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Abstract

Let fSi g`iD1 be an iterated function system (IFS) on Rd with attractor K. Let
.†; �/ denote the one-sided full shift over the alphabet f1; : : : ; `g. We define
the projection entropy function h� on the space of invariant measures on † as-
sociated with the coding map � W † ! K and develop some basic ergodic
properties about it. This concept turns out to be crucial in the study of dimen-
sional properties of invariant measures on K. We show that for any conformal
IFS (respectively, the direct product of finitely many conformal IFSs), without
any separation condition, the projection of an ergodic measure under � is always
exactly dimensional and its Hausdorff dimension can be represented as the ra-
tio of its projection entropy to its Lyapunov exponent (respectively, the linear
combination of projection entropies associated with several coding maps). Fur-
thermore, for any conformal IFS and certain affine IFSs, we prove a variational
principle between the Hausdorff dimension of the attractors and that of projec-
tions of ergodic measures. © 2008 Wiley Periodicals, Inc.
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1 Introduction
Let fSi W X ! Xg`iD1 be a family of contractive maps on a nonempty closed set

X � Rd . Following Barnsley [2], we say that ˆ D fSig`iD1 is an iterated function
system (IFS) on X . Hutchinson [27] showed that there is a unique nonempty com-
pact set K � X , called the attractor of fSig`iD1, such that K D S`

iD1 Si .K/. A
probability measure � on Rd is said to be exactly dimensional if there is a constant
C such that the local dimension

d.�; x/ D lim
r!0

log�.B.x; r//
log r

exists and equals C for �-a.e. x 2 Rd , where B.x; r/ denotes the closed ball of
radius r centered at x. It was shown by Young [65] that in such a case the Hausdorff
dimension of � is equal to C (see also [14, 43, 51]).

The motivation of the paper is to study the Hausdorff dimension of an invari-
ant measure � (see Section 2 for precise meaning) for conformal and affine IFSs
with overlaps. To deal with overlaps, we regard such a system as the image of a
natural projection � from the one-sided full shift space over ` symbols. Hence we
obtain a dynamical system. We introduce a notion projection entropy, which plays
a similar role as the classical entropy for IFSs satisfying the open set condition,
and it becomes the classical entropy if the projection is finite to one. The concept
of projection entropy turns out to be crucial in the study of dimensional proper-
ties of invariant measures on attractors of either conformal IFSs with overlaps or
affine IFSs.

We develop some basic properties about projection entropy (Theorems 2.2
and 2.3). We prove that for conformal IFSs with overlaps, every ergodic measure�
is exactly dimensional and d.�; x/ is equal to the projection entropy divided by the
Lyapunov exponent (Theorem 2.8). Furthermore, if ˆ is a direct product of con-
formal IFSs (see Definition 2.10 for the precise meaning), then for every ergodic
measure on K the local dimension can be expressed by a Ledrappier-Young type
formula in terms of projection entropies and Lyapunov exponents (Theorem 2.11).
We also prove variational results about the Hausdorff dimension for conformal IFSs
and certain affine IFSs (Theorems 2.13 and 2.15), which says that the Hausdorff
dimension of the attractor K is equal to the supremum of Hausdorff dimension of
� taking over all ergodic measures. The results we obtain cover some interesting
cases such as Si .x/ D diag.�1; : : : ; �d /x C ai , where i D 1; : : : ; ` and ��1i are
Pisot or Salem numbers and ai 2 Zd .

The problems of whether a given measure is exactly dimensional and whether
the Hausdorff dimension of an attractor can be assumed or approximated by that
of an invariant measure have been well studied in the literature for C 1C˛ confor-
mal IFSs that satisfy the open set condition (cf. [6, 22, 49]). It is well-known that
in such a case, any ergodic measure � is exactly dimensional with the Hausdorff
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dimension given by the classic entropy divided by the Lyapunov exponent. Fur-
thermore, there is a unique invariant measure � with dimH .�/ D dimH .K/, the
Hausdorff dimension ofK. However, the problems become much complicated and
intractable without the assumption of the open set condition. Partial results have
been obtained only for conformal IFSs that satisfy the finite-type condition (see
[45] for the definition). In that case, a Bernoulli measure is exactly dimensional
and its Hausdorff dimension may be expressed as the upper Lyapunov exponent
of certain random matrices (see, e.g., [16, 17, 35, 37, 39]), and furthermore the
Hausdorff dimension of K can be computed (see, e.g., [34, 45, 54]).

