ)− hν(T )− β logm.

The above theorem shows that for ν-a.e. x ∈ X, the measure µx satisfies the
multifractal formalism. Our proof of Theorem 1.1 is based on the study of the
conditional Birkhoff average of φ. For x ∈ X and α ∈ R, we define

Ex(α) =

{
y ∈ Σ : lim

n→∞

1
n

n−1∑
i=0

φ(T ix, σiy) = α

}
.

Clearly, Ex(α) is the x-section of the level set

E(α) =

{
(x′, y) ∈ X × Σ : lim

n→∞

1
n

n−1∑
i=0

φ(T ix′, σiy) = α

}
of the classical Birkhoff average of φ. There is a simple relation between Ex(α) and
Eµx(β) (see Lemma 4.2(ii)). Hence to study the dimension spectra dimHEµx(α) of
µx, it suffices to study dimH Ex(α). Set

∆ν :=
{
α ∈ R : α =

∫
φ dµ̃ for some µ̃ ∈Mν(X × Σ)

}
,

whereMν(X×Σ) denotes the set of all T ×σ-invariant Borel probability measures
µ̃ on X×Σ such that µ̃◦π−1 = ν. We have the following result about the structure
and dimension of Ex(α),.
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4 D.-J. Feng and L. Shu

Theorem 1.2. There exists a Borel set Γ ⊆ X with ν(Γ) = 1 such that for any
x ∈ Γ,

(i) {α ∈ R : Ex(α) 6= ∅} = ∆ν ;

(ii) for any α ∈ ∆ν ,

dimH Ex(α) =
1

logm
inf
q∈R
{Pν(qφ)− αq} =

1
logm

sup
µ̃
{hµ̃(T × σ)− hν(T )} ,

where the supremum is taken over the set of all T × σ-invariant measures µ̃
such that µ̃ ◦ π−1 = ν and

∫
φ dµ̃ = α.

Theorem 1.1 is deduced from Theorem 1.2 and a variational principle between
τ(q) and the relative entropies (see Proposition 4.4 and Corollary 4.5). It has some
natural geometric realizations (see §5).

The main purpose of this paper is to generalize Theorem 1.2 to random and high
dimensional cases and to remove the regularity assumption of φ. For this purpose,
let (Ω,F ,P) be a Lebesgue space with an ergodic transformation ϑ on Ω. Let Φ be
a bounded F ⊗B(Σ)-measurable Rd-valued function on Ω×Σ, where B(Σ) denotes
the Borel σ-algebra on Σ. Assume that Φ is equi-continuous in the sense that for
any ε > 0, there exists δ > 0 such that for P-a.e. ω ∈ Ω,

|Φ(ω, y)− Φ(ω, y′)| < ε if d(y, y′) < δ.

LetMP(Ω×Σ) denote the collection of all probability measures µ̃ on the measurable
space (Ω × Σ,F ⊗ B(Σ)) such that µ̃ is ϑ × σ-invariant and µ̃ ◦ π−1 = P, where π
denotes the projection (ω, y) 7→ ω from Ω× Σ to Ω. Now we define

∆P =
{∫

Φ dµ̃ : µ̃ ∈MP(Ω× Σ)
}
.

For ω ∈ Ω and α ∈ Rd, we denote

Eω(α) =
{
y ∈ Σ : lim

n→∞

1
n
SnΦ(ω, y) = α

}
,

where SnΦ(ω, y) :=
∑n−1
i=0 Φ(ϑiω, σiy). Under the above setting, we have the

following general result.

Theorem 1.3. There exists Γ ∈ F with P(Γ) = 1 such that for any ω ∈ Γ,

(i) {α ∈ Rd : Eω(α) 6= ∅} = ∆P;

(ii) for any α ∈ ∆P,

dimH Eω(α) =
1

logm
inf
q∈Rd
{PP(q)− 〈α, q〉}

=
1

logm
sup {h(µ̃|P) : µ̃ ∈ G(α)} ,
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Disintegrations of Gibbs measures and conditional Birkhoff averages 5

where PP(q) := PP(〈q,Φ〉) denotes the relativized topological pressure of
ψq = 〈q,Φ〉, here 〈 · 〉 is the inner product on Rd and ψq(ω, y) = 〈q,Φ(ω, y)〉,
h(µ̃|P) denotes the relativized entropy of µ̃ and G(α) is defined by

G(α) :=
{
µ̃ ∈MP(Ω× Σ) :

∫
Φ dµ̃ = α

}
.

The reader may see §2 for the definitions of relativized topological pressure and
relativized entropy. We remark that in part (ii) of Theorem 1.1-1.3, the supremum
is always attained at some µ̃. This fact is due to the upper semi-continuity of
hµ̃(T × σ) and h(µ̃|P) in our settings. However the infimum may be not attained
for boundary points α.

It is worth pointing out that rather than random (conditional) Birkhoff averages,
the multifractal analysis of classical Birkhoff averages has been studied intensively
in a recent decade (see, e.g., [8, 22, 36, 45, 51, 55] and also [6, 9, 15, 26, 37, 48]).
The multi-dimensional case was first studied in [21] for Hölder continuous potentials
and was further developed for arbitrary continuous functions in [22] for symbolic
spaces, in [26] for conformal repellers, and in [55] for dynamical systems satisfying
the specification condition. For instance, for an arbitrary Rd-valued continuous
function Φ on symbolic product spaces, we have

dimHE(α) =
1

logm
sup
µ̃
hµ̃(T × σ), (1.2)

where the supremum is taken over the collection of T×σ-invariant Borel probability
measures µ̃ with

∫
Φdµ̃ = α (see e.g., [22, Theorem A]). Rather than considering

the Birkhoff average Snφ/n, Barreira, Saussol and Schmeling [7, 8] studied
the multifractal structure of the more general average Snφ/Snψ and its multi-
dimensional version.

Theorem 1.3 provides a finer and random version of the variational principle
(1.2). One of the main difficulties for studying Eω(α) rather than E(α) comes from
the fact that Eω(α) is much sensitive to ω and is not σ-invariant.

The reduction of Theorem 1.3(ii) to the deterministic case strengthens (1.2). Let
∆ := {

∫
Φdµ : µ− T × σ invariant}. When d = 1, it is known [45] that for α ∈ ∆,

inf
q∈Rd
{P (〈q,Φ〉)− 〈α, q〉} = sup

µ̃
hµ̃(T × σ),

in (1.2), where P (·) is the usual pressure function. When d ≥ 2, the equality is
only known (cf. [21]) to hold for those points α in the range of gradients of P (·).
By using a technique from convex analysis, we are able to set up the variational
principle for all α including the boundary points.

We point out that Theorem 1.1 strengthens a previous result of Kifer ([39,
Theorem 5.1]) who proved, under a more general setting of random Gibbs measure,
that τ(q) is analytic over R; and for any given β = τ ′(q), (1.1) holds for a.e. x.
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6 D.-J. Feng and L. Shu

Kifer took a direct approach by the thermodynamic formalism for random shifts,
which is not enough to deal with the boundary points βmin and βmax whenever they
are not included in the range of τ ′. We remark that an analogue of Kifer’s result
was also obtained by Fan [20] (see also Fan and Shieh [24]) in the setting of infinite
products through a large deviation approach, and some further study was given by
Barral, Coppens and Mandelbrot in [5] to the multiplicative martingale measures,
for which the potential can have a dense countable set of discontinuities.

We remark that under the setting of Theorem 1.3, the relativized topological
pressure function PP(q) may be not differentiable. For those α ∈ ∆P not
corresponding to the gradients of PP, one can not prove the lower bound
of dimH Eω(α) directly through the classical approach using the relativized
thermodynamic formalism or the large deviation principle. Hence some new ideas
are needed to overcome this difficulty. In the following we sketch our main steps
and key ideas for the proof of Theorem 1.3.

The proof of part (i) of Theorem 1.3 is based on the relativized thermodynamic
formalism and the construction of Moran-like subsets of level sets of random
Birkhoff averages. For the construction of Moran-like subsets, we extend an idea
used in [21, 22]. Nevertheless our construction depends on the recurrence and
ergodic properties of the random transformation and is much more subtle. To
prove (ii), we define

fω(α;n, ε) = #{y1 . . . yn : |SnΦ(ω, y)− nα| < nε for some y = (yi)∞i=1 ∈ Σ}

for ω ∈ Ω, α ∈ ∆P, n ∈ N and ε > 0, where #A denotes the cardinality of A. We
first prove that there is an upper semi-continuous and concave function Λ on ∆P
such that for P-a.e. ω ∈ Ω,

lim
ε→0

lim inf
n→∞

1
n

log fω(α;n, ε) = lim
ε→0

lim sup
n→∞

1
n

log fω(α;n, ε) = Λ(α), ∀ α ∈ ∆P.

A delicate Moran construction (depending on ω) is also used in the proof of the
concavity of Λ. Then we show that for P-a.e. ω, dimH Ex(α) = 1

logmΛ(α) for all
α ∈ ∆P. In this step, the proof of the lower bound is crucial and the main idea
is to construct Moran-like subsets of Eω(α) with the Hausdorff dimension equal to

1
logmΛ(α). Our next step is to prove a duality principle between PP(q) and h(µ̃|P)
(i.e. the second equality in (ii)) by convex analysis. In the last step, we show that

sup {h(µ̃|P) : µ̃ ∈ G(α)} ≤ Λ(α) ≤ 1
logm

inf
q∈Rd
{PP(q)− 〈α, q〉}.

The second inequality just follows from a box principle, whilst the first inequality
is derived from a relativized version of Shannon-Mcmillian-Brieman theorem [10],
using the concavity and upper semi-continuity of Λ.

The paper is arranged in the following way: in §2, we give some preliminaries
about the relativized thermodynamic formalism for random shifts. In §3, we prove
Theorem 1.3. In §4, we prove Theorem 1.1. In §5, we give some geometric
realizations of theorem 1.2 and some remarks.
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Disintegrations of Gibbs measures and conditional Birkhoff averages 7

2. Preliminaries

In this section, we outline the classical relativized thermodynamical formalism for
random shift which is needed in the proofs of our main theorems. The reader is
referred to [10, 11, 38, 40] for more details.

Let (Ω,F ,P) be a probability space with an ergodic P-preserving transformation
ϑ on it. Furthermore, we assume that (Ω,F ,P) is a Lebesgue space, i.e., it is
measurably isomorphic to an interval (maybe empty) with the completion of the
Borel σ-algebra and the Lebesgue measure on it together, maybe, with countably
many atoms (cf. [54]). Fix an integer m ≥ 2. Let Σ = {1, 2, . . . ,m}N be the
product space endowed with the metric

d(x, y) = m−min{i: xi 6=yi} for x = (xi)∞i=1, y = (yi)∞i=1 ∈ Σ. (2.1)

It is known (see [13]) that Σ is compact. Consider the shift map σ : (xi)∞i=1 7→
(xi+1)∞i=1 on Σ. The dynamical system (Σ, σ) is called the one-sided full shift on m

symbols. Let B denote the Borel σ-algebra on Σ. Our target system is the product
space (Ω × Σ,F ⊗ B) with the measurable transformation Θ := ϑ × σ, which can
be viewed as a special random dynamical system (RDS) over Σ.

