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Abstract. The topological pressure is defined for sub-additive potentials via

separated sets and open covers in general compact dynamical systems. A vari-

ational principle for the topological pressure is set up without any additional
assumptions. The relations between different approaches in defining the topo-

logical pressure are discussed. The result will have some potential applications

in the multifractal analysis of iterated function systems with overlaps, the
distribution of Lyapunov exponents and the dimension theory in dynamical

systems.

1. Introduction and main results. The well-known notion of topological pres-
sure for additive potentials was first introduced by Ruelle [25] in 1973 for expansive
maps acting on compact metric spaces. In the same paper he formulated a vari-
ational principle for the topological pressure. Later Walters [28] generalized these
results to general continuous maps on compact metric spaces. The variational prin-
ciple formulated by Walters can be stated precisely as follows: Let T : X → X be
a continuous transformation on a compact metric space (X, d) and φ : X → R an
arbitrary continuous function. Let P (φ, T ) denote the topological pressure of φ (see
[29]). Then

P (φ, T ) = sup
{
hµ(T ) +

∫
φ dµ : µ ∈M(X,T )

}
, (1)

where M(X,T ) denotes the space of all T -invariant Borel probability measures on
X endowed with the weak* topology, and hµ(T ) denotes the measure-theoretical
entropy of µ. A T -invariant Borel probability measure µ such that P (φ, T ) =
hµ(T ) +

∫
φ dµ, if it exists, is called an equilibrium state for φ. The theory about
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the topological pressure, variational principle and equilibrium states plays a fun-
damental role in statistical mechanics, ergodic theory and dynamical systems (see,
e.g., [4, 18, 26, 29]). Since the works of Bowen [5] and Ruelle [27], the topological
pressure has also become a basic tool in the dimension theory in dynamical systems
(see, e.g., [23, 30]). In 1984, Pesin and Pitskel’ [24] defined the topological pres-
sure of additive potentials for non-compact subsets of compact metric spaces and
proved the variational principle under some supplementary conditions. Their work
extended Bowen’s results in [3] on topological entropy for non-compact sets.

In this paper, we generalize Ruelle and Walters’s results to sub-additive potentials
in general compact dynamical systems. We define the topological pressure for sub-
additive potentials F = {log fn}∞n=1 and set up a variational principle between the
topological pressure, measure-theoretical entropies and Lyapunov exponents. It is
now log fn which plays the role of the classical potential. More precise, log fn plays
the role of φ+ φ ◦ T + . . .+ φ ◦ Tn−1.

To formulate our results, let T : X → X be a continuous transformation on a
compact metric space (X, d). A sequence F = {log fn}∞n=1 of functions on X is
called sub-additive if each fn is a continuous non-negative valued function on X
such that

0 ≤ fn+m(x) ≤ fn(x)fm(Tnx), ∀x ∈ X, m, n ∈ N. (2)

We first define the topological pressure of F with respect to T . As usual for any
n ∈ N and ε > 0, a set E ⊆ X is said to be an (n, ε)-separated subset of X with
respect to T if max0≤i≤n−1 d(T ix, T iy) > ε for any two different points x, y ∈ E.
Define

Pn(T,F , ε) = sup

{∑
x∈E

fn(x) : E is an (n, ε)-separated subset of X

}
.

It is clear that Pn(T,F , ε) is a decreasing function of ε. Define

P (T,F , ε) = lim sup
n→∞

1
n

logPn(T,F , ε).

P (T,F , ε) is also a decreasing function of ε. Set P (T,F) = limε→0 P (T,F , ε) and
we call it the topological pressure of F with respect to T . By the definition, P (T,F)
takes a value in [−∞,+∞).

For a T -invariant Borel probability measure µ, denote

F∗(µ) = lim
n→∞

1
n

∫
log fndµ.

The existence of the above limit follows from a sub-additive argument. We call
F∗(µ) the Lyapunov exponent of F with respect to µ. It also takes a value in
[−∞,+∞). As a main result, we obtain the following variational principle.

Theorem 1.1. Let F = {log fn}∞n=1 be a sub-additive potential on a compact dy-
namical system (X,T ). Then

P (T,F) =

 −∞, if F∗(µ) = −∞ for all µ ∈M(X,T ),

sup {hµ(T ) + F∗(µ) : µ ∈M(X,T ), F∗(µ) 6= −∞} , otherwise.

In the above theorem we adopt the rigorous expression just in order to avoid the
situation that hµ(T ) = +∞ and F∗(µ) = −∞ take place simultaneously. If there is
no such confusion, for instance the topological entropy of T is assumed to be finite,
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then we can state the variational principle simply as: P (T,F) = sup{hµ(T )+F∗(µ) :
µ ∈M(X,T )}.

Our original motivation for studying the above issue comes from the study of
multifractal formalism for self-similar measures with overlaps (the reader is referred
to [11, 23] for some basic information about self-similar measures and multifractals).
It is known that in many interesting cases a self-similar measure with overlaps
can be locally represented as infinite products of a family of matrices (see, e.g.,
[12, 15, 19, 20]). Thus to understand the corresponding multifractal formalism
for these measures one needs to study the distribution of Lyapunov exponents for
products of matrices. A similar task also arises in the study of regularity of the
solutions of refinement equations in wavelets (see [6, 7, 8]). For the above purpose, a
thermodynamic formalism (pressure functions, Gibbs measures and the distribution
of Lyapunov exponents) for non-negative matrix-valued potentials was developed
in [13, 16]. Moreover, a variational principle for products of non-negative matrices
in symbolic spaces was set up by Feng in [14]. Namely, let M be a continuous non-
negative matrix-valued function defined on a mixing sub-shift space and denote F =
{log fn} where fn(x) = ‖

∏n−1
i=0 M(T ix)‖, and ‖ · ‖ denotes the norm of matrices,

then Theorem 1.1 was proved in [14] under this special setting. However due to
Theorem 1.1, we have the following more general result about products of matrices:

Corollary 1.2. Let M be a continuous function defined on (X,T ) taking values in
the set of all d × d (real or complex) matrices. Let F = {log fn} where fn(x) =
‖
∏n−1

i=0 M(T ix)‖, and ‖·‖ denotes the norm of matrices, then the result of Theorem
1.1 holds.