There are some results for certain special nonoverlapping affine IFSs. McMullen
[44] and Bedford [5] independently computed the Hausdorff dimension and the box
dimension of the attractor of the following planar affine IFS:

Si .x/ D
�
n�1 0

0 k�1

�
x C

�
ai=n

bi=k;

�
; i D 1; : : : ; `;

where all ai and bi are integers, 0 � ai < n, and 0 � bi < k. Furthermore, they
showed that there is a Bernoulli measure of full Hausdorff dimension. This result
was extended by Kenyon and Peres [33] to higher-dimensional self-affine Sierpin-
ski sponges, for which ergodic measures are proved to be exactly dimensional with
Hausdorff dimension given by a Ledrappier-Young type formula. Another exten-
sion of McMullen and Bedford’s result to a broader class of planar affine IFSs
fSig`iD1 was given by Gatzouras and Lalley [36], in which Si map the unit square
.0; 1/2 into disjoint rectangles with sides parallel to the axes (where the longer
sides are parallel to the x-axis; furthermore, once projected onto the x-axis, these
rectangles are either identical or disjoint). Further extensions were given recently
by Barański [1], Feng and Wang [19], Luzia [41], and Olivier [46]. For other
related results, see, [3, 17, 20, 24, 26, 30, 32, 38, 52, 60].

Along another direction, in [11] Falconer gave a variational formula for the
Hausdorff and box dimensions for “almost all” self-affine sets under some assump-
tions. This formula remains true under some weaker conditions [28, 61]. Käenmäki
[29] proved that for “almost all” self-affine sets there exists an ergodic measure m
so that m ı ��1 is of full Hausdorff dimension.

Our arguments use ergodic theory and Rohlin’s theory about conditional mea-
sures. The proofs of Theorem 2.6 and Theorem 2.11 are based on some ideas from
the work of Ledrappier and Young [40] and techniques in analyzing the densities
of conditional measures associated with overlapping IFSs.

So far we have restricted ourselves on the study of finite contractive IFSs. How-
ever, we point out that part of our results remain valid for certain noncontractive
infinite IFSs (see Section 10 for details).

The paper is organized as follows: The main results are given in Section 2. In
Section 3, we prove some density results about conditional measures. In Section 4,
we investigate the properties of projection entropy and prove Theorems 2.2 and 2.3.
In Section 5, we give some local geometric properties of aC 1 IFS. In Section 6, we
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prove a generalized version of Theorem 2.6, which is based on a key proposition
(Proposition 6.1) about the densities of conditional measures. In Section 7, we
prove Theorems 2.11 and 2.12. In Section 8, we prove Theorem 2.13, and in
Section 9 we prove Theorem 2.15. In Section 10 we give a remark regarding certain
noncontractive infinite IFSs.

2 Statement of the Main Results
Let fSig`iD1 be an IFS on a closed set X � Rd . Denote by K its attractor. Let

† D f1; : : : ; `gN be associated with the left shift � (cf. [9]). Let M� .†/ denote
the space of �-invariant measures on † endowed with the weak-star topology. Let
� W †! K be the canonical projection defined by

(2.1) f�.x/g D
1\

nD1
Sx1 ı � � � ı Sxn.K/ where x D .xi /1iD1:

A measure � on K is called invariant (respectively, ergodic) for the IFS if there is
an invariant (respectively, ergodic) measure � on † such that � D � ı ��1.

Let .�;F ; �/ be a probability space. For a sub-�-algebra A of F and f 2
L1.�;F ; �/, we denote by E�.f jA/ the conditional expectation of f givenA. For
a countable F-measurable partition � of �, we denote by I�.�jA/ the conditional
information of � given A, which is given by the formula

(2.2) I�.�jA/ D �
X

A2�
�A log E�.�AjA/;

where �A denotes the characteristic function on A. The conditional entropy of �
given A, written H�.�jA/, is defined by the formula

H�.�jA/ D
Z

I�.�jA/d�:

(See [48] for more details.) The above information and entropy are unconditional
whenA D N , the trivial �-algebra consisting of sets of measure zero and one, and
in this case we write

I�.�jN / DW I�.�/ and H�.�jN / DW H�.�/:
Now we consider the space .†;B.†/;m/, where B.†/ is the Borel � -algebra

on † and m 2M� .†/. Let P denote the Borel partition

(2.3) P D fŒj � W 1 � j � `g
of †, where Œj � D f.xi /1iD1 2 † W x1 D j g. Let I denote the �-algebra

I D fB 2 B.†/ W ��1B D Bg:
For convenience, we use 
 to denote the Borel �-algebra B.Rd / on Rd .
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DEFINITION 2.1 For any m 2M� .†/, we call

h�.�;m/ WD Hm.Pj��1��1
/ �Hm.Pj��1
/
the projection entropy of m under � with respect to fSig`iD1, and we call

h�.�;m; x/ WD Em.f jI/.x/
the local projection entropy of m at x under � with respect to fSig`iD1, where f
denotes the function Im.Pj��1��1
/ � Im.Pj��1
/.