2.1. Invariant measures for RDS Let π : Ω×Σ→ Ω be the canonical projection
(ω, x) 7→ ω. A measure µ on the measurable space (Ω × Σ,F ⊗ B) is said to have
marginal P on Ω if µ ◦ π−1 = P. Denote by PP(Ω × Σ) the space of probability
measures on Ω × Σ having marginal P on Ω. Let MP(Ω × Σ) denote the set of
Θ-invariant elements of PP(Ω × Σ). It is clear that PP(Ω × Σ) and MP(Ω × Σ)
are convex. Let EP(Ω× Σ) denote the set of ergodic measures in MP(Ω× Σ) with
respect to Θ.

Denote by L1(Ω, C(Σ)) the space of measurable in ω and continuous in x

functions φ(ω, x) on Ω× Σ such that

‖φ‖ =
∫

sup
x∈Σ
|φ(ω, x)|dP(ω) <∞.

For µ, µn ∈ PP(Ω × Σ), n = 1, 2, . . ., we say that µn converge to µ if
∫
φ dµn →∫

φ dµ as n → ∞ for any φ ∈ L1(Ω, C(Σ)). This convergence introduces a weak*
topology in PP(Ω× Σ).

Proposition 2.1. (i) PP(Ω×Σ) is compact in this weak* topology, andMP(Ω×
Σ) is a non-empty compact convex subset of PP(Ω× Σ);

(ii) EP(Ω× Σ) coincides with the set of extreme points of MP(Ω× Σ);

(iii) For any µ ∈MP(Ω×Σ), there is a unique probability measure Qµ on EP(Ω×Σ)
such that∫

Ω×Σ

φ dµ =
∫
EP(Ω×Σ)

∫
Ω×Σ

φ dη dQµ(η), ∀ φ ∈ L1(Ω, C(Σ)).
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8 D.-J. Feng and L. Shu

Proof. See [40, Lemma 2.1(i)] for a proof of (i), and see [17, Lemma 6.19] for (ii).
Part (iii) follows from (i), (ii) and Choquet’s representation theorem (cf. [16]). 2

2.2. Disintegrations of measures A map µ : Ω × B → [0, 1], (ω,B) 7→ µω(B), is
said to be a random probability measure on Σ if it satisfies (i) for each B ∈ B,
ω 7→ µω(B) is measurable, (ii) for P-almost every ω ∈ Ω, B 7→ µω(B) is a Borel
probability measure. The connection between PP(Ω× Σ) and random measures is
given by the following proposition (see [17, Proposition 3.6] for a proof).

Proposition 2.2. For each µ ∈ PP(Ω×Σ), there exists a random measure ω 7→ µω
such that ∫

Ω×Σ

φ(ω, x) dµ(ω, x) =
∫

Ω

∫
Σ

φ(ω, x) dµω(x) dP(ω)

for every bounded measurable φ : Ω × Σ → R. The random measure ω 7→ µω is
unique P-a.e.

The random measure ω 7→ µω in the above proposition is often named as the
disintegration of µ.

2.3. Relativized topological pressure and relativized entropy Let φ ∈ L1(Ω, C(Σ)).
For ω ∈ Ω and n ∈ N, define

PP(φ)(ω, n) =
∑
A∈ξn

sup
x∈A

exp(Snφ(ω, x)),

where Snφ(ω, x) =
∑n−1
i=0 φ ◦ Θi(ω, x), ξn denotes the partition {[i1 . . . in] :

i1 . . . in ∈ {1, . . . ,m}n} of Σ, and [i1 . . . in] is the n-cylinder {(xi)∞i=1 ∈ Σ: xk =
ik for 1 ≤ k ≤ n}. The relativized topological pressure of φ for the RDS is defined
by

PP(φ) = lim sup
n→∞

1
n

∫
logPP(φ)(ω, n) dP(ω).

Since P is ergodic, we have (see, e.g., [40, Proposition 1.6])

lim
n→∞

1
n

logPP(φ)(ω, n) = PP(φ) P-a.e. (2.2)

Now let Rn denote the partition {Ω × A : A ∈ ξn} of Ω × Σ. For given
µ ∈ MP(Ω × Σ), the conditional entropy of Rn given the σ-algebra π−1(F) is
defined by

Hµ(Rn|π−1(F)) =
∫
Hµw(ξn) dP(ω),

where Hµω (ξn) := −
∑
A∈ξn µω(A) logµω(A) denotes the usual entropy of the

partition ξn and ω 7→ µω is the random measure corresponding to µ as in
Proposition 2.2. The relativized entropy of µ for the RDS is defined by

h(µ|P) = lim
n→∞

1
n
Hµ(Rn|π−1(F)).
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Disintegrations of Gibbs measures and conditional Birkhoff averages 9

The above limit exists by the subadditivity of the conditional entropy. Thus

h(µ|P) = inf
n

1
n
Hµ(Rn|π−1(F)). (2.3)

(cf. [38, Theorem 1.1, p. 40]). Moreover, if µ is ergodic with respect to Θ, then

lim
n→∞

1
n

logµω(ξn(y)) = h(µ|P) for µ-a.e. (ω, y) (2.4)

(cf. [10, Theorem 4.2]), where ξn(y) denotes the member in ξn that contains y.
The Abramov-Rohlin formula states that hµ(Θ) = h(µ|P) + hP(ϑ) (see [2]), where
hµ(Θ) and hP(ϑ) are the ordinary entropies of the corresponding measure preserving
transformations.

The following variational principle, connecting the relativized topological
pressure and the relativized entropy, was proved by Bogenschütz in [10, Theorem
6.1]. It is a generalization of the (deterministic) relativized variational principle of
Ledrappier and Walters [42].

Proposition 2.3. PP(φ) = sup
{
h(µ|P) +

∫
φ dµ : µ ∈MP(Ω× Σ)

}
.

We point out that the relativized entropy map µ → h(µ|P) is affine and upper
semi-continuous onMP(Ω×Σ). (The proof of the affinity is similar to that for the
usual entropy map (cf. [56, Theorem 8.1]), while the upper semi-continuity follows
from (2.3) and Lemma 2.1(iii) in [40]. The reader is referred to [43] for details.)
Hence the supremum in the above variational formula is always attained at some
member of MP(Ω × Σ). Furthermore, as an application of Choquet theorem (cf.
[53] or [56, p. 186]), we have

h(µ|P) =
∫
h(η|P)dQµ(η), (2.5)

where µ =
∫
η dQµ(η) is the ergodic decomposition of µ.

3. The proof of Theorem 1.3

In this section, we provide a full proof of Theorem 1.3. For the convenience of
the reader, we recall some basic notation. Let (Ω,F ,P) be a Lebesgue space with
an ergodic transformation ϑ on Ω. Let (Σ, σ) be the one-sided full shift space
over m symbols. Denote Θ = ϑ × σ. Fix d ∈ N. Denote by C(Σ,Rd) the set of
Rd-valued continuous functions on Σ. Let Φ be a bounded F ⊗ B(Σ)-measurable
function taking values in Rd such that (i) Φ(ω, ·) ∈ C(Σ,Rd) for P-a.e. ω ∈ Ω; (ii)
ω 7→ Φ(ω, ·) is equicontinuous, i.e., for any ε > 0, there exists δ > 0 such that for
P-a.e. ω ∈ Ω,

|Φ(ω, y)− Φ(ω, y′)| < ε whenever d(y, y′) < δ. (3.1)
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10 D.-J. Feng and L. Shu

It is clear that for any q ∈ Rd, 〈q,Φ〉 ∈ L1(Ω, C(Σ)) (see §2.1). Here 〈·, ·〉 is the
inner product on Rd. Now define

∆P =
{∫

Φ dµ : µ ∈MP(Ω× Σ)
}
, (3.2)

where MP(Ω× Σ) is defined as in §2.1. For ω ∈ Ω and α ∈ Rd, denote

Eω(α) =
{
y ∈ Σ : lim

n→∞

1
n
SnΦ(ω, y) = α

}
,

where SnΦ(ω, y) :=
∑n−1
i=0 Φ ◦Θi(ω, y). Write

G(α) :=
{
µ ∈MP(Ω× Σ) :

∫
Φ dµ = α

}
. (3.3)

The proof of Theorem 1.3 is rather long and will be divided into a sequence of
lemmas and propositions in the remainder of this section.

3.1. The set {α ∈ Rd : Eω(α) 6= ∅} In this subsection, we prove the following
proposition.

Proposition 3.1. There exists a measurable set H ⊂ Ω with P(H) = 1 such that
{α ∈ Rd : Eω(α) 6= ∅} = ∆P for all ω ∈ H, where ∆P is defined by (3.2).

We divide the proof into several lemmas.

Lemma 3.2. For P-a.e. ω ∈ Ω we have {α ∈ Rd : Eω(α) 6= ∅} ⊆ ∆P.

Proof. By Proposition 2.3, PP(q) = PP(〈q,Φ〉) is a real convex function of q over
Rd. Hence it is continuous on Rd. According to (2.2), we have for any q ∈ Rd,

lim
n→∞

1
n

logPP(〈q,Φ〉)(ω, n) = PP(q) P-a.e. (3.4)

Let {qi}∞i=1 be a countable sequence dense in Rd and let Γ be the set of points ω in
Ω such that the equality in (3.4) holds for all qi. Clearly P(Γ) = 1. We show below
that {α ∈ Rd : Eω(α) 6= ∅} ⊆ ∆P for ω ∈ Γ.

We first show that for any ω ∈ Γ,

lim
n→∞

1
n

logPP(〈q,Φ〉)(ω, n) = PP(q), ∀ q ∈ Rd.

Fix ω ∈ Γ and q ∈ Rd. There exists a subsequence {qik} converging to q. Observe
that∣∣∣∣ 1n logPP(〈qik ,Φ〉)(ω, n)− 1

n
logPP(〈q,Φ〉)(ω, n)

∣∣∣∣ ≤ |〈qik − q,Φ〉| ≤ |qik − q| · ‖Φ‖∞
Prepared using etds.cls
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for all n, k ∈ N, where ‖Φ‖∞ = sup(ω,y)∈Ω×Σ |Φ(ω, y)|. This implies that

lim
n→∞

1
n

logPP(〈q,Φ〉)(ω, n) = lim
k→∞

PP(qik) = PP(q),

and we are done.

Next, fix ω ∈ Γ. Assume that α ∈ Rd satisfies Eω(α) 6= ∅, we show α ∈ ∆P. By
the assumption on α, there is y ∈ Σ such that

lim
n→∞

1
n
SnΦ(ω, y) = α

and hence

lim
n→∞

1
n
Sn〈q,Φ〉(ω, y) = 〈α, q〉, ∀ q ∈ Rd.