We point out that Falconer and Barreira had some earlier contributions in the
study of thermodynamic formalism for sub-additive potentials. In [9], Falconer
considered the thermodynamic formalism for sub-additive potentials on mixing re-
pellers. He proved the variational principle for the topological pressure under some
Lipschitz conditions and bounded distortion assumptions on the sub-additive po-
tentials. More precise, he assumed that there exist constants M,a, b > 0 such that

1
n
|log fn(x)| ≤M,

1
n
|log fn(x)− log fn(y)| ≤ a|x− y|, ∀x, y ∈ X,n ∈ N

and | log fn(x) − log fn(y)| ≤ b whenever x, y belong to the same n-cylinder of the
mixing repeller X. In 1996, Barreira [1] extended the work of Pesin and Pitskel’
[24]. He defined the topological pressure for an arbitrary sequence of continuous
functions on an arbitrary subset of compact metric space and proved the variational
principle under a strong convergence assumption on the potentials. Corresponding
to our setting, Barreira assumed that there exists a continuous function ψ : X → R
such that log fn+1 − log(fn ◦ T ) converges to ψ uniformly on X. We remark that
the assumptions given by Falconer and Barreira are usually not satisfied by general
sub-additive potentials, for instance, the one generated by the product of general
matrices in Corollary 1.2.

The major virtue of our result is that we don’t need any additional assumptions
on the compact continuous dynamical system (X,T ) nor any regularity assump-
tion on F . Our definition of the topological pressure for sub-additive potentials in
this section adopts an approach via separated sets, which is similar to the classical
additive case (see Walters’ book [29]). It is proved to be equivalent to Falconer’s
definition in the mixing repeller case. Nevertheless our definition is different from
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that of Barreira through open covers. We don’t know if in general these two def-
initions are equivalent. However, we do prove that they are equivalent in some
situations (for instance, when the entropy map is upper semi-continuous and the
topological entropy is bounded). In section 4, we provide another definition of the
topological pressure via open covers, which is equivalent to the one given in this
section.

Our proof of Theorem 1.1 is a generalization of Misiurewicz’s elegant proof of the
classical variational principle [21]. The principal applications of Theorem 1.1 are
closely related to the dimension estimates for a broad class of Cantor-like sets and
dynamical repellers [1, 11], the multifractal structure of iterated function systems
with overlaps [12, 20], the distribution of Lyapunov exponents of a dynamical system
[9, 13].

After a first version of this paper was completed, we were informed that Barreira
[2] and Mummert [22] independently considered the thermodynamic formalism of
almost-additive potentials, where F = {log fn} is assumed to satisfy

0 < c−1fn(x)fm(Tnx) ≤ fn+m(x) ≤ cfn(x)fm(Tnx).

They proved the variational principle under an additional tempered variation con-
dition and gave some conditions for the existence and uniqueness of equilibrium
states and Gibbs measures. We were also informed that Käenmäki [17] proved the
variational principle on full shift symbolic spaces for a class of special sub-additive
potentials F = {log fn} (where fn(x) were assumed to depend upon only the first
n coordinates of x) using the upper semi-continuity of the entropy map on sym-
bolic spaces, she also showed that for typical self-affine sets there exists an ergodic
invariant measure having the same Hausdorff dimension as the set itself.

The paper is arranged in the following manner: in section 2 we provide some
useful lemmas, in section 3 we prove Theorem 1.1, and in section 4 we discuss the
relations between different approaches in the definition of the topological pressure.

2. Some Lemmas. In this section, we give some lemmas which are needed in our
proof of Theorem 1.1.

Let F = {log fn}∞n=1 be a sequence of functions defined on a compact metric
space (X, d), and T : X → X a continuous map. Assume that F is sub-additive.
Let P (T,F) be defined as in section 1. We begin with the following lemma.

Lemma 2.1. For any k ∈ N, we have

P
(
T k,F (k)

)
= kP (T,F),

where T k := T ◦ · · · ◦ T︸ ︷︷ ︸
k times

and F (k) := {log fkn}∞n=1.

Proof. Fix k ∈ N. Observe that if E is an (n, ε)-separated subset of X with respect
to T k, then E must be an (nk, ε)-separated subset of X with respect to T . It follows
that

Pn

(
T k,F (k), ε

)
= sup

{∑
x∈E

fkn(x) : E is (n, ε)-separated w.r.t T k

}

≤ sup

{∑
x∈E

fkn(x) : E is (nk, ε)-separated w.r.t T

}
= Pkn(T,F , ε),
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from which we deduce that P (T k,F (k)) ≤ kP (T,F).
To show the reverse inequality, for any ε > 0 we choose δ > 0 small enough such

that
d(x, y) ≤ δ =⇒ max

1≤i≤k−1
d(T ix, T iy) < ε. (3)

Define C = max (1, supx∈X f1(x)). Then 1 ≤ C <∞. Moreover

fn(x) ≤ f1(x)f1(Tx) . . . f1(Tn−1x) ≤ Cn

for all x ∈ X and n ∈ N. Now for any given natural number n, let ` be an arbitrary
integer in [kn, k(n+1)). Observe that by (3), any (`, ε)-separated subset of X with
respect to T must be an (n, δ)-separated subset of X with respect to T k. This
observation together with f`(x) ≤ fnk(x)f`−nk(Tnkx) ≤ Ckfnk(x) yields

P`(T,F , ε) = sup

{∑
x∈E

f`(x) : E is (`, ε)-separated w.r.t T

}

≤ sup

{∑
x∈E

Ckfkn(x) : E is (n, δ)-separated w.r.t T k

}
= CkPn(T k,F (k), δ).

This implies kP (T,F) ≤ P (T k,F (k)).

Lemma 2.2. Let n, k be two positive integers with n ≥ 2k. For any x ∈ X, we
have

(fn(x))k ≤ C2k2
n−k∏
j=0

fk(T jx),

where C = max (1, supx∈X f1(x)).

Proof. Let x ∈ X. For j = 0, 1, . . . , k − 1, we have

fn(x) ≤ fj(x)fn−j(T jx) ≤ Cjfn−j(T jx).

Hence

(fn(x))k ≤
k−1∏
j=0

Cjfn−j(T jx) ≤ Ck2
k−1∏
j=0

fn−j(T jx). (4)

Observe that for any given j between 0 and k − 1,

fn−j(T jx) ≤

(
tj−1∏
`=0

fk(T k`+jx)

)
fn−j−ktj

(T ktj+jx) ≤ Ck

(
tj−1∏
`=0

fk(T k`+jx)

)
,

where tj is the largest integer t so that kt+ j ≤ n. Combining the above inequality
with (4) yields

(fn(x))k ≤ C2k2
k−1∏
j=0

tj−1∏
l=0

fk(T k`+jx) = C2k2
n−k∏
j=0

fk(T jx).