It is clear that h�.�;m/ D
R
h�.�;m; x/dm.x/. Our first result is the following

theorem:

THEOREM 2.2 Let fSig`iD1 be an IFS. Then
(i) For any m 2 M� .†/, we have 0 � h�.�;m/ � h.�;m/, where h.�;m/

denotes the classical measure-theoretic entropy of m associated with � .
(ii) The map m 7! h�.�;m/ is affine on M� .†/. Furthermore, if m DR

� dP .�/ is the ergodic decomposition of m, we have

h�.�;m/ D
Z
h�.�; �/ dP .�/:

(iii) For any m 2M� .†/, we have

lim
n!1

1

n
Im.Pn�10 j��1
/.x/ D h.�;m; x/ � h�.�;m; x/

for m-a.e. x 2 †, where h.�;m; x/ denotes the local entropy of m at xI
that is, h.�;m; x/ D Im.Pj��1B.†//.x/.

Part (iii) of the theorem is an analogue of the classical relativized Shannon-
McMillan-Breiman theorem (see, e.g., [8, lemma 4.1]). However, we should notice
that the sub-�-algebra ��1
 in our consideration is not � -invariant in general (see
Remark 4.11).

Part (iii) also implies that if the map � W †! K is finite to one, then

h�.�;m/ D h.�;m/
for any m 2 M� .†/. In Section 4, we will present a sufficient and necessary
condition for the equality (see Corollary 4.16). However, for general overlapping
IFSs, the projection entropy can be strictly less than the classical entropy.

In our next theorem, we give a geometric characterization of the projection en-
tropy for certain affine IFSs, which will be used later in the proof of our variational
results about the Hausdorff and box dimensions of self-affine sets.

THEOREM 2.3 Assume that ˆ D fSig`iD1 is an IFS on Rd of the form

Si .x/ D Ax C ci ; i D 1; : : : ; `;
whereA is a d �d nonsingular contractive real matrix and ci 2 Rd . LetK denote
the attractor of ˆ. Let Q denote the partition fŒ0; 1/d C ˛ W ˛ 2 Zd g of Rd . For
n D 0; 1; : : : , we set Qn D fAnQ W Q 2 Qg. Then
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(i) For any m 2M� .†/, we have

h�.�;m/ D lim
n!1

Hm.�
�1Qn/
n

:

(ii) Moreover,

lim
n!1

log #fQ 2 Q W AnQ \K ¤ ¿g
n

D supfh�.�;m/ W m 2M� .†/g:

To give the applications of projection entropy in dimension theory of IFSs, we
need some more notation and definitions.

DEFINITION 2.4 fSi W X ! Xg`iD1 is called a C 1 IFS on a compact set X � Rd

if each Si extends to a contracting C 1-diffeomorphism Si W U ! Si .U / � U on
an open set U � X .

For any d � d real matrix M , we use kMk to denote the usual norm of M , and
Œ�M Œ� the smallest singular value of M , i.e.,

kMk D maxfjMvj W v 2 Rd ; jvj D 1g and

Œ�M Œ� D minfjMvj W v 2 Rd ; jvj D 1g:
(2.4)

DEFINITION 2.5 Let fSig`iD1 be a C 1 IFS. For x D .xj /
1
jD1 2 †, the upper and

lower Lyapunov exponents of fSig`iD1 at x are defined respectively by

�.x/ D � lim inf
n!1

1

n
logŒ�S 0x1���xn.��

nx/Œ�;

�.x/ D � lim sup
n!1

1

n
log kS 0x1���xn.��nx/k;

where S 0x1:::xn.��
nx/ denotes the differential of Sx1���xn WD Sx1 ı � � � ı Sxn at

��nx. When �.x/ D �.x/, the common value, denoted by �.x/, is called the
Lyapunov exponent of fSig`iD1 at x.

It is easy to check that both � and � are positive-valued � -invariant functions on
† (i.e., � D � ı � and � D � ı �). Recall that for a probability measure � on Rd ,
the local upper and lower dimensions are defined, respectively, by

d.�; x/ D lim sup
r!0

log�.B.x; r//
log r

; d.�; x/ D lim inf
r!0

log�.B.x; r//
log r

;

where B.x; r/ denotes the closed ball of radius r centered at x. If d.�; x/ D
d.�; x/, the common value is denoted as d.�; x/ and is called the local dimension
of m at x.