By the definition of PP(〈q,Φ〉)(ω, n), we have lim supn→∞
1
n logPP(〈q,Φ〉)(ω, n) ≥

〈α, q〉, and hence

PP(q) ≥ 〈α, q〉, ∀ q ∈ Rd. (3.5)

Suppose α 6∈ ∆P. Since ∆P is a compact convex subset of Rd, there must exist
e ∈ Rd such that

〈α, e〉 > sup
β∈∆P

〈β, e〉.

That is, there exists a hyperplane separating α and ∆P (cf. [32, Theorem 4.1.1]).
Take q = te (t ∈ R+). Then for sufficiently large t,

〈α, q〉 > sup
β∈∆P

〈β, q〉+ 2 logm. (3.6)

However by Proposition 2.3,

PP(q) ≤ logm+ sup
{∫
〈q,Φ〉 dµ : µ ∈MP(Ω× Σ)

}
= logm+ sup

β∈∆P

〈β, q〉.

This together with (3.6) yields 〈α, q〉 > PP(q) + logm, which contradicts (3.5).
Hence α ∈ ∆P. 2

To prove the other direction of Proposition 3.1, we need a few more lemmas.

Lemma 3.3. Let α ∈ ∆P and µ ∈ G(α) (see (3.3)). For any ε > 0, there exists
k ∈ N, p1, . . . , pk ≥ 0 with

∑k
i=1 pi = 1 and ergodic measures µ1, . . . , µk ∈ EP(Ω×Σ)

such that ∣∣∣∣∫ Φ dµ̃− α
∣∣∣∣ < ε and h(µ̃|P) ≥ h(µ|P)− ε,

where µ̃ =
∑k
i=1 piµi.
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12 D.-J. Feng and L. Shu

Proof. By Proposition 2.1(iii), there is a probability measure Qµ on EP(Ω×Σ) such
that ∫

Φ dµ =
∫
EP(Ω×Σ)

∫
Φ dη dQµ(η).

Recall that η 7→
∫

Φ dη is continuous on EP(Ω × Σ) under the weak* topology,
and EP(Ω × Σ) is compact (see Proposition 2.1(ii)). Hence by the open covering
theorem, there exist k ∈ N and a Borel partition {E1, . . . , Ek} of EP(Ω × Σ) such
that ∣∣∣∣∫ Φ dη −

∫
Φ dη′

∣∣∣∣ < ε, ∀ η, η′ ∈ Ei.

For i = 1, . . . , k, choose µi ∈ Ei such that Qµ(Ei)h(µi|P) ≥
∫
Ei(h(η|P) − ε)dQµ(η),

and put pi = Qµ(Ei). Then by (2.5), µ̃ =
∑k
i=1 piµi satisfies our requirement. 2

Lemma 3.4. There exists A ∈ F with P(A) = 1 such that limn→∞ Vn(A,Φ)/n = 0,
where Vn(A,Φ) is defined by

Vn(A,Φ) = sup {|SnΦ(ω, y)− SnΦ(ω, y′)| : ω ∈ A, y, y′ ∈ Σ with y|n = y′|n}

with y|n := y1 . . . yn.

Proof. It follows directly from the assumption (3.1). 2

Let A be a set such that Lemma 3.4 holds. Since P is ϑ-invariant, we have
P(
⋂
i∈N ϑ

−i(A)) = 1, i.e., the set of points whose forward orbits are contained in
A has full measure. Hence it is of no harm to assume that Lemma 3.4 holds for
A = Ω in the sequel since we are concerning P-a.e. conclusions. We simply write
Vn(Φ) for Vn(Ω,Φ).

For ω ∈ Ω, α ∈ Rd, n ∈ N and ε > 0, denote

Fω(α;n, ε) = {I ∈ Σn : |SnΦ(ω, y)− nα| < nε for some y ∈ [I]}

and
fω(α;n, ε) = #Fω(α;n, ε). (3.7)

The following lemma plays a key role in the proof of Proposition 3.1.

Lemma 3.5. Let α1, α2 ∈ Rd. Assume that P({ω ∈ Ω : Eω(αi) 6= ∅}) = 1 for
i = 1, 2. Then P({ω ∈ Ω : Eω((α1 + α2)/2) 6= ∅}) = 1.

Proof. For i ∈ {1, 2} and k, j ∈ N, denote

Ai,k,j := {ω ∈ Ω : fω(αi;n, 1/k) ≥ 1 for all n ≥ j}.

Let H denote the set of all points ω satisfying

lim
n→∞

1
n

n−1∑
s=0

χAi,k,j (ϑ
ps+qω) = P(Ai,k,j), ∀ i ∈ {1, 2}, k, j, p, q ∈ N. (3.8)
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(Here χA denotes the characteristic function of the set A.) By Birkhoff ergodic
theorem, P(H) = 1. In the following we show that Eω((α1 + α2)/2) 6= ∅ for all
ω ∈ H.

Construct a sequence {εk}∞k=1 by εk = 1/k. By the assumption of the lemma,
we have for each i ∈ {1, 2} and ε > 0,

P({ω ∈ Ω : lim inf
n→∞

fω(αi;n, ε) ≥ 1}) = 1.

As a consequence, we can choose a sequence of integers {nk} ↑ ∞ such that for any
i ∈ {1, 2} and k ∈ N, the set

Gi,k := Ai,k,nk = {ω ∈ Ω : fω(αi;n, εk) ≥ 1 for n ≥ nk} (3.9)

has measure P(Gi,k) > 1− 2−k.

Fix ω̃ ∈ H. By (3.8) and (3.9), we have

lim
n→∞

1
n

n−1∑
s=0

χGi,k(ϑnks+qω̃) = P(Gi,k) > 1− 2−k, ∀ i ∈ {1, 2}, k, q ∈ N. (3.10)

In the following we show that Eω̃((α1 + α2)/2) contains a non-empty Moran-like
subset of Σ. First we construct inductively a sequence of even integers {mk}∞k=1 ↑ ∞
(depending on ω̃) as follows. By (3.10), we can choose an even integer m1 large
enough such that m1 ≥ 2n2 and for i ∈ {1, 2},

1
m1

m1−1∑
s=0

χGi,1(ϑn1sω̃) > 1− 2−1 and

1
`

`−1∑
s=0

χGi,2(ϑn2s+qω̃) ≥ 1− 2−2, ∀ ` ≥ m1/n2, 0 ≤ q ≤ n2 − 1.

Suppose m1, . . . ,mk−1 have been constructed. By (3.10) again, we choose an even
number mk large enough such that

mk ≥ max{2mk−1 , 2nk+1} and for i ∈ {1, 2}, (3.11)

1
mk

mk−1∑
s=0

χGi,k(ϑnks+
∑k−1
j=1 njmj ω̃) > 1− 2−k, and (3.12)

1
`

`−1∑
s=0

χGi,k+1(ϑnk+1s+qω̃) ≥ 1− 2−k−1, ∀ ` ≥ mk

nk+1
, 0 ≤ q ≤ nk+1 − 1. (3.13)

In this way we obtain a sequence {mk}∞k=1. Now for any k ∈ N and 1 ≤ j ≤ mk,
we denote

N(k, j) =

{
(j − 1)nk if k = 1,∑k−1
s=1 nsms + (j − 1)nk if k ≥ 2

(3.14)

and construct a subset Υk,j of Σnk by

Υk,j =
{
FϑN(k,j)ω̃(αtj ;nk, εk) if ϑN(k,j)ω̃ ∈ Gtj ,k,
Σnk otherwise,
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14 D.-J. Feng and L. Shu

where tj is defined by

tj =
{

1 if j is odd,
2 if j is even.

By the definition of Gi,k, we have Υk,j 6= ∅.

Define Υ =
∏∞
k=1

∏mk
j=1 Υk,j . It is the subset of Σ consisting of the points y of

the form
y = I1,1 . . . I1,m1 I2,1 . . . I2,m2 . . . Ik,1 . . . Ik,mk . . . , (3.15)

where Ik,j ∈ Υk,j . By the definition of Υk,j and Lemma 3.4, we have for y ∈ Υ,∣∣∣SnkΦ
(
ϑN(k,j)(ω̃), σN(k,j)y

)
− nkαtj

∣∣∣ ≤ nkεk + Vnk(Φ) if ϑN(k,j)ω̃ ∈ Gtj ,k.
(3.16)

Let α = (α1 + α2)/2. We show Eω̃(α) ⊃ Υ. To see this, take y ∈ Υ and write y
in the form (3.15). We will show below that |SnΦ(ω̃, y)− nα| = o(n).

Given n ∈ N with n > m1n1 + m2n2, let k = kn and j = jn ∈ [1,mk+1] be the
integers such that N(k+1, j) < n ≤ N(k+1, j+1), where we adopt the convention
N(k + 1,mk+1 + 1) := N(k + 2, 1). We have

|SnΦ(ω̃, y)− nα| ≤
∣∣SN(k,1)Φ(ω̃, y)−N(k, 1)α

∣∣
+

∣∣∣∣∣
(
mk∑
p=1

SnkΦ
(
ϑN(k,p)ω̃, σN(k,p)y

))
−mknkα

∣∣∣∣∣
+

∣∣∣∣∣
(

j∑
p=1

Snk+1Φ
(
ϑN(k+1,p)ω̃, σN(k+1,p)y

))
− jnk+1α

∣∣∣∣∣
+ nk+1(‖Φ‖∞ + |α|) (where ‖Φ‖∞ := supu∈Ω×Σ |Φ(u)|)

:=(I) + (II) + (III) + (IV).

By (3.11), we have (I) = O(N(k, 1)) = o(N(k+1, 1)) = o(n) and (IV) = O(nk+1) =
o(mk) = o(n). According to (3.16) and (3.12), we have

(II) =

∣∣∣∣∣
mk∑
p=1

(
SnkΦ

(
ϑN(k,p)ω̃, σN(k,p)y

)
− nkαtp

)∣∣∣∣∣
≤mknkεk +mkVnk(Φ)

+ 2#{1 ≤ p ≤ mk : ϑN(k,p)ω̃ 6∈ Gtp,k} · nk(‖Φ‖∞ + |α|)
≤mknkεk +mkVnk(Φ)

+ 2
2∑
i=1

#{1 ≤ p ≤ mk : ϑN(k,p)ω̃ 6∈ Gi,k} · nk(‖Φ‖∞ + |α|)

≤mknkεk +mkVnk(Φ)

+ 4 · 2−kmknk(‖Φ‖∞ + |α|)
=o(n).
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Similarly by (3.16) and (3.13), we have

(III) ≤

∣∣∣∣∣
j∑
p=1

(
Snk+1Φ

(
ϑN(k+1,p)ω̃, σN(k+1,p)y

)
− nk+1αtp

)∣∣∣∣∣+ nk+1|α2 − α1|

≤jnk+1εk+1 + jVnk+1(Φ) + nk+1|α2 − α1|

+ 2#{1 ≤ p ≤ j : ϑN(k+1,p)ω̃ 6∈ Gtp,k+1} · nk+1(‖Φ‖∞ + |α|)
≤jnk+1εk+1 + jVnk+1(Φ) + nk+1|α2 − α1|

+ 2
2∑
i=1

#{1 ≤ p ≤ j : ϑN(k+1,p)ω̃ 6∈ Gi,k+1} · nk+1(‖Φ‖∞ + |α|)

≤jnk+1εk+1 + jVnk+1(Φ) + nk+1|α2 − α1|+ 4 · 2−k−1 n

nk+1
· nk+1(‖Φ‖∞ + |α|)

=o(n),

where we have used the inequality #{1 ≤ p ≤ j : ϑN(k+1,p)ω̃ 6∈ Gi,k+1} ≤

2−k−1 n
nk+1

. To see it, in (3.13) we take ` =
[

n

nk+1

]
and q ∈ [0, nk+1) so that

q ≡ N(k + 1, 1)( mod nk+1). (Here [a] denotes the integer part of a for a ∈ R.)