This finishes the proof of the lemma.

After a first version of this paper was completed, we were informed that an
analogous inequality, (fn(x))k ≤ C3k2 ∏n−1

j=0 fk(T jx), was obtained by Käenmäki
(see [17, Lemma 2.2]).
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Lemma 2.3. Suppose {νn}∞n=1 is a sequence in M(X), where M(X) denotes the
space of all Borel probability measures on X with the weak* topology. We form the
new sequence {µn}∞n=1 by µn = 1

n

∑n−1
i=0 νn ◦ T−i. Assume that µni

converges to µ
in M(X) for some subsequence {ni} of natural numbers. Then µ ∈ M(X,T ), and
moreover

lim sup
i→∞

1
ni

∫
log fni(x) dνni(x) ≤ F∗(µ).

Proof. The statement µ ∈ M(X,T ) is well-known (see [29, Theorem 6.9] for a
proof). To show the desired inequality, we fix an k ∈ N. For n ≥ 2k, by Lemma 2.2
we have

1
n

∫
log fn(x) dνn(x) =

1
kn

∫
log (fn(x))k

dνn(x)

≤ 1
kn

∫ n−k∑
j=0

log fk(T jx) dνn(x) + 2k2 logC


=

n− k + 1
kn

∫
log fk dµn,k +

2k logC
n

,

where µn,k = 1
n−k+1

∑n−k
j=0 νn ◦ T−i. In particular,

1
ni

∫
log fni

dνni
≤ ni − k + 1

nik

∫
log fk dµni,k +

2k logC
ni

. (5)

Note that for any g ∈ C(X),∣∣∣∣n ∫ g dµn − (n− k + 1)
∫
g dµn,k

∣∣∣∣ =

∣∣∣∣∣
n−1∑

i=n−k+1

∫
g(T ix) dνn(x)

∣∣∣∣∣
≤ (k − 1) sup

x∈X
|g(x)|.

It follows that limn→∞(
∫
g dµn −

∫
g dµn,k) = 0. Since limi→∞ µni

= µ, we have
limi→∞ µni,k = µ. Notice that fk is a non-negative continuous function on X. We
have

lim sup
i→∞

∫
log fk dµni,k ≤ lim

ε↓0
lim sup

i→∞

∫
log(fk + ε) dµni,k

= lim
ε↓0

∫
log(fk + ε) dµ

=
∫

log fk dµ.

Combining it with (5) yields

lim sup
i→∞

1
ni

∫
log fni

dνni
≤ 1
k

∫
log fk dµ.

Now the desired inequality follows by letting k →∞.

Lemma 2.4. Let ν ∈M(X). Suppose ξ = {A1, . . . , Ak} is a partition of (X,B(X)).
Then for any positive integers n, ` with n ≥ 2`, we have

1
n
Hν

(
n−1∨
i=0

T−iξ

)
≤ 1
`
Hνn

(
`−1∨
i=0

T−iξ

)
+

2`
n

log k,

where νn = 1
n

∑n−1
i=0 ν ◦ T−i.
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Proof. The above result is contained implicitly in the proof of the classical vari-
ational principle given by Misiurewicz (see [29]). In the following we present a
complete proof for the reader’s convenience.

For 0 ≤ j ≤ `− 1, let tj denote the largest integer t so that t`+ j ≤ n. Then we
have

n−1∨
i=0

T−iξ =
tj−1∨
r=0

T−r`−j
`−1∨
i=0

T−iξ ∨
∨

m∈Sj

T−mξ

for any 0 ≤ j ≤ `−1, where Sj is a subset of {0, . . . , n−1} with cardinality at most
2`. Hence

Hν

(
n−1∨
i=0

T−iξ

)
≤

tj−1∑
r=0

Hν

(
T−r`−j

`−1∨
i=0

T−iξ

)
+ 2` log k.

Summing this over j from 0 to `− 1 gives

`Hν

(
n−1∨
i=0

T−iξ

)
≤

`−1∑
j=0

tj−1∑
r=0

Hν

(
T−r`−j

`−1∨
i=0

T−iξ

)
+ 2`2 log k

=
n−∑̀
p=0

Hν

(
T−p

`−1∨
i=0

T−iξ

)
+ 2`2 log k

≤
n−1∑
p=0

Hν

(
T−p

`−1∨
i=0

T−iξ

)
+ 2`2 log k

=
n−1∑
p=0

Hν◦T−p

(
`−1∨
i=0

T−iξ

)
+ 2`2 log k

≤ nHνn

(
`−1∨
i=0

T−iξ

)
+ 2`2 log k,

where the last inequality has used the concavity of the function φ(x) = −x log x.
This implies the desired inequality.

3. The proof of Theorem 1.1. In this section we give the proof of Theorem
1.1, which is influenced by Misiurewicz’s elegant proof of the classical variational
principle [21].

Proof of Theorem 1.1. We divide the proof into three small steps:

Step 1: P (T,F) ≥ hµ(T ) + F∗(µ), ∀µ ∈M(X,T ) with F∗(µ) 6= −∞.
Suppose µ is an element inM(X,T ) satisfying F∗(µ) 6= −∞. Let ξ = {A1, . . . , Ak}

be a partition of (X,B(X)). Let α > 0 be given. Choose ε > 0 so that εk log k < α.
Since µ is regular there are compact sets Bj ⊆ Aj with µ(Aj\Bj) < ε, 1 ≤ j ≤ k.
Let η be the partition {B0, B1, . . . , Bk}, where B0 = X\

⋃k
j=1Bj . Then a direct

check shows Hµ(ξ/η) < εk log k < α (see [29, Page 189] for details). Now set
b = min1≤i 6=j≤k d(Bi, Bj) > 0. Pick δ > 0 so that δ < b/2.

Let n ∈ N. For each C ∈
∨n−1

j=0 T
−jη, choose some x(C) ∈ Closure(C) such that

fn(x(C)) = supy∈C fn(y). We claim that for each C ∈
∨n−1

j=0 T
−jη, there are at
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most 2n many different C̃’s in
∨n−1

j=0 T
−jη such that

dn(x(C), x(C̃)) := max
0≤j≤n−1

d
(
T j(x(C)), T j(x(C̃))

)
< δ.