The following theorem gives an estimate of local dimensions of invariant mea-
sures on the attractor of an arbitrary C 1 IFS without any separation condition.
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THEOREM 2.6 Let fSig`iD1 be a C 1 IFS with attractorK. Then for � D mı��1,
where m 2M� .†/, we have the following estimates:

d.�; �x/ � h�.�;m; x/

�.x/
and d.�; �x/ � h�.�;m; x/

�.x/
for m-a.e. x 2 †,

where h�.�;m; x/ denotes the local projection entropy of m at x under � (see
Definition 2.1). In particular, if m is ergodic, we have

h�.�;m/R
�dm

� d.�; ´/ � d.�; ´/ � h�.�;m/R
�dm

for �-a.e. ´ 2 K:

DEFINITION 2.7 Let fSig`iD1 be a C 1 IFS andm 2M� .†/. We say that fSig`iD1
is m-conformal if �.x/ exists (i.e., �.x/ D �.x/) for m-a.e. x 2 †.

As a direct application of Theorem 2.6, we have the following:

THEOREM 2.8 Assume that fSig`iD1 is m-conformal for some m 2M� .†/. Let
� D m ı ��1. Then we have

(2.5) d.�; �x/ D h�.�;m; x/

�.x/
for m-a.e. x 2 †:

In particular, if m is ergodic, we have

(2.6) d.�; ´/ D h�.�;m/R
�dm

for �-a.e. ´ 2 K:

Recall that S W U ! S.U / is a conformal map if S 0.x/ W Rd ! Rd satisfies
kS 0.x/k ¤ 0 and jS 0.x/yj D kS 0.x/kjyj for all x 2 U and y 2 Rd .

DEFINITION 2.9 A C 1 IFS fSig`iD1 is said to be weakly conformal if

1

n
.logŒ�S 0x1���xn.��

nx/Œ� � log kS 0x1���xn.��nx/k/

converges to 0 uniformly on † as n tends to1. We say that fSig`iD1 is conformal
if each Si extends to a conformal map Si W U ! Si .U / � U on an open set
U � K, where K is the attractor of fSig`iD1.

By definition, a conformal IFS is always weakly conformal. Furthermore, a
weakly conformal IFS is m-conformal for each m 2 M� .†/ (see Proposition
5.6(ii)). There are some natural examples of weakly conformal IFSs that are not
conformal. For instance, let Si .x/ D AixCai ; i D 1; : : : ; `, such that, for each i ,
Ai is a contracting linear map with eigenvalues equal to each other in modulus, and
AiAj D AjAi for different i; j . Then such an IFS is always weakly conformal
but not necessarily conformal. The first conclusion follows from the asymptotic
behavior

lim
n!1Œ�A

n
i Œ�
1=n D lim

n!1 kA
n
i k1=n D �.Ai /; i D 1; : : : ; `;

where �.Ai / denotes the spectral radius of Ai (cf. [64]).
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Theorem 2.8 verifies the existence of local dimensions for invariant measures
on the attractor of an arbitrary weakly conformal IFS without any separation as-
sumption. We point out that the exact dimensionality for overlapping self-similar
measures was first claimed by Ledrappier; nevertheless, no proof has been written
out (cf. [50, p. 1619]). We remark that this property was also conjectured later by
Fan, Lau, and Rao in [15].

We can extend the above result to a class of nonconformal IFSs.

DEFINITION 2.10 Assume for j D 1; : : : ; k, ĵ WD fSi;j g`iD1 is a C 1 IFS defined
on a compact set Xj � Rqj . Let ˆ WD fSig`iD1 be the IFS on X1 � � � � � Xk �
Rq1 � � � � �Rqk given by

Si .´1; : : : ; ´k/ D .Si;1.´1/; : : : ; Si;k.´k//;
i D 1; : : : ; `; j D 1; : : : ; k; j́ 2 Xj :

We say that ˆ is the direct product of ˆ1; : : : ; ˆk , and write ˆ D ˆ1 � � � � �ˆk .

THEOREM 2.11 Letˆ D fSig`iD1 be the direct product of k C 1 IFSsˆ1; : : : ; ˆk .
Let � D mı��1, wherem 2M� .†/. Assume thatˆ1; : : : ; ˆk arem-conformal.
Then

(i) d.�; ´/ exists for �-a.e. ´.
(ii) Assume furthermore that m is ergodic. Then � is exactly dimensional. Let

� be a permutation on f1; : : : ; kg such that

��.1/ � � � � � ��.k/;
where �j D

R
�j .x/dm.x/, and �j .x/ denotes the Lyapunov exponent of

ĵ at x 2 †. Then we have

(2.7) d.�; ´/ D h�1.�;m/

��.1/
C

kX

jD2

h�j .�;m/ � h�j�1.�;m/
��.j /

for �-a.e. z;

where �j denotes the canonical projection with respect to the IFS ˆ�.1/ �
� � � �ˆ�.j /, and h�j .�;m/ denotes the projection entropy of m under �j .