Therefore we have shown that |SnΦ(ω̃, y)− nα| = o(n), i.e., y ∈ Eω̃(α). Since y
is taken from Υ arbitrarily, we have Eω̃(α) ⊃ Υ 6= ∅. The lemma is proved. 2

We remark that the proof of the above lemma involves the construction of Moran-
like subsets of Eω(α) (depending on ω), which is a key technique in this paper.
Indeed it will be used several times more in this section.

Lemma 3.6. There exists a countable subset ∆̃ of ∆P such that ∆̃ is dense in ∆P
and P({ω ∈ Ω: Eω(α) 6= ∅ for all α ∈ ∆̃}) = 1.

Proof. By Lemma 3.3, there exists a sequence of ergodic measures {µi}∞i=1 on Ω×Σ
with µi ◦ π−1 = P such that the set of all finite rational convex combinations of
αi :=

∫
Φ dµi is dense in ∆P.

By Birkhoff ergodic theorem, for each i ∈ N the set{
(ω, y) ∈ Ω× Σ : lim

n→∞

1
n
SnΦ(ω, y) = αi

}
has full µi measure. Since µi ◦ π−1 = P, we have P({ω ∈ Ω : Eω(αi) 6= ∅}) = 1.
Hence by Lemma 3.5, we have

P({ω ∈ Ω : Eω(α) 6= ∅}) = 1

for any α in the following set

∆̃ :=
∞⋃
n=1

{
b1 + . . .+ b2n

2n
: b1, . . . , b2n ∈ {αi : i ∈ N}

}
.
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16 D.-J. Feng and L. Shu

Clearly, ∆̃ is dense in the set of all rational convex combinations of {αi : i ∈ N}, and
thus dense in ∆P. Since ∆̃ is countable, we have P({ω ∈ Ω: Eω(α) 6= ∅ for all α ∈
∆̃}) = 1. 2

Lemma 3.7. There exists a measurable set H ⊂ Ω with P(H) = 1 such that
{α ∈ Rd : Eω(α) 6= ∅} ⊇ ∆P for each ω ∈ H.

Proof. The lemma will be proved in a way similar to that of Lemma 3.5. Let ∆ be
constructed as in Lemma 3.6. For α ∈ ∆ and k, j ∈ N, denote

Aα,k,j := {ω ∈ Ω : fω(α;n, 1/k) ≥ 1 for all n ≥ j}.

Let H denote the set of all points ω such that

lim
n→∞

1
n

n−1∑
s=0

χAα,k,j (ϑ
ps+qω) = P(Aα,k,j), ∀ α ∈ ∆, k, j, p, q ∈ N. (3.17)

Then P(H) = 1 by Birkhoff ergodic theorem. Thus to prove the lemma, it suffices
to show that Eω(β) 6= ∅ for all ω ∈ H and β ∈ ∆P.

Fix β ∈ ∆P. Take a sequence {αk}∞k=1 ⊂ ∆ such that limk→∞ αk = β. Define
εk = 1/k for k ∈ N. By Lemma 3.6,

P({ω ∈ Ω : lim inf
n→∞

fω(αk;n, εk) ≥ 1}) = 1.

Therefore we can choose a sequence of integers {nk} ↑ ∞ such that for any k ∈ N,
the set

Gk := Aαk,k,nk = {ω ∈ Ω : fω(αk;n, εk) ≥ 1 for n ≥ nk} (3.18)

has measure P(Gk) > 1− 2−k.

Fix ω̃ ∈ H. By (3.17) and (3.18), we have

lim
n→∞

1
n

n−1∑
s=0

χGk(ϑnks+qω̃) = P(Gk) > 1− 2−k, k, q ∈ N. (3.19)

We construct inductively a sequence of integers {mk}∞k=1 ↑ ∞ (depending on ω̃) as
follows. By (3.19), we can choose an integer m1 large enough such that m1 ≥ 2n2

and

1
m1

m1−1∑
s=0

χG1(ϑn1sω̃) > 1− 2−1, and

1
`

`−1∑
s=0

χG2(ϑn2s+qω̃) ≥ 1− 2−2, ∀ ` ≥ m1

n2
, 0 ≤ q ≤ n2 − 1.
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Suppose m1, . . . ,mk−1 have been constructed. By (3.19) again, we choose mk large
enough such that

mk ≥ max{2mk−1 , 2nk+1},

1
mk

mk−1∑
s=0

χGk

(
ϑnks+

∑k−1
j=1 njmj ω̃

)
> 1− 2−k, and

1
`

`−1∑
s=0

χGk+1(ϑnk+1s+qω̃) ≥ 1− 2−k−1, ∀ ` ≥ mk

nk+1
, 0 ≤ q ≤ nk+1 − 1.

In this way we obtain a sequence {mk}∞k=1. Now for any k ∈ N and 1 ≤ j ≤ mk,
define N(k, j) the same as in (3.14) and construct Υk,j ⊂ Σnk by

Υk,j =
{
FϑN(k,j)ω̃(αk;nk, εk) if ϑN(k,j)ω̃ ∈ Gk,
Σnk otherwise.

By the definition of Gk, we have Υk,j 6= ∅.

Define Υ =
∏∞
k=1

∏mk
j=1 Υk,j . We can show that Eω̃(β) ⊃ Υ by an estimation

analogous to that in the proof of Lemma 3.5. This finishes the proof. 2

Proof of Proposition 3.1. It follows directly from Lemma 3.2 and Lemma 3.7. 2

3.2. A formal formula for dimH Eω(α) For ω ∈ Ω and α ∈ ∆P, we define

Λω(α) = lim
ε→0

lim inf
n→∞

1
n

log fω(α;n, ε)

and Λω(α) by taking the upper limit, where fω(α;n, ε) is defined as in (3.7). By
Proposition 3.1, we have Λω(α) ≥ 0 for P-a.e. ω ∈ Ω. In this subsection, we prove
the following two propositions.

Proposition 3.8. There is a function Λ : ∆P → [0,∞) such that for any α ∈ ∆P,
we have Λω(α) = Λω(α) = Λ(α) for P-a.e. ω ∈ Ω. Furthermore the function Λ is
concave and upper semi-continuous on ∆P.

Proposition 3.9. There exists a measurable set H ⊂ Ω with P(H) = 1 such that

dimH Eω(α) =
1

logm
Λ(α), ∀ ω ∈ H, α ∈ ∆P.

The proposition 3.8 just follows from the following three lemmas.

Lemma 3.10. There are two functions Λ,Λ from ∆P to [0,∞) such that for any
α ∈ ∆P,

Λω(α) = Λ(α) and Λω(α) = Λ(α) for P-a.e. ω ∈ Ω.
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Proof. Let ω ∈ Ω, α ∈ ∆P and ε > 0. Let n be an integer larger than (‖Φ‖∞+|α|)/ε,
where ‖Φ‖∞ = sup(ω,y) |Φ(ω, y)|. Suppose that |Sn−1Φ(ϑω, y)−(n−1)α| < (n−1)ε
for some y ∈ Σ. Then for z ∈ σ−1(y), we have

|SnΦ(ω, z)− nα| ≤ |Sn−1φ(ϑω, y)− (n− 1)α|+ ‖Φ‖∞ + |α| < 2nε.

It follows that fω(α;n, 2ε) ≥ fϑω(α;n− 1, ε). Letting n→∞ and ε→ 0, we have

Λω(α) ≥ Λϑω(α), Λω(α) ≥ Λϑω(α).

This combining with Birkhoff ergodic theorem yields the desired result. 2

Lemma 3.11. The functions Λ, Λ in the above lemma coincide on ∆P.

Proof. We only need to show that Λ ≥ Λ on ∆P. Fix α ∈ ∆P and γ > 0, we show
below that Λ(α) ≥ Λ(α)− 2γ.

Without loss of generality we assume Λ(α)−2γ > 0. Let ε > 0. Take δ > 0 such
that

(1− 2δ)(Λ(α)− γ) ≥ Λ(α)− 2γ and δ(‖Φ‖∞ + |α|) ≤ ε. (3.20)

By Lemma 3.4, there exists N0 ∈ N such that Vn(Φ) ≤ nε for all n ≥ N0. Since
Λω(α) = Λ(α) for P-a.e. ω ∈ Ω, there exist two integers N1, N2 with N2 > N1 > N0

such that the set

A :=
{
ω ∈ Ω : there is ` ∈ [N1, N2] such that fω(α; `, ε) ≥ e`(Λ(α)−γ)

}
has measure P(A) > 1− δ. Now denote

H :=

{
ω ∈ Ω : lim

n→∞

1
n

n−1∑
i=0

χA(ϑiω) = P(A)

}
.

Then P(H) = 1 by Birkhoff ergodic theorem.

Fix ω̃ ∈ H. We construct a sequence of integers {`k}∞k=1 inductively as follows.
First we determine `1. If ω̃ 6∈ A, we let `1 = 1; otherwise we let `1 be an integer
between N1 and N2 such that fω̃(α; `1, ε) ≥ e`1(Λ(α)−γ). Now, suppose `1, . . . , `k−1

have been constructed for some k ≥ 2. We determine `k in the following way: if
ϑ`1+...+`k−1 ω̃ 6∈ A, we let `k = 1; otherwise, we let `k be an integer between N1 and
N2 such that

fϑ`1+...+`k−1 ω̃(α; `k, ε) ≥ e`k(Λ(α)−γ).

In this way, we can construct the sequence {`k}∞k=1 well.

For j ∈ N, we define Ωj ⊂ Σ`j by

Ωj =
{

Σ1 if `j = 1,
Fϑ`1+...+`j−1 ω̃(α; `j , ε) otherwise.
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Since ω̃ ∈ H and P(A) > 1−δ, there exists N3 ∈ N such that 1
n

∑n−1
i=0 χA(ϑiω̃) >

1− δ for n ≥ N3.

Now fix n such that

n ≥ max{N3, N2(‖Φ‖∞ + |α|)/ε}. (3.21)

Let k = kn be the unique integer such that

`1 + . . .+ `k ≤ n < `1 + . . .+ `k+1.

Then

#{1 ≤ j ≤ k : `j = 1} = #{1 ≤ j ≤ k : ϑ`1+...+`j−1 ω̃ 6∈ A}
≤ #{0 ≤ i ≤ n− 1 : ϑiω̃ 6∈ A}
≤ δn.