To see this claim, for each C ∈
∨n−1

j=0 T
−jη we pick the unique index

(i0(C), i1(C), . . . , in−1(C)) ∈ {0, 1, . . . , k}n such that

C = Bi0(C) ∩ T−1Bi1(C) ∩ · · · ∩ T−(n−1)Bin−1(C).

Now fix a C ∈
∨n−1

j=0 T
−jη and let Y denote the collection of all C̃ ∈

∨n−1
j=0 T

−jη

with dn(x(C), x(C̃)) < δ. Then we have

#
{
i`(C̃) : C̃ ∈ Y

}
≤ 2, ` = 0, 1, . . . , n− 1. (6)

To see this inequality, we assume on the contrary that there exists 0 ≤ ` ≤ n − 1
and C̃1, C̃2, C̃3 ∈ Y such that i`(C̃1), i`(C̃2), i`(C̃3) are distinct. Without loss of
generality, we assume i`(C̃1) 6= 0 and i`(C̃2) 6= 0. This implies

dn

(
x(C̃1), x(C̃2)

)
≥ d

(
T `(x(C̃1)), T `(x(C̃2))

)
≥ d

(
Bi`(C̃1)

, Bi`(C̃2))

)
≥ b > 2δ > dn

(
x(C), x(C̃1)

)
+ dn

(
x(C), x(C̃2)

)
,

which leads to a contradiction. Thus (6) is true, from which the claim follows.
In the following we construct an (n, δ)-separated subset E of X with respect to

T such that
2n
∑
y∈E

fn(y) ≥
∑

C∈
∨n−1

j=0 T−jη

fn(x(C)). (7)

To achieve this purpose we first choose an element C1 ∈
∨n−1

j=0 T
−jη such that

fn(x(C1)) = max
C∈

∨n−1
j=0 T−jη

fn(x(C)).

Let Y1 denote the collection of all C̃ ∈
∨n−1

j=0 T
−jη with dn(x(C1), x(C̃)) < δ.

Then the cardinality of Y1 does not exceed 2n. If the collection
∨n−1

j=0 T
−jη\Y1

is not empty, we choose an element C2 ∈
∨n−1

j=0 T
−jη\Y1 such that fn(x(C2)) =

maxC∈
∨n−1

j=0 T−jη\Y1
fn(x(C)). Let Y2 denote the collection of C̃ ∈

∨n−1
j=0 T

−jη\Y1

with dn(x(C2), x(C̃)) < δ. We continue this process. More precise, in step m we
choose an element Cm ∈

∨n−1
j=0 T

−jη\
⋃m−1

j=1 Yj such that

fn(x(Cm)) = max
C∈

∨n−1
j=0 T−jη\

⋃m−1
j=1 Yj

fn(x(C)).

Let Ym denote the collection of all C̃ ∈
∨n−1

j=0 T
−jη\

⋃m−1
j=1 Yj with dn(x(Cm), x(C̃)) <

δ. Since the partition
∨n−1

j=0 T
−jη is finite, the above process will stop at some step

`. Denote E = {x(Cj) : j = 1, . . . , `}. Then E is (n, δ)-separated and

∑
y∈E

fn(y) =
∑̀
j=1

fn(x(Cj)) ≥
∑̀
j=1

2−n
∑

C∈Yj

fn(x(C)) = 2−n
∑

C∈
∨n−1

j=0 T−jη

fn(x(C)),

from which (7) follows.
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Recall µ ∈M(X,T ) and F∗(µ) 6= −∞. We have

1
n
Hµ

n−1∨
j=0

T−jη

+
1
n

∫
log fn(x) dµ(x)

≤ 1
n

∑
C∈

∨n−1
j=0 T−jη

µ(C) (log fn(x(C))− logµ(C))

≤ 1
n

log
∑

C∈
∨n−1

j=0 T−jη

fn(x(C))

≤ 1
n

log

2n
∑
y∈E

fn(y)


≤ log 2 +

1
n

logPn(T,F , δ).

In the second inequality above, we have used the basic inequality
∑m

i=1 pi(ci −
log pi) ≤ log

∑m
i=1 e

ci , where ci ∈ R, pi ≥ 0 and
∑m

i=1 pi = 1 (see [4, p. 4] for a
proof). Now taking n→∞ and δ → 0, we obtain hµ(T, η)+F∗(µ) ≤ log 2+P (T,F).
Hence

hµ(T, ξ) + F∗(µ) ≤ hµ(T, η) +Hµ(ξ/η) + F∗(µ) ≤ log 2 + α+ P (T,F).

Since ξ and α are arbitrary, we have

hµ(T ) + F∗(µ) ≤ log 2 + P (T,F).

This holds for all continuous maps T and sub-additive potentials F . Thus we can
apply it to T k and F (k) to obtain

k(hµ(T ) + F∗(µ)) = hµ(T k) + F (k)
∗ (µ) ≤ log 2 + P (T k,F (k)) = log 2 + kP (T,F),

where the last equality follows from Lemma 2.1. Here we have used the fact that
µ ∈M(X,T k) and F (k)

∗ (µ) = kF∗(µ) 6= −∞. Since k is arbitrary, we have hµ(T )+
F∗(µ) ≤ P (T,F).

Step 2: If P (T,F) 6= −∞, then for any small enough ε > 0, there exists a
µ ∈M(X,T ) such that F∗(µ) 6= −∞ and hµ(T ) + F∗(µ) ≥ P (T,F , ε).

Let ε > 0 be small enough such that P (T,F , ε) 6= −∞. For any n ∈ N, let En be
an (n, ε)-separated subset of X with respect to T such that fn(y) > 0 for all y ∈ En

and
log

∑
y∈En

fn(y) ≥ logPn(T,F , ε)− 1.