(3.22)

Hence ∑
1≤j≤k, `j>1

`j ≥ n− `k+1 −
∑

1≤j≤k, `j=1

1

≥ n−N2 − nδ = n(1− δ)−N2.

(3.23)

Now let us estimate fω̃(α;n, 4ε). To do this, consider
∏k
j=1 Ωj . For each

I ∈
∏k
j=1 Ωj and y ∈ [I], by the definition of Ωj , we have∣∣S`jΦ(ϑ`1+...+`j−1 ω̃, σ`1+...+`j−1y)− `jα

∣∣
≤`jε+ V`j (φ) ≤ 2`jε whenever 1 ≤ j ≤ k and `j > 1.

Hence

|SnΦ(ω, y)− nα| ≤
∑

1≤j≤k, `j>1

∣∣S`jΦ(ϑ`1+...+`j−1 ω̃, σ`1+...+`j−1y)− `jα
∣∣

+
∑

1≤j≤k, `j=1

∣∣S`jΦ(ϑ`1+...+`j−1 ω̃, σ`1+...+`j−1y)− `jα
∣∣

+
∣∣Sn−`1−...−`kΦ(ϑ`1+...+`k ω̃, σ`1+...+`ky)− (n− `1 − . . .− `k)α

∣∣
≤

 ∑
1≤j≤k, `j>1

2`jε

+ (#{1 ≤ j ≤ k, `j = 1}+N2) (‖Φ‖∞ + |α|)

≤ 2nε+ (nδ +N2)(‖Φ‖∞ + |α|) ≤ 4nε. (by (3.22), (3.20), (3.21))

It follows that

fω̃(α;n, 4ε) ≥ #
k∏
j=1

Ωj ≥
∏

1≤j≤k, `j>1

e`j(Λ(α)−γ)

≥ e(n(1−δ)−N2)(Λ(α)−γ) (by (3.23))

≥ e−N2(Λ(α)−γ) · en(Λ(α)−2γ). (by (3.20))
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Letting n→∞, we have lim infn→∞ 1
n log fω̃(α;n, 4ε) ≥ Λ(α)− 2γ.

Since ω̃ is taken from H arbitrarily and P(H) = 1, we have
lim infn→∞ 1

n log fω(α;n, 4ε) ≥ Λ(α) − 2γ for P-a.e. ω ∈ Ω. Meanwhile since ε

can be taken arbitrarily small, we have Λω(α) ≥ Λ(α) − 2γ for P-a.e. ω ∈ Ω. By
Lemma 3.10, we have Λ(α) ≥ Λ(α)− 2γ, as desired. 2

Lemma 3.12. Let Λ denote the common functions Λ, Λ. Then Λ is upper semi-
continuous and concave on ∆P.

Proof. It suffices to show that Λ is upper semi-continuous on ∆P and

Λ
(
α+ β

2

)
≥ 1

2
Λ(α) +

1
2

Λ(β) for any α, β ∈ ∆P. (3.24)

First we show the upper semi-continuity of Λ. Let α ∈ ∆P and γ > 0. By
Proposition 3.1 and Lemma 3.10, there exist k ∈ N and a measurable set A ⊂ Ω
with P(A) > 0 such that

0 ≤ lim inf
n→∞

1
n

log fω(α;n, 1/k) < Λ(α) + γ, ∀ ω ∈ A. (3.25)

Now assume α′ ∈ ∆P is such that |α′ − α| < 1/(2k). Then we have

fω(α′;n, 1/(2k)) ≤ fω(α;n, 1/k), ∀ ω ∈ A

(since |SnΦ(ω, y) − nα′| ≤ n/(2k) implies |SnΦ(ω, y) − nα| ≤ n/k). This fact,
combining with Proposition 3.1 and (3.25), yields

0 ≤ lim inf
n→∞

1
n

log fω(α′;n, 1/(2k)) < Λ(α) + γ, for P-a.e. ω ∈ A.

Therefore we have Λω(α′) ≤ Λ(α) + γ for P-a.e. ω ∈ A. Since P(A) > 0, by Lemma
3.10 we have Λ(α′) = Λ(α′) ≤ Λ(α) + γ. This proves the upper semi-continuity of
Λ.

To show (3.24), let α, β ∈ ∆P. We show that for any ε, γ > 0,

lim inf
n→∞

1
n

log fω

(
α+ β

2
;n, 4ε

)
≥ 1

2
Λ(α) +

1
2

Λ(β)− 2γ (3.26)

for P-a.e. ω ∈ Ω, from which (3.24) follows. To see (3.26), fix ε, γ > 0. Without
loss of generality, we assume 1

2Λ(α) + 1
2Λ(β)− 2γ > 0. Choose δ > 0 such that

δ(‖Φ‖∞ + |α|+ |β|) ≤ ε and (1− δ)(Λ(α) + Λ(β)− 2γ) ≥ (Λ(α) + Λ(β)− 4γ).

Choose a sufficiently large integer ` such that V`(Φ) < ε` and the set

A =
{
ω ∈ Ω : fω(α; `, ε) > e`(Λ(α)−γ), fω(β; `, ε) > e`(Λ(β)−γ)

}
has measure P(A) > 1− δ. Denote

H :=

{
ω ∈ Ω : lim

n→∞

1
n

n−1∑
i=0

χA(ϑi`ω) = P(A)

}
.
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Then P(H) = 1 by Birkhoff ergodic theorem. Fix ω̃ ∈ H. Construct a sequence of
sets Ωj ⊂ Σ` by

Ωj =


Fϑ(j−1)`ω̃(α; `, ε) if ϑ(j−1)`ω̃ ∈ A and j is odd,
Fϑ(j−1)`ω̃(β; `, ε) if ϑ(j−1)`ω̃ ∈ A and j is even,
Σ` if ϑ(j−1)`ω̃ 6∈ A.

Let N0 be an integer such that 1
n

∑n−1
i=0 χA(ϑi`ω) > 1 − δ for n ≥ N0. Now fix n

such that n ≥ N0 and nε ≥ 2`(‖Φ‖∞ + |α|+ |β|). Let k be the unique integer such
that `k ≤ n < `(k + 1). Then a direct estimate (similar to that in the proof of
Lemma 3.11) shows that |SnΦ(ω̃, y)− n(α+ β)/2| ≤ 4nε for any I ∈

∏k
j=1 Ωj and

y ∈ [I]. It follows that

fω̃((α+ β)/2;n, 4ε) ≥ #
k∏
j=1

Ωj ≥ en((Λ(α)+Λ(β))/2−2γ),

where the last inequality also follows from an argument similar to that used in
the proof of Lemma 3.11. Letting n → ∞, we obtain (3.26) for all ω̃ ∈ H. This
completes the proof. 2

Now we turn to the proof of Proposition 3.9. First we prove a lemma.

Lemma 3.13. There is a countable subset ∆1 of ∆P such that for each α ∈ ∆P,
there exists {αi}∞i=1 ⊂ ∆1 with limi→∞ αi = α and limi→∞ Λ(αi) = Λ(α).

Proof. The result follows from the upper semi-continuity of Λ on ∆P. For each
k ∈ N, we can cover ∆P by a finite family of closed balls {B(zk,i, 1/k)}`ki=1 with
centers in ∆P and radii 1/k. For each ball B(zk,i, 1/k), by the upper semi-continuity
of Λ, we can choose αk,i ∈ B(zk,i, 1/k) ∩ ∆P such that Λ(αk,i) = sup{Λ(z) : z ∈
B(zk,i, 1/k) ∩∆P}. Now define

∆1 = {αk,i : k ∈ N, 1 ≤ i ≤ `k}.

Then ∆1 satisfies the desired property. To see this, let α ∈ ∆P. For each k ∈ N,
pick an integer nk with 1 ≤ nk ≤ `k such that α ∈ B(zk,nk , 1/k). This implies
|α − αk,nk | < 2/k and hence limk→∞ αk,nk = α. Meanwhile, Λ(α) ≤ Λ(αk,nk).
However by the upper semi-continuity, we have Λ(α) ≥ lim supk→∞ Λ(αk,nk). This
forces Λ(α) = limk→∞ Λ(αk,nk). 2

In our proof of Proposition 3.9, we need to estimate the Hausdorff dimension of
a class of Moran-like subsets in symbolic spaces. Let Σ be endowed with a metric d
as in (2.1). Let {`n}∞n=1 be a sequence of positive integers. For each n ∈ N, suppose
Υn is a non-empty subset of Σ`n . Denote Υ =

∏∞
n=1 Υn ⊂ Σ. The following is a

special version of a general theorem in [27]. The reader is referred to [21] for a
short proof.
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Proposition 3.14. ([27])

dimH Υ ≥ 1
logm

lim inf
n→∞

∑n
i=1 log #Υi∑n+1

j=1 `i
,

where #S denotes the cardinality of S.

Proof of Proposition 3.9. By the definition of Λω(α), we have dimBEω(α) ≤
1

logmΛω(α) whenever Eω(α) 6= ∅, where dimB denotes the upper box-counting
dimension (see [19] for the definition). Hence we have dimH Eω(α) ≤ 1

logmΛω(α)
whenever Eω(α) 6= ∅. According to Proposition 3.1 and Proposition 3.8, we have
for P-a.e. ω ∈ Ω, dimH Eω(α) ≤ 1

logmΛ(α) for all α ∈ ∆P. In the following we show
that the reverse inequality also holds.

The proof we give below is similar to the proof of Lemma 3.7. Let ∆1 be a
countable subset of ∆P given as in Lemma 3.13. For α ∈ ∆1 and k, j ∈ N, denote

Aα,k,j :=
{
ω ∈ Ω : fω(α; n, 1/k) ≥ en(Λ(α)−1/k) for all n ≥ j

}
.

Let H denote the set of all points ω such that

lim
n→∞

1
n

n−1∑
s=0

χAα,k,j (ϑ
ps+qω) = P(Aα,k,j), ∀ α ∈ ∆1, k, j, p, q ∈ N. (3.27)

Then P(H) = 1 by Birkhoff ergodic theorem. We will show that dimH Eω(β) ≥
1

logmΛ(β) for all ω ∈ H and β ∈ ∆P.

Fix β ∈ ∆P. By Lemma 3.13, there is a sequence {αk}∞k=1 ⊂ ∆1 such that
αk → β and Λ(αk) → Λ(β), as k → ∞. Let εk = 1/k for k ∈ N. By Proposition
3.8,

P
({

ω ∈ Ω : lim inf
n→∞

1
n

log fω(αk;n, εk) ≥ Λ(αk)
})

= 1.

Therefore we can choose a sequence of integers {nk} ↑ ∞ such that for any k ∈ N,
the set

Gk := Aαk,k,nk =
{
ω ∈ Ω : fω(αk;n, εk) ≥ en(Λ(αk)−εk) for n ≥ nk

}
(3.28)

has measure P(Gk) > 1− 2−k.

Fix ω̃ ∈ H. By (3.27) and (3.28), we have

lim
n→∞

1
n

n−1∑
s=0

χGk(ϑnks+qω̃) = P(Gk) > 1− 2−k, ∀ k, q ∈ N. (3.29)

We construct inductively a sequence of integers {mk}∞k=1 ↑ ∞ (depending on ω̃) as
follows. By (3.29), we can choose an integer m1 large enough such that m1 ≥ 2n2
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and

1
m1

m1−1∑
s=0

χG1(ϑn1sω̃) > 1− 2−1, and

1
`

`−1∑
s=0

χG2(ϑn2s+qω̃) ≥ 1− 2−2, ∀ ` ≥ m1

n2
, 0 ≤ q ≤ n2 − 1.

Suppose m1, . . . ,mk−1 have been constructed. By (3.29) again, we choose mk large
enough such that

mk ≥ max{2mk−1 , 2nk+1},

1
mk

mk−1∑
s=0

χGk(ϑnks+
∑k−1
j=1 njmj ω̃) > 1− 2−k, and

1
`

`−1∑
s=0

χGk+1(ϑnk+1s+qω̃) ≥ 1− 2−k, ∀ ` ≥ mk

nk+1
, 0 ≤ q ≤ nk+1 − 1.

In this way we obtain a sequence {mk}∞k=1. Now for any k ∈ N and 1 ≤ j ≤ mk,
define N(k, j) the same as in (3.14) and construct Υk,j ⊂ Σnk by

Υk,j =
{
FϑN(k,j)ω̃(αk;nk, εk) if ϑN(k,j)ω̃ ∈ Gk,
Σnk otherwise.

By the definition of Gk, we have #Υk,j ≥ enk(Λ(αk)−εk).

Define Υ =
∏∞
k=1

∏mk
j=1 Υk,j . We can show that Eω̃(β) ⊃ Υ by an estimation

analogous to that in the proof of Lemma 3.5. Now relabel the sequence

Υ1,1, . . . ,Υ1,m1 ,Υ2,1, . . . ,Υ2,m2 , . . .

as {Υ̃n}∞n=1, and relabel the sequence

n1, . . . , n1︸ ︷︷ ︸
m1

, n2, . . . , n2︸ ︷︷ ︸
m2

, . . .

as {`n}∞n=1. It is obvious that Υ =
∏∞
n=1 Υ̃n. Note that Υk,j is just relabeled as

Υ̃m1+...+mk−1+j . By Proposition 3.14, we have

dimH Υ ≥ 1
logm

lim inf
n→∞

∑n
i=1 log #Υ̃n∑n+1

i=1 `i
.

To estimate the lower limit, for a large n we write n = m1 +m2 + . . .+mk + j so
that 1 ≤ j ≤ mk+1. Then we have∑n

i=1 log #Υ̃n∑n+1
i=1 `i

≥
∑k
i=1mini(Λ(αi)− εi) + jmk+1(Λ(αk+1)− εk+1)
m1n1 + . . .+mknk + jmk+1nk+1 + nk+2

.

Since nk+2 = o(mk+1) and Λ(αk) → Λ(β), by taking the lower limit we obtain
dimH Υ ≥ 1

logmΛ(β). Hence dimH Eω(β) ≥ dimH Υ ≥ 1
logmΛ(β). This finishes the

proof. 2
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3.3. A duality principle To prove Theorem 1.3, we need a duality principle
between PP(q) and h(µ|P). In this subsection, we will present a more general
duality principle, which is based on convex analysis and includes the above duality
relation.

Let Y , Z be two locally convex topological vector spaces, and let Y ∗ and Z∗

denote the dual spaces of Y and Z respectively with the weak* topology (cf.
[57]). Let f : Y → Z be a continuous linear transformation. Assume that D is
a compact convex subset of Y . Suppose t : D → R is a real function such that
supy∈D |t(y)| <∞ and t is affine on D, i.e., t(py1 +(1−p)y2) = pt(y1)+(1−p)t(y2)
for any p ∈ (0, 1) and any y1, y2 ∈ D. Define w : Z∗ → R by

w(z∗) = sup{〈f(y), z∗〉+ t(y) : y ∈ D}, ∀ z∗ ∈ Z∗.

Let g : f(D)→ R be defined as

g(z) = sup{t(y) : y ∈ f−1(z)}, z ∈ f(D).

Proposition 3.15. Under the above setting, w is a real-valued convex function on
Z∗. Furthermore

(i) if g is upper semi-continuous at some z0 ∈ f(D), then

inf
z∗∈Z∗

{w(z∗)− 〈z0, z
∗〉} = g(z0); (3.30)

(ii) in particular, if t is upper semi-continuous on D, then (3.30) holds for all
z0 ∈ f(D).

Proof. It is routine to verify that w is a real-valued convex function. To prove (i)
and (ii), we need some result from convex analysis. Let R = R ∪ {+∞}. Recall
that for u : Z → R with dom(u) := {z ∈ Z : u(z) < +∞} 6= ∅, the function

u∗ : Z∗ → R, u∗(z∗) = sup{〈z, z∗〉 − u(z) : z ∈ Z},

is called the conjugate of u. Similarly for v : Z∗ → R with dom(v) 6= ∅, the conjugate
of v is defined as

v∗ : Z → R, v∗(z) = sup{〈z, z∗〉 − v(z∗) : z∗ ∈ Z∗}.

It is well-known (cf. [58, Theorem 2.3.4]) that if u : Z → R is convex with non-
empty domain dom(u) and if u is lower semi-continuous at z0 ∈ dom(u), then

u∗∗(z0) = u(z0). (3.31)

Now we return to the proof of (i) and (ii). From the definition of g, it is easy to
see that g is a real concave function on f(D). Extend g to be a concave function g̃
on Z by setting g̃ = g on f(D) and g̃ = −∞ on Z\f(D). It is easy to check that
for any z∗ ∈ Z∗,

w(z∗) = sup{〈f(y), z∗〉+ t(y) : y ∈ D} = sup{〈z, z∗〉+ g̃(z) : z ∈ Z} = (−g̃)∗(z∗).
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Note that −g̃ : Z → R is convex with dom(−g̃) = f(D). Assume g is upper semi-
continuous at z0 ∈ f(D). Then −g̃ is lower semi-continuous at z0. Hence by (3.31),
(−g̃)∗∗(z0) = −g̃(z0). Therefore

inf
z∗∈Z∗

{w(z∗)− 〈z0, z
∗〉} = −w∗(z0) = −(−g̃)∗∗(z0) = −(−g̃)(z0) = g̃(z0) = g(z0).

This proves (i). To see (ii), it is enough to observe that g is upper semi-continuous
on f(D) when t is upper semi-continuous on D. 2

3.4. A variational principle for Λ(α) and the proof of Theorem 1.3 In this
subsection, we first prove the following variational principle, then we provide a
proof of Theorem 1.3.

Theorem 3.16. For any α ∈ ∆P, we have

Λ(α) = inf{PP(q)− 〈α, q〉 : q ∈ Rd} = sup{h(µ|P) : µ ∈ G(α)},

where G(α) is defined as in (3.3).

The proof of the above theorem is based on some propositions.

Proposition 3.17. Let α ∈ ∆P. Then

inf{PP(q)− 〈α, q〉 : q ∈ Rd} = sup{h(µ|P) : µ ∈ G(α)}.

Proof. It is a direct application of Proposition 3.15. Indeed in the setting of
Proposition 3.15, we can take Y to be the dual of L1(Ω, C(Σ)) endowed with the
weak* topology, and take Z = Rd. Let D denoteMP(Ω×Σ). Then by Proposition
2.1, D is compact convex set of Y . Write Φ = (φ1, . . . , φd). Define f : Y → Z by
f(y) = (〈φ1, y〉, . . . , 〈φd, y〉). Let t : D → R be defined by t(y) = h(y|P). Then f is
continuous and linear, and t is affine and upper semi-continuous on D (see §2.3).
Applying Propositions 2.3 and 3.15 yields the desired result. 2

Proposition 3.18. Let α ∈ ∆P and µ ∈ G(α). Then Λ(α) ≥ h(µ|P).

Proof. We first assume that µ ∈ G(α) is ergodic. Let {µω}ω∈Ω be the disintegration
of µ with respect to P. Let ξ = {[1], . . . , [m]} be the canonical partition of Σ. By
Proposition 3.8, (2.4) and Birkhoff ergodic theorem, there exists a measurable set
A ⊂ Ω with P(A) = 1 such that for any ω ∈ A, the following properties hold:

Λω(α) = Λω(α) = Λ(α);

lim
n→∞

− 1
n

logµω(ξn(y)) = h(µ|P) for µω-a.e. y;

lim
n→∞

1
n
SnΦ(ω, y) = α for µω-a.e. y.

(3.32)
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Fix ω ∈ A and let ε > 0. Then there exist N ∈ N and a Borel set B ⊂ Σ with
µω(B) ≥ 1/2 such that for all y ∈ B and n ≥ N , we have

e−n(h(µ|P)+ε) ≤ µω(ξn(y)) ≤ e−n(h(µ|P)−ε), |SnΦ(ω, y)− nα| ≤ nε. (3.33)

Define Bn := {I ∈ Σn : [I] ∩ B 6= ∅} for n ≥ N. Then by (3.33), we have
fω(α, n, ε) ≥ #Bn and

(#Bn) · e−n(h(µ|P)−ε) ≥ µω(B) ≥ 1/2,

which gives lim supn→∞(1/n) log fω(α, n, ε) ≥ h(µ|P)− ε. Since ε > 0 is arbitrary,
we have by (3.32) that

Λ(α) = lim
ε→0

lim sup
n→∞

1
n

log fω(α, n, ε) ≥ h(µ|P).

Now assume that µ ∈ G(α) is not ergodic. Let γ > 0. Since Λ(·) is upper
semi-continuous on ∆P, there exists 0 < ε < γ/2 such that

Λ(α) ≥ Λ(α′)− γ

2
whenever α′ ∈ Λ and |α− α′| ≤ ε.

By Lemma 3.3, there exists a convex combination µ̃ = Σki=1piµi ∈ MP(Ω × Σ) of
some ergodic measures µ1, . . . , µk such that∣∣∣∣∫ Φ dµ̃− α

∣∣∣∣ < ε, h(µ̃|P) ≥ h(µ|P)− ε.

Write αi =
∫

Φ dµi for 1 ≤ i ≤ k and α′ =
∑k
i=1 piαi. Then |α− α′| < ε and thus

Λ(α) ≥ Λ(α′)−γ/2. By the concavity of Λ (Lemma 3.12) and the previous argument
for ergodic elements of G(α), together with the affine property of η 7→ h(η|P), we
have

Λ(α′) ≥
k∑
i=1

piΛ(αi) ≥
k∑
i=1

pi (h(µi|P)) = h(µ̃|P) ≥ h(µ|P)− ε.

It follows that Λ(α) ≥ h(µ|P)− ε− γ/2 ≥ h(µ|P)− γ. Since γ > 0 is arbitrary, we
have Λ(α) ≥ h(µ|P), as desired. 2

Proposition 3.19. Let α ∈ ∆P. Then Λ(α) ≤ inf{PP(q)− 〈α, q〉 : q ∈ Rd}.