Let σn ∈M(X) be the atomic measure concentrated on En by the formula

σn =

∑
y∈En

fn(y)δy∑
y∈En

fn(y)
,

where δy denote the Dirac measure at y. Let µn = 1
n

∑n−1
i=0 σn ◦ T−i. Since M(X)

is compact we can choose a subsequence {ni} of natural numbers such that

lim
i→∞

1
ni

logPni(T,F , ε) = P (T,F , ε)

and {µni} converges in M(X) to some µ ∈M(X). By Lemma 2.3, µ ∈M(X,T ).
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Choose a partition ξ = {A1, . . . , Ak} of (X,B(X)) so that diam(Ai) < ε and
µ(∂Ai) = 0 for 1 ≤ i ≤ k. Such a partition does exist (see [29, Lemma 8.5] for a
proof). Since each element of

∨n−1
j=0 T

−jξ contains at most one point of En, we have

Hσn

n−1∨
j=0

T−jξ

+
∫

log fn dσn =
∑

y∈En

σn({y}) (log fn(y) − log σn({y}))

=
∑

y∈En

σn({y}) log

(∑
z∈En

fn(z)

)
= log

∑
z∈En

fn(z) ≥ logPn(T,F , ε)− 1.

Thus
1
n
Hσn

n−1∨
j=0

T−jξ

+
1
n

∫
log fn dσn ≥

1
n

logPn(T,F , ε)− 1
n
. (8)

Fix ` ∈ N. By Lemma 2.4, we have for ni ≥ 2`,

1
ni
Hσni

ni−1∨
j=0

T−jξ

 ≤ 1
`
Hµni

`−1∨
j=0

T−jξ

+
2`
ni

log k. (9)

Since µ(∂Ai) = 0 and {µni
} converges to µ , we have

lim
i→∞

1
`
Hµni

`−1∨
j=0

T−jξ

 =
1
`
Hµ

`−1∨
j=0

T−jξ

 .

This together with (9) gives

lim sup
i→∞

1
ni
Hσni

ni−1∨
j=0

T−jξ

 ≤ 1
`
Hµ

`−1∨
j=0

T−jξ

 .

Meanwhile by Lemma 2.3,

lim sup
i→∞

1
ni

∫
log fni dσni ≤ F∗(µ).

Combining these two inequalities with (8) yields

1
`
Hµ

(
`−1∨
i=0

T−iξ

)
+ F∗(µ) ≥ P (T,F , ε).

Since Hµ

(∨`−1
i=0 T

−iξ
)
∈ [0,+∞) and P (T,F , ε) 6= −∞, we have F∗(µ) 6= −∞.

Taking `→ +∞ yields

hµ(T ) + F∗(µ) ≥ hµ(T, ξ) + F∗(µ) = lim
`→∞

1
`
Hµ

(
`−1∨
i=0

T−iξ

)
+ F∗(µ) ≥ P (T,F , ε).

Step 3: P (T,F) = −∞ if and only if F∗(µ) = −∞ for all µ ∈M(X,T ).
By step 1 we have P (T,F) ≥ F∗(µ) for all µ ∈ M(X,T ) with F∗(µ) 6= −∞,

which shows the necessity. The sufficiency is implied by step 2 (since if P (T,F) 6=
−∞, then by step 2 there exists some µ with F∗(µ) 6= −∞). This finishes the proof
the theorem.
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4. Other definitions of topological pressures for sub-additive potentials.
In this section, we first discuss the definitions of topological pressures given by
Falconer [9] and Barreira [1]. Then we provide an equivalent definition via open
covers, following the idea of Bowen used in his definition of topological entropy for
non-compact sets.

In [9], Falconer gave a definition of topological pressures on mixing repellers.
Without loss of generality, we only consider one-sided sub-shifts of finite type rather
than mixing repellers. Let (ΣA, σ) be a one-sided sub-shift space over an alphabet
{1, . . . ,m}, where m ≥ 2 (see [4]). As usual ΣA is endowed with the metric d(x, y) =
m−n+1 where x = (xk)∞k=1, y = (yk)∞k=1 and n is the smallest of the k such that xk 6=
yk. For any admissible string I = i1 . . . in of length n over the letters {1, . . . ,m},
denote [I] = {(xk) ∈ ΣA : xj = ij for 1 ≤ j ≤ n}. The [I] is called an n-cylinder in
ΣA.

Let F be a sub-additive sequence of functions on ΣA. In [9], Falconer defined
the topological pressure of F by

FP (σ,F) = lim
n→∞

1
n

logFPn(σ,F) and FPn(σ,F) =
∑
[I]

sup
x∈[I]

fn(x),

where the summation is taken over the collection of all n-cylinders in ΣA. It is not
so hard to see that in this special case, FPn(σ,F) is identical to Pn(σ,F , 1/m), and
Pn(σ,F ,m−k) = FPn+k−1(σ,F) for all k ∈ N. This implies FP (σ,F) = P (σ,F).

Now let us turn to Barreira’s approach in defining pressures for sub-additive
potentials via open covers. As in the previous sections, let T be a continuous map
acting on a compact metric space (X, d). Let F = {log fn}∞n=1 be a sub-additive
sequence of functions defined on X. Suppose that U is a finite open cover of the
space X. Denote diam(U) := max{diam(U) : U ∈ U}. For n ≥ 1 we denote by
Wn(U) the collection of strings U = U1 . . . Un with Ui ∈ U . For U ∈ Wn(U) we call
the integer m(U) = n the length of U and define

X(U) = U1 ∩ T−1U2 ∩ . . . ∩ T−(n−1)Un

=
{
x ∈ X : T j−1x ∈ Uj for j = 1, . . . , n

}
.

We say that Γ ⊂
⋃

n≥1Wn(U) covers X if
⋃

U∈ΓX(U) = X. For each U ∈ Wn(U),
we write f(U) = supx∈X(U) fn(x) when X(U) 6= ∅ and f(U) = −∞ otherwise. For
s ∈ R, define

M(T, s,F ,U) = lim
n→∞

inf
Γn

∑
U∈Γn

e−sm(U)f(U),

where the infimum is taken over all Γn ⊂
⋃

j≥nWj(U) that cover X. Likewise, we
define

M(T, s,F ,U) = lim inf
n→∞

inf
Γn

∑
U∈Γn

e−sm(U)f(U),

M(T, s,F ,U) = lim sup
n→∞

inf
Γn

∑
U∈Γn

e−sm(U)f(U),

where the infimum is taken over all Γn ⊂ Wn(U) that cover X. Define

P ∗(T,F ,U) = inf{s : M(T, s,F ,U) = 0} = sup{s : M(T, s,F ,U) = +∞},

CP ∗(T,F ,U) = inf{s : M(T, s,F ,U) = 0} = sup{s : M(T, s,F ,U) = +∞},

CP ∗(T,F ,U) = inf{s : M(T, s,F ,U) = 0} = sup{s : M(T, s,F ,U) = +∞}.
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Define

P ∗(T,F) = lim inf
diam(U)→0

P ∗(T,F ,U),

CP ∗(T,F) = lim inf
diam(U)→0

CP ∗(T,F ,U),

CP ∗(T,F) = lim inf
diam(U)→0

CP ∗(T,F ,U).