Proof. Let α ∈ ∆P and ω ∈ Ω. Let q ∈ Rd. By the definition of PP(〈q,Φ〉)(ω, n)
(see §2.3), we have for any n ∈ N and ε > 0,

PP(〈q,Φ〉)(ω, n) ≥ fω(α;n, ε) exp(n(〈α, q〉 − ε|q|)),

where fω(α;n, ε) is defined as in (3.7). It follows that

lim sup
n→∞

1
n

logPP(〈q,Φ〉)(ω, n) ≥ Λω(α) + 〈α, q〉.

Hence by Proposition 3.8 and (2.2), we have PP(q) = PP(〈q,Φ〉) ≥ Λ(α) + 〈α, q〉. 2
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Proof of Theorem 3.16. It follows from Propositions 3.17, 3.18 and 3.19. 2

Proof of Theorem 1.3. Part (i) follows just from Proposition 3.1, and part (ii)
follows from Proposition 3.9 and Theorem 3.16. 2

4. The Multifractal analysis for disintegrations of Gibbs measures

Throughout this section, we let (Σ, σ) be the full shift space over the alphabet
{1, . . . ,m}, and let (X,T ) be the full shift space over another alphabet, say,
{1, . . . , l}. Write Σn = {1, . . . ,m}n and Xn = {1, . . . , l}n for n ∈ N. Let φ be
a real Hölder continuous function on X × Σ and let µ = µφ denote the Gibbs
measure associated with φ, i.e., µ is the unique T × σ-ergodic measure such that
one can find constants c1 > 0, c2 > 0 and P ∈ R such that

c1 ≤
µ(In(x)× Jn(y))

exp(−Pn+ Snφ(x, y))
≤ c2, ∀ x ∈ X, y ∈ Σ and n ∈ N, (4.1)

where In(x) = {u = (ui)∞i=1 ∈ X : ui = xi for i = 1, . . . , n}, Jn(y) = {z =
(zi)∞i=1 ∈ Σ: zi = yi for i = 1, . . . , n}, and Snφ(x, y) =

∑n−1
i=0 φ(T ix, σiy) (see

[13] for details). The constant P involved in (4.1) is just equal to the classical
topological pressure P (T × σ, φ) of φ with respect to T × σ, which is defined by

P (T × σ, φ) = lim sup
n→∞

1
n

log
∑
I∈Xn

∑
J∈Σn

sup
x∈[I],y∈[J]

exp(Snφ(x, y)), (4.2)

where [I] = {u ∈ X : u1 . . . un = I} and [J ] = {v ∈ Σ: v1 . . . vn = J} for I ∈ Xn

and J ∈ Σn.

Let π : X×Σ→ X be the projection given by (x, y) 7→ x and denote ν = µ◦π−1.
In this section, we analyze the multifractal structure of the disintegration {µx} of
µ with respect to (X,T, ν). Since µx is supported on {x} × Σ for each x ∈ X, we
shall sometimes write µx(B) for µx({x}×B), whenever B ⊆ Σ is Borel measurable.

Denote C = {[I]× [J ] : I ∈ Xn, J ∈ Σk, n, k ∈ N}.

Lemma 4.1. There exists a Borel measurable set H ⊂ X with ν(H) = 1 such that
for each point x ∈ H,

(i) µx(A) = limn→∞
µ(A∩π−1(In(x)))

ν(In(x)) for any A ∈ C;

(ii) limn→∞
1
n log ν(In(x)) = −hν(T ), where hν(T ) denotes the measure-theoretic

entropy of ν with respect to T .

Proof. Part (ii) just follows from Shannon-McMillan-Breiman Theorem (cf. [56, p.
93]), so we only need to prove (i). Since C is countable, it suffices to prove that
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for every A ∈ C, we have µx(A) = limn→∞
µ(A∩π−1(In(x)))

ν(In(x)) for ν-a.e. x ∈ X. To
see this, fix A ∈ C and define f = χA. Define g(x) = µx(A) =

∫
f dµx for x ∈ X.

Then g is B(X)-measurable and g(x) = E(f |π−1B(X))(x, y) for µ-a.e. (x, y) (see
§2.2 and Proposition 2.2). Here B(X) denotes the Borel σ-algebra on X. Hence for
any B ⊂ B(X),

µ(A ∩ π−1(B)) =
∫
π−1(B)

f dµ =
∫
π−1(B)

E(f |π−1B(X)) dµ =
∫
B

g dν.

In particular, taking B = In(x) (x ∈ X,n ∈ N) we obtain

µ(A ∩ π−1(In(x)))
ν(In(x))

=
1

ν(In(x))

∫
In(x)

g dν.

Taking the limit on n and applying the differentiation theory of measures (which
is valid on Σ) (see, e.g., [44, Theorem 2.12]), we have

lim
n→∞

µ(A ∩ π−1(In(x)))
ν(In(x))

= g(x) = µx(A)

for ν-a.e. x ∈ X, as desired. 2

For any two families of positive numbers {ai}i∈I , {bi}i∈I , we write, for brevity,
ai ≈ bi to mean the existence of a constant C > 0 such that C−1ai ≤ bi ≤ Cai for
each i ∈ I.

Lemma 4.2. Let H be given as in Lemma 4.1. Then for all x ∈ H,

(i) µx(Jn(y)) ≈ µ(In(x)×Jn(y))
ν(In(x)) ≈ exp(Snφ(x, y) − nP (T × σ, φ)) 1

ν(In(x)) for any
y ∈ Σ (the involved constants in ≈ are independent of n, x and y);

(ii) For β ∈ R,{
y ∈ Σ : lim

n→∞

logµx(In(y))
log(m−n)

= β

}
=
{
y ∈ Σ : lim

n→∞

1
n
Snφ(x, y) = −β logm+ P (T × σ, φ)− hν(T )

}
.

(iii) For each q ∈ R,
∑
J∈Σn

µx([J ])q ≈ exp(nP (T × σ, qφ) − nqP (T ×
σ, φ))ν

(q)(In(x))
ν(In(x))q , where ν(q) = µ(q) ◦ π−1 and µ(q) denotes the Gibbs measure

associated with qφ (the constant involved in ≈ is independent of n and x).

Proof. We remark that some variances of (i) were obtained in [11, 18, 35] under
some more general settings. Here we provide a simple and self-contained proof. Let
x = (xi)∞i=1 ∈ X and y = (yi)∞i=1 ∈ Σ. Let n, k ∈ N. According to (4.1), we have

µ([x1 . . . xn+k]× [y1 . . . yn+k])

≈µ([x1 . . . xn]× [y1 . . . yn]) · µ([xn+1 . . . xn+k]× [yn+1 . . . yn+k]),
(4.3)
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here the involved constant in ≈ is independent of x, y, n and k. By (4.3), we have

ν([x1 . . . xn+k]) =
∑

z1...zn+k∈Σn+k

µ([x1 . . . xn+k]× [z1 . . . zn+k])

≈
∑

z1...zn+k∈Σn+k

µ([x1 . . . xn]× [z1 . . . zn])

· µ([xn+1 . . . xn+k]× [zn+1 . . . zn+k])

≈ν([x1 . . . xn]) · ν([xn+1 . . . xn+k]).

(4.4)

Now we turn to the proof of (i). Assume x ∈ H. By Lemma 4.1, we have

µx(Jn(y)) = lim
k→∞

µ(In+k(x)× Jn(y))
ν(In+k(x))

. (4.5)

However, by (4.3) and (4.4) we have

µ(In+k(x)× Jn(y)) =
∑

z1...zk∈Σk

µ([x1 . . . xn+k]× [y1 . . . ynz1 . . . zk])

≈ µ([x1 . . . xn]× [y1 . . . yn])
∑

z1...zk∈Σk

µ([xn+1 . . . xn+k]× [z1 . . . zk])

≈ µ([x1 . . . xn]× [y1 . . . yn]) · ν([xn+1 . . . xn+k])

≈ µ([x1 . . . xn]× [y1 . . . yn]) · ν([x1 . . . xn+k])/ν([x1 . . . xn]),

from which we deduce that

µ(In+k(x)× Jn(y))
ν(In+k(x))

≈ µ(In(x)× Jn(y))
ν(In(x))

.

This together with (4.5) and (4.1) yields (i). The statement (ii) just follows from
(i) and the fact that limn→∞ log ν(In(x))/n = −hν(T ). To see (iii), by (i) we have∑

J∈Σn

µx([J ])q

≈ ν(In(x))−q
∑
J∈Σn

sup
y∈[J]

exp (qSnφ(x, y)− nqP (T × σ, φ)) (4.6)

≈ ν(In(x))−q exp(nP (T × σ, qφ)− nqP (T × σ, φ))

·
∑
J∈Σn

sup
y∈[J]

exp (qSnφ(x, y)− nP (T × σ, qφ))

≈ ν(In(x))−q exp(nP (T × σ, qφ)− nqP (T × σ, φ))
∑
J∈Σn

µ(q)(In(x)× [J ])

≈ ν(In(x))−q exp(nP (T × σ, qφ)− nqP (T × σ, φ))ν(q)(In(x)), (4.7)

as desired. 2

Lemma 4.3. There is a real-valued concave function τ on R such that for ν-a.e.
x ∈ X,

τx(q) = τ(q), ∀ q ∈ R.
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Proof. A standard argument shows that τx(q) is concave about q for each x ∈ X.
Let H be given as in Lemma 4.1. By (4.6), τx(q) ∈ R if q ∈ R and x ∈ H (for
which limn→∞ log ν(In(x))/n = −hν(T )). Hence for each x ∈ H, the function τx is
concave and continuous on R.

Using an argument similar to the proof of (4.4), we can show that for each q ∈ R,
the measure ν(q) has the same quasi-Bernoulli property. Hence by Kingman’s sub-
additive ergodic theorem,

lim
n→∞

1
n

log ν(q)(In(x)) = lim
n→∞

∫
1
n

log ν(q)(In(x̃)) dν(x̃), for ν-a.e. x ∈ X.

(4.8)
With this, Lemma 4.1(ii) and Lemma 4.2(iii), we conclude that there is a function
τ̃ : R→ R such that for each q, τx(q) = τ̃(q) for ν-a.e. x ∈ X.

Take a countable set Q dense in R. Then there exists a ν-null set A ⊂ X such
that

τx(q) = τ̃(q) ∀ x ∈ H ∩ (X\A), q ∈ Q. (4.9)

Since for each x ∈ H the function τx(·) is concave and continuous on R, it is
uniformly continuous on each relatively compact subset of Q. So is τ̃ , by (4.9).
Therefore τ̃ : Q→ R has a unique continuous extension τ : R→ R. By (4.9) again,
we have τx(q) = τ(q) for any x ∈ H ∩ (X\A) and q ∈ R. Hence τ = τ̃ . 2

Proposition 4.4. Let τ be given as in the above lemma. For any q ∈ R, we have

τ(q) = − 1
logm

sup
{
q

(
hν(T )− P (T × σ, φ) +

∫
φ dµ̃

)
+ hµ̃(T × σ)− hν(T )

}
,

where the supremum is taken over the set of T × σ-invariant measures µ̃ with
µ̃ ◦ π−1 = ν.

Proof. By (4.7), (4.8) and Lemma 4.3, we have

τ(q) = − 1
logm

(
qhν(T )− qP (T × σ, φ) + P (T × σ, qφ) + lim

n→∞

1
n

log ν(q)(In(x))
)

(4.10)
for ν-a.e. x ∈ X. However,

ν(q)(In(x)) =
∑
J∈Σn

µ(q)(In(x)×[J ]) ≈ exp(−nP (T×σ, qφ))·
∑
J∈Σn

sup
y∈[J]

exp(qSnφ(x, y)).

It follows that

lim sup
n→∞

1
n

log ν(q)(In(x)) =− P (T × σ, qφ) + lim sup
n→∞

1
n

log

(∑
J∈Σn

sup
y∈J

exp(qSnφ(x, y))

)
=:− P (T × σ, qφ) + lim sup

n→∞
logPν(qφ)(x, n).
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Note that lim supn→∞ logPν(qφ)(x, n) = Pν(qφ) for ν-a.e. x (see (2.2)), and
hµ̃(T × σ) − hν(T ) = h(µ̃|ν) by the Abramov-Rohlin formula. This together with
(4.10) yields

τ(q) = − 1
logm

(qhν(T )− qP (T × σ, φ) + Pν(qφ)) . (4.11)

Combining it with Proposition 2.3, we obtain the desired formula. 2

Combining Proposition 4.4 with Proposition 3.15, we obtain the following result.

Corollary 4.5. Write βmin = limq→∞ τ(q)/q and βmax = limq→−∞ τ(q)/q. Let
D :=Mν(X×Σ) be the space of all T×σ-invariant measures µ̃ on X×Σ satisfying
µ̃ ◦ π−1 = ν, endowed with the weak* topology. Then

(i) βmin = 1
logm

(
P (T × σ, φ)− hν(T )−maxµ̃∈D

∫
φ dµ̃

)
and

βmax = 1
logm

(
P (T × σ, φ)− hν(T )−minµ̃∈D

∫
φ dµ̃

)
.

(ii) For any β ∈ [βmin, βmax],

inf
q∈R
{βq − τ(q)} =

1
logm

sup {hµ̃(T × σ)− hν(T )} ,

where the supremum is taken over the set of µ̃ ∈ D satisfying
∫
φ dµ̃ =

P (T × σ, φ)− hν(T )− β logm.

Proof. It is direct to derive (i) from Proposition 4.4, using the boundedness of
hµ̃(T × σ)− hν(T ). To see (ii), let β ∈ [βmin, βmax] and denote α = P (T × σ, φ)−
hν(T )− β logm. Then by (i), we have α ∈ {

∫
φ dµ̃ : µ̃ ∈ D}. Moreover by (4.11),

we have
(logm) inf

q∈R
{βq − τ(q)} = inf

q∈R
{Pν(qφ)− αq}.

However by Theorem 3.16,

inf
q∈R
{Pν(qφ)− αq} = sup{h(µ̃|ν) : µ̃ ∈ D and

∫
φ dµ̃ = α}.

This completes the proof of (ii). 2

Proof of Theorem 1.1. Assertion (i) follows from Lemma 4.3 and (4.11). In the
following we prove assertion (ii).

By Lemma 4.2(ii), there exists a Borel set H ⊆ X with ν(X) = 1 such that

Eµx(β) 6= ∅ ⇐⇒ Ex(−β logm+ P (T × σ, φ)− hν(T )) 6= ∅, ∀ x ∈ H, β ∈ R.

Let Γ ⊆ X be given as in Theorem 1.2. Then

Eµx(β) 6= ∅ ⇐⇒ −β logm+ P (T × σ, φ)− hν(T ) ∈ ∆P, ∀ x ∈ H ∩ Γ, β ∈ R,
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where ∆P =
{∫

φdµ̃ : µ̃ ∈ D
}

and D =Mν(X × Σ). However by Corollary 4.5(i),
we have −β logm+P (T ×σ, φ)−hν(T ) ∈ ∆P if and only if β ∈ [βmin, βmax]. Hence
we obtain the result

Eµx(β) 6= ∅ ⇐⇒ β ∈ [βmin, βmax] ∀ x ∈ H ∩ Γ, β ∈ R.

By Lemma 4.2(ii), Theorem 1.2 and Corollary 4.5(ii), we have for x ∈ H ∩ Γ,
β ∈ [βmin, βmax],

dimH Eµx(β) = dimH Ex(−β logm+ P (T × σ, φ)− hν(T )) = inf
q∈R
{βq − τ(q)}.

This finishes the proof of Theorem 1.1. �

5. Geometric realizations and some remarks

In Theorem 1.1, when µ = µφ is a product measure on X × Σ (correspondingly,
φ(x, y) only depends on the first coordinates of (x, y)), the disintegration {µx} has
a simple form and the corresponding function τ can be determined explicitly. To
be more precisely, let p = (pij)1≤i≤l,1≤j≤m be a probability vector and let µ = pN

be the product measure on X ×Σ. Denote by a = (ai)1≤i≤l, where ai =
∑m
j=1 pij .

Then ν = µ◦π−1 is just the product measure aN on X. By Lemma 4.1(i), for ν-a.e.
x = (xi)∞i=1 ∈ X,

µx(Jk(y)) = lim
n→∞

µ(In(x)× Jk(y))
ν(In(x))

=
k∏
i=1

pxiyi/axi

for all y = (yi)∞i=1 ∈ Σ and k ∈ N. By the definition of τx(q) and using Birkhoff
Ergodic theorem, we obtain the following explicit formula

τx(q) = − 1
logm

l∑
i=1

ai log

 m∑
j=1

pqij

− qai log ai

 for ν-a.e. x ∈ X.

We remark that the multifractal formalism also holds for the disintegrations of
Gibbs measures on a class of self-affine sets in the plane. Fix numbers 0 < aij , bi < 1
and 0 < cij , di < 1, for j = 1, . . . ,mi and i = 1, . . . , l such that the rectangles
Qij := [di, di + bi]× [cij , cij + aij ] are pairwise disjoint subsets of [0, 1]2. Set

D = {(i, j) : 1 ≤ j ≤ mi and 1 ≤ i ≤ l}.

Denote Tij

(
x

y

)
=
(
bi 0
0 aij

)(
x

y

)
+
(

di
cij

)
, so that Tij maps the unique

square onto Qij . These maps are contractions, so by Hutchinson [33] there exists
a unique compact set K satisfying

K =
⋃

(i,j)∈D

Tij(K).
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The Hausdorff dimension of K was determined by Lalley and Gatzouras [41] under
an additional assumption aij < bi (see [3] for an extension). Define R : DN → K

by

R((ik, jk)∞k=1) =
(

di1
ci1j1

)
+
∞∑
k=1

(
bi1 0
0 ai1j1

)
· · ·
(
bik 0
0 aikjk

)(
dik+1

cik+1jk+1

)
.

The map R is clearly one-to-one. Let µφ be the Gibbs measure on DN corresponding
to a Hölder continuous function φ. Set µ̃ = µφ ◦ R−1. Then µ̃ is a planar
measure supported on K. Denote ν̃ = µ̃ ◦ π−1, where π is the projection defined
by π(x, y) = x. Let {µ̃x}x∈R = {µ̃π−1(x)}x∈R be the disintegration of µ̃. Then
µ̃x satisfies the multifractal formalism for ν̃-a.e. x ∈ R. Whenever ni and
aij are independent of i, j, this result follows directly from Theorem 1.1. In
the general case, we may prove the result by taking a suitable modification in
our proof of Theorem 1.1. We just omit the details for brevity. For example,
let p = (pij)1≤i≤l,1≤j≤mi be a probability vector and let a = (ai)1≤i≤l, where
ai =

∑mi
j=1 pij . Let µφ = pN be the product measure on DN. Then µ̃ = µφ ◦ R−1

is a self-affine measure on K corresponding to p. In this case, τx(q) satisfies

l∑
i=1

(ai log
mi∑
j=1

pqija
−τx(q)
ij − qai log ai) = 0 for ν-a.e. x ∈ X.

We can say something about the structure of the irregular points. Take Theorem
1.3 for example. For α, β ∈ ∆P, define

Ew(α, β) =
{

lim inf
n→∞

1
n
SnΦ(w, y) = α, lim sup

n→∞

1
n
SnΦ(w, y) = β

}
.

We can show for P a.e. w,

dimHEw(α, β) = min{dimEw(α),dimEw(β)}, ∀ α, β ∈ ∆P. (5.1)

We give a sketch of the idea for the proof. For α ∈ ∆P, define

Ew(α) =
{
y : lim inf

n→∞

1
n
SnΦ(w, y) = α

}
, (5.2)

Ew(α) =
{
y : lim sup

n→∞

1
n
SnΦ(w, y) = α

}
, (5.3)

Ẽw(α) =
{
y : ∃ ni ↑ ∞ s.t. lim

i→∞

1
ni
SniΦ(w, y) = α

}
. (5.4)

Let Γ be as in Theorem 1.3. By standard Box-counting arguments, using the
cylinder covers from Fw(α;n, ε), we obtain

dimHẼw(α) ≤ Λw(α).

Hence we have for w ∈ Γ,

dimHEw(α) = dimHEw(α) = dimHẼw(α) = dimHEw(α),
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from which the “ ≤ ” direction of (5.1) follows immediately. For the other direction,
we simply let α2k = α, α2k+1 = β for k ∈ N in the proof of Proposition 3.9. Follow
the construction there, we can obtain a Moran set Υ ⊂ Ew(α, β) which satisfies

dimH(Υ) ≥ min {dimHEw(α), dimHEw(β)} .

Thus (5.1) holds. Note that from (5.1), we can deduce that for P a.e. w, the set of
divergence points

Dw(Φ) =
{
y : lim inf

n→∞

1
n
SnΦ(w, y) 6= lim sup

n→∞

1
n
SnΦ(w, y)

}
is either empty or has the same Hausdorff dimension as Σ (cf. [26, 9] for the proof
in the deterministic case).

We point out that in Theorems 1.2-1.3, Φ may be relaxed to be any uniformly
bounded equi-continuous Banach-valued functions. We refer the reader to [23] for
the corresponding statement and discussions in this aspect in the deterministic case.

Furthermore, in Theorems 1.1-1.3, (Σ, σ) can be relaxed to be a subshift
satisfying the specification condition (see [34] for the definition). More generally,
our method is valid to study the topological entropy (in the sense of Bowen [12])
of random level sets corresponding to compact dynamical systems satisfying the
specification condition and to set up a random version of the result in [55]. In
some spirit, our work on the disintegration of measures is related to the multifractal
analysis of random statistical self-similar measures (see, e.g., [1, 4, 28, 46]) and
multiplicative martingale measures (see, e.g., [5]). Our approach in this paper may
provide some new insights for the possible improvement of the results for those
topics.
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