Barreira named P ∗(T,F) the topological pressure, CP ∗(T,F) and CP ∗(T,F) the
lower and upper topological pressures of F . In the following we prove

Lemma 4.1. For any finite open cover U of X, we have

P ∗(T,F ,U) = CP ∗(T,F ,U) = CP ∗(T,F ,U).

Proof. The lemma was first proved by Barreira (see [1, Theorem 1.6]) under an
additional assumption that 0 < fn < Cfn+1 for a constant C > 0. In the following
we modify Barreira’s argument to obtain the general result.

Fix a finite open cover U of X. By the definitions we have immediately that

P ∗(T,F ,U) ≤ CP ∗(T,F ,U) ≤ CP ∗(T,F ,U).

Thus to prove the lemma it suffices to show P ∗(T,F ,U) ≥ CP ∗(T,F ,U). To see
this inequality we may assume P ∗(T,F ,U) < +∞. Take any s ∈ R such that
s > P ∗(T,F ,U). Then there exists a Γ ⊂

⋃
n≥1Wn(U) which covers X and

N(Γ) :=
∑
U∈Γ

e−sm(U)f(U) < 1.

Since X is compact, the Γ can be assumed to be finite. Define Γn = {U1 . . .Un :
Ui ∈ Γ} and Γ∞ =

⋃
n≥1 Γn. Since F is sub-additive, we have

N(Γn) :=
∑

U∈Γn

e−sm(U)f(U) ≤ N(Γ)n,

and

N(Γ∞) :=
∑

U∈Γ∞

e−sm(U)f(U) ≤
∞∑

n=1

N(Γ)n <
1

1−N(Γ)
.

Define K = max{m(U) : U ∈ Γ}. For any integer n ≥ 2K, define

Λn =

{
U1U2 . . .Uk : Ui ∈ Γ for 1 ≤ i ≤ k,

k−1∑
i=1

m(Ui) < n−K ≤
k∑

i=1

m(Ui)

}
.

It is clear n − K ≤ m(U) < n for any U ∈ Λn. Furthermore Λn ⊂ Γ∞ and Λn

covers X. Now define

Λ̃n =
{
UV : U ∈ Λn,V ∈ Wn−m(U)(U)

}
.
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Then Λ̃n ⊂ Wn(U) covers X. Observe that∑
U∈Λn,V∈Wn−m(U)(U)

e−sm(UV)f(UV)

≤

( ∑
U∈Λn

e−sm(U)f(U)

) ∑
V∈

⋃K
j=1Wj(U)

e−sm(V)f(V)


≤ N(Γ∞)

 ∑
V∈

⋃K
j=1Wj(U)

e−sm(V)f(V)

 <∞.

We have M(T, s,F ,U) < ∞. Hence CP ∗(T,F ,U) ≤ s. It follows CP ∗(T,F ,U) ≤
P ∗(T,F ,U). This finishes the proof of the lemma.

As a direct corollary, we have

Corollary 4.2. P ∗(T,F) = CP ∗(T,F) = CP ∗(T,F).

Now we consider the connection between P ∗(T,F) and P (T,F).

Lemma 4.3. P ∗(T,F) ≥ P (T,F).

Proof. The following proof is a slightly modified version of the proof of Theorem
9.2 of [29]. For any open cover U of X, denote

Qn(T,F ,U) = inf
Γ

∑
U∈Γ

f(U).

where the infimum is taken over all Γ ⊂ Wn(U) that cover X. It is clear that

CP ∗(T,F ,U) = lim sup
n→∞

1
n

logQn(T,F ,U).

For any ε > 0, suppose U is an open cover ofX with diam(U) < ε. Let E be an (n, ε)-
separated subset of X with respect to T . Since no members of

∨n−1
i=0 T

−iU contains
two elements of E we have

∑
x∈E fn(x) ≤ Qn(T,F ,U), therefore Pn(T,F , ε) ≤

Qn(T,F ,U). Letting ε→ 0 we obtain P (T,F) ≤ CP ∗(T,F) = P ∗(T,F).

We don’t know whether the equality P ∗(T,F) = P (T,F) always holds under
the above general setting. However we can show the equality in several cases, see
Propositions 4.4-4.7.

Proposition 4.4. Assume the topological entropy h(T ) <∞ and the entropy map
µ 7→ hµ(T ) is upper semi-continuous. Then P ∗(T,F) = P (T,F).

Proof. We divide the proof into several small steps.
Step 1. P ∗(T,F) ≤ sup{hµ(T ) +

∫
1
k log(fk + ε)dµ} for any ε > 0 and k ∈ N.

Fix ε > 0 and k ∈ N. Define g(x) = (fk(x) + ε)1/k. Set G = {gn}∞n=1, where
gn(x) =

∏n−1
j=0 g(T

jx). Then by Walters’ variational principle (see (1) and [29,
Theorem 9.4]),

P ∗(T,G) = sup
{
hµ(T ) +

∫
1
k

log(fk + ε)dµ : µ ∈M(X,T )
}
.

Set C = max(1, supx∈X f1(x)). Then by Lemma 2.2,

fn(x) ≤ C2kgn−k(x) ≤ C2kε−kgn(x), ∀x ∈ X, n ∈ N.
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It follows P ∗(T,F) ≤ P ∗(T,G), and thus

P ∗(T,F) ≤ sup
{
hµ(T ) +

∫
1
k

log(fk + ε)dµ, µ ∈M(X,T )
}
.

Step 2. For any k ∈ N,

lim
ε↓0

sup
{
hµ(T ) +

∫
1
k

log(fk + ε)dµ, µ ∈M(X,T )
}

= sup
{
hµ(T ) +

∫
1
k

log fkdµ, µ ∈M(X,T )
}
.

In this step, we will use the assumption hµ(T ) < ∞ and the entropy map is
upper semi-continuous. Denote by A the value of the first limit. Then there exist
a convergent sequence {µn} in M(X,T ), and {εn} ↓ 0 such that limn→∞ hµn(T )
equals a finite value (denoted by B) and furthermore

lim
n→∞

∫
1
k

log(fk + εn)dµn = A−B.

Let ν denote the limit of {µn}. For any fixed ε > 0,

lim
n→∞

∫
1
k

log(fk + εn)dµn ≤ lim
n→∞

∫
1
k

log(fk + ε)dµn.

Therefore

lim
n→∞

∫
1
k

log(fk + εn)dµn ≤
∫

1
k

log(fk + ε)dν.

Letting ε ↓ 0, we obtain

lim
n→∞

∫
1
k

log(fk + εn)dµn ≤
∫

1
k

log fkdν.

On the other hand, hν(T ) ≥ limn→∞ hµn(T ) = B. The above two inequalities
imply

hν(T ) +
∫

1
k

log fkdν ≥ B + (A−B) = A.

Thus the desired equality follows.
Step 3. limk→∞ sup{hµ(T )+

∫
1
k log fkdµ, µ ∈M(X,T )} = sup{hµ(T )+F∗(µ), µ ∈

M(X,T )}.
The direction “≥” is clear. To show the other direction, we will also use the assump-
tion that h(T ) <∞ and the entropy map is upper semi-continuous. We denote by A
the value of the first limit. Then there exist {µn} → ν in M(X,T ), and {kn} ↑ +∞
such that limn→∞ hµn

(T ) equals a finite value (denoted by B) and furthermore

lim
n→∞

∫
1
kn

log fkn
dµn = A−B.

Fix ` ∈ N. Then by Lemma 2.2, for large n ∈ N we have

(fkn(x))` ≤ C2`2
kn−`∏
j=0

f`(T jx)

and thus

1
kn

log fkn(x) ≤ 2` logC
kn

+
∑kn−`

i=0 log f`(T ix)
kn`

, ∀x ∈ X.
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Therefore ∫
1
kn

log fkndµn ≤
2` logC
kn

+
∫
kn − `+ 1

kn`
log f` dµn.

Taking n → +∞ yields A − B ≤
∫

1
` log f`dν. Then letting ` → +∞ we obtain

A−B ≤ F∗(ν). Since the entropy map is upper semi-continuous, we have hν(T ) ≥
limn→∞ hµn(T ) = B. Thus A ≤ hν(T ) + F∗(ν). This finishes the proof of step 3.
Step 4. P ∗(T,F) = P (T,F).
By Lemma 4.3 it suffices to prove P ∗(T,F) ≤ P (T,F). To see this, by step 1-3, we
have

P ∗(T,F) ≤ sup{hµ(T ) + F∗(µ) : µ ∈M(X,T )}.
Since h(T ) < ∞, by Theorem 1.1 we have P (T,F) = sup{hµ(T ) + F∗(µ) : µ ∈
M(X,T )}, from which P ∗(T,F) ≤ P (T,F) follows. This finishes the proof of the
proposition.

Proposition 4.5. Assume the dynamical system (X,T ) satisfies the following dou-
bling property: there exists a sequence {rn} ⊂ N such that limn→∞ log rn/n = 0,
and for any n ∈ N, x ∈ X and ε > 0, the Bowen ball

Bn(x, ε) := {y ∈ X : d(T ix, T iy) < ε for 1 ≤ i ≤ n− 1}
can be covered by at most rn many Bowen balls Bn(yi, ε/2), i = 1, . . . , rn. Then
P ∗(T,F) = P (T,F).

Proof. For any open cover U of X, denote

Qn(T,F ,U) = inf
Γ

∑
U∈Γ

f(U).

where the infimum is taken over all Γ ⊂ Wn(U) that cover X. It is easily checked
that Qn+m(T,F ,U) ≤ Qn(T,F ,U)Qm(T,F ,U). Thus we have

P ∗(T,F ,U) = CP ∗(T,F ,U) = inf
n

1
n

logQn(T,F ,U).

In the following we show that for any n ∈ N and ε > 0, there exists an open cover
U of X with diam(U) ≤ ε such that

Qn(T,F ,U) ≤ r4nPn(T,F , ε). (10)

Since limn→∞ log rn/n = 0, the above inequality implies P ∗(T,F) ≤ P (T,F). By
Lemma 4.3, we have P ∗(T,F) = P (T,F).

To show (10), we choose an (n, ε)-separated subset E of X with maximal car-
dinality. Then the family of Bowen balls {Bn(x, ε) : x ∈ E} covers X. For any
x ∈ E, pick y(x) ∈ Closure(Bn(x, ε)) such that

fn(y(x)) = sup
y∈Bn(x,ε)

fn(y).

Define U = {B(T ix, ε) : x ∈ E, 1 ≤ i ≤ n−1}, where B(x, δ) := {y ∈ X : d(x, y) <
δ}. Then U covers X and diam(U) ≤ ε. Since

X =
⋃

x∈E

Bn(x, ε) =
⋃

x∈E

n−1⋂
i=0

T−iB(T ix, ε),

we have
Qn(T,F ,U) ≤

∑
x∈E

fn(y(x)). (11)
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To prove (10) we first claim that for any x ∈ E there are at most r4n many x ∈ E
such that dn(y(x), y(x)) ≤ ε. To show this, let x1, . . . , x` be ` many different points
in E such that dn(y(xi), y(x)) ≤ ε for 1 ≤ i ≤ `. Then Bn(x, 4ε) ⊃

⋃`
i=1Bn(xi, ε).

By the assumed doubling property, Bn(x, 4ε) can be covered by at most r4n many
Bowen balls Bn(z, ε/4)’s. Since any Bn(z, ε/4) intersects at most one of the Bowen
balls Bn(xi, ε/4), we obtain ` ≤ r4n. Now we pick z1 ∈ E such that fn(y(z1)) =
max{fn(y(x)) : x ∈ E}. Then we get a set E1 by removing all those points
x in E such that Bn(y(z1), y(x)) ≤ ε. If E1 6= ∅, we pick z2 ∈ E1 such that
fn(y(z2)) = max{fn(y(x)) : x ∈ E1}. Then we get a set E2 by removing all those
points x in E1 such that Bn(y(z2), y(x)) ≤ ε. Continuing this process (which will
stop at some step p), we obtain an (n, ε)-separated subset {y(zi) : 1 ≤ i ≤ p} and

p∑
i=1

fn(y(zi)) ≥ r−4
n

∑
x∈E

fn(y(x)).

Combining it with (11) yields (10). This finishes the proof.

Proposition 4.6. Let (X,T ) be a dynamical system such that for any ε > 0, there
exists a partition U = {U1, . . . , Uk} of X such that diam(U) < ε and all Ui are open.
Then P ∗(T,F) = P (T,F).

Proof. Assume U = {U1, . . . , Uk} is an open partition of X. Then all Ui are both
open and closed. Set

γ = min
1≤i<j≤k

d(Ui, Uj).

Then γ > 0. For any 0 < δ < γ and ` ∈ N, one has

inf
Γ`

∑
U∈Γ`

e−sm(U)f(U) ≤ e−s`P`(T,F , δ),

where the infimum is taken over all Γ` ⊂ W`(U) that cover X. This implies
CP ∗(T,F ,U) ≤ P (T,F , δ). Hence one has P ∗(T,F ,U) = CP ∗(T,F ,U) ≤ P (T,F , δ),
moreover P ∗(T,F ,U) ≤ P (T,F). Since the diameter of U can be arbitrarily small,
we have P ∗(T,F) ≤ P (T,F). This finishes the proof.

If we put some bounded distortion assumptions on F , then we can also show the
equivalence of these two definitions.

Proposition 4.7. Assume that F = {log fn}∞n=1 satisfies the following additional
assumptions:

(i) fn(x) > 0 for all x ∈ X and n ∈ N.
(ii)

lim sup
diam(U)→0

lim sup
n→∞

log γn(F ,U)
n

= 0,

where for any finite open cover U , γn(F ,U) is defined by

γn(F ,U) = sup{fn(x)/fn(y) : x, y ∈ X(U) for some U ∈ Wn(U)}.
Then we have P ∗(T,F) = P (T,F).

Proof. We take some arguments similar to that in the proof of Proposition 4.5.
Under the above assumptions, instead of (10) we may show that for any finite open
cover U of X and n ∈ N,

Qn(T,F ,U) ≤ γn(F ,U)Pn(T,F , ε).
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To show this, as in the proof of Proposition 4.5, we have

Qn(T,F ,U) ≤
∑
x∈E

fn(y(x)) ≤ γn(F ,U)
∑
x∈E

fn(x) ≤ γn(F ,U)Pn(T,F , ε). (12)

This finishes the proof.

In the remaining part of this section, we will follow Bowen’s idea in [3] to give
an equivalent definition of topological pressure via open covers.

Let (X,T ) be a compact dynamical system. Let CX denote the set of all finite
Borel covers of X. Let F = {log fn}∞n=1 be a sub-additive potential. For any open
cover U of X, we define

P ∗∗n (T,F ,U) = min
α∈CX , α�

∨n−1
i=0 T−iU

∑
A∈α

sup
x∈A

fn(x),

where α �
∨n−1

i=0 T
−iU means that for each A ∈ α, there exists U ∈ Wn(U) such

that A ⊆ X(U). Furthermore define

P ∗∗(T,F ,U) = inf
n≥1

1
n

logP ∗∗n (T,F ,U),

and
P ∗∗(T,F) = sup

U
P ∗∗(T,F ,U). (13)

where U ranges over all open covers of X.

Proposition 4.8. P ∗∗(T,F) = P (T,F).

Proof. We divide the proof into several small parts:

Step 1. P ∗∗(T,F) = limdiam(U)→0 P
∗∗(T,F ,U). It comes from the fact that

P ∗∗(T,F ,U) ≤ P ∗∗(T,F ,V), whenever U and V are two open covers of X and
diam(V) is less than the Lebesgue number of U .

Step 2. P ∗∗(T,F ,U) = limn→∞
1
n logP ∗∗n (T,F ,U). It follows from the fact that

P ∗∗n (T,F ,U) is sub-multiplicative, i.e, P ∗∗n+m(T,F ,U) ≤ P ∗∗n (T,F ,U)P ∗∗m (T,F ,U)
for all n,m ∈ N. To show this fact, observe that for any α, β ∈ CX with α �∨n−1

i=0 T
−iU and β �

∨m−1
i=0 T−iU , we have α∨T−nβ ∈ CX , α∨T−nβ �

∨n+m−1
i=0 T−iU ,

and furthermore ∑
C∈α∨T−nβ

sup
x∈C

fn+m(x) ≤
∑
A∈α

sup
x∈A

fn(x)
∑
B∈β

sup
y∈B

fm(y).

Step 3. For any ε > 0, if U is an open cover of X with diam(U) < ε, then
P ∗∗(T,F ,U) ≥ P (T,F , ε). To show this fact, it suffices to note that for any α ∈ CX

with α �
∨n−1

i=0 T
−iU and any (n, ε)-separated set E of X, each e ∈ E is contained

exactly in one element A ∈ α.

Step 4. For any n ∈ N and ε > 0, there exists an open cover U of X such
that diam(U) ≤ ε and Pn(T,F , ε) ≥ P ∗∗n (T,F ,U). To prove this statement, let
n ∈ N and ε > 0. Pick x1 ∈ X with fn(x1) = supx∈X fn(x), pick x2 ∈ X\Bn(x1, ε)
such that fn(x2) = supx∈X\Bn(x1,ε) fn(x), pick x3 ∈ X\

⋃2
i=1Bn(xi, ε) such that

fn(x3) = supx∈X\
⋃2

i=1 Bn(xi,ε)
fn(x), and so on. We obtain an (n, ε)-separated set

{x1, x2, · · · , x`} of maximal cardinality. Let α be the partition{
Bn(x1, ε), Bn(x2, ε)\Bn(x1, ε), Bn(x3, ε)

∖ 2⋃
i=1

Bn(xi, ε), . . .

}
.
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Then
∑

A∈α supx∈A fn(x) =
∑`

i=1 fn(xi) ≤ Pn(T,F , ε). Let U = {B(T jxi, ε) : 0 ≤
j ≤ n − 1, 1 ≤ i ≤ `}. We have diam(U) ≤ ε, α �

∨n−1
i=0 T

−iU and Pn(T,F , ε) ≥
P ∗∗n (T,F ,U).

By the statements in step 1 and step 3, we have P ∗∗(T,F) ≥ P (T,F). Whilst
by the statements in step 2 and step 4, for any ε > 0, there exists an open cover
U with diameter not exceeding ε such that P ∗∗(T,F ,U) ≤ P (T,F , ε). This fact,
together with the result in step 1, gives P ∗∗(T,F) ≤ P (T,F) when we let ε go to
0. This finishes the proof of the proposition.
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