We mention that fractals satisfying the conditions of the theorem include many
interesting examples such as those studied in [5, 33, 36, 44].

As an application of Theorem 2.11, we have the following:

THEOREM 2.12 Let fSig`iD1 be an IFS on Rd of the form

Si .x/ D Aix C ai ; i D 1; : : : ; `;
such that each Ai is a nonsingular contracting linear map on Rd , and AiAj D
AjAi for any 1 � i; j � `. Then for any ergodic measure m on †, � D m ı ��1
is exactly dimensional.
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Indeed, under the assumption of Theorem 2.12, we can show that there is a non-
singular linear transformation T on Rd such that the IFS fT ı Si ı T �1g`iD1 is the
direct product of some weakly conformal IFSs. Hence we can apply Theorem 2.11
in this situation.

We remark that formula (2.7) provides an analogue of that for the Hausdorff
dimension of C 1C˛ hyperbolic measures along the unstable (respectively, stable)
manifold established by Ledrappier and Young [40].

The problem of the existence of local dimensions also has a long history in
smooth dynamical systems. In [65], Young proved that an ergodic hyperbolic
measure invariant under a C 1C˛ surface diffeomorphism is always exactly dimen-
sional. For a measure� in high-dimensionalC 1C˛ systems, Ledrappier and Young
[40] proved the existence of ıu and ıs , the local dimensions along stable and un-
stable local manifolds, respectively, and the upper local dimension of � is bounded
by the sum of ıu, ıs , and the multiplicity of 0 as an exponent.

Eckmann and Ruelle [10] indicated that it is unknown whether the local dimen-
sion of � is the sum of ıu and ıs if � is a hyperbolic measure. Then the question
was referred to as the Eckmann-Ruelle conjecture, and it was confirmed by Bar-
reira, Pesin, and Schmeling in [4] 17 years later. Some partial dimensional results
were obtained for measures invariant under hyperbolic endomorphism [58, 59].
Recently, Qian and Xie [53] proved the exact dimensionality of ergodic measures
invariant under a C 2 expanding endomorphism on smooth Riemannian manifolds.

In the remaining part of this section, we present some variational results about
the Hausdorff dimension and the box dimension of attractors of IFSs and that of
invariant measures. First we consider conformal IFSs.

THEOREM 2.13 Let K be the attractor of a weakly conformal IFS fSig`iD1. Then
we have

dimH K D dimB K(2.8)

D supfdimH � W � D m ı ��1; m 2M� .†/; m is ergodicg(2.9)

D maxfdimH � W � D m ı ��1; m 2M� .†/g

D sup
�
h�.�;m/R
�dm

W m 2M� .†/

�
;(2.10)

where dimB K denotes the box dimension of K.

Equality (2.8) was first proved by Falconer [12] for C 1C˛ conformal IFS. It
is not known whether the supremum in (2.9) and (2.10) can be attained in the
general setting of Theorem 2.13. However, this is true if the IFS fSig`iD1 satisfies
an additional separation condition defined as follows:

DEFINITION 2.14 An IFS fSig`iD1 on a compact set X � Rd is said to satisfy the
asymptotically weak separation condition (AWSC), if

lim
n!1

1

n
log tn D 0;
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where tn is given by

(2.11) tn D sup
x2Rd

#fSu W u 2 f1; : : : ; `gn; x 2 Su.K/gI

here K is the attractor of fSig`iD1.

The above definition was first introduced in [18] under a slightly different set-
ting. For example, if 1=� is a Pisot or Salem number, then the IFS f�x C aig`iD1
on R, with ai 2 Z, satisfies the AWSC (see proposition 5.3 and remark 5.5 in
[18]). Recall that a real number ˇ > 1 is said to be a Salem number if it is an
algebraic integer whose algebraic conjugates all have modulus not greater than 1,
with at least one being on the unit circle; ˇ > 1 is called a Pisot number if it is
an algebraic integer whose algebraic conjugates all have modulus less than 1. For
instance, the largest root (� 1:72208) of x4 � x3 � x2 � xC 1 is a Salem number,
and the golden ratio .

p
5 C 1/=2 is a Pisot number. See [57] for more examples

and properties of Pisot and Salem numbers. Under the AWSC assumption, we can
show that the projection entropy map m 7! h�.�;m/ is upper semicontinuous on
M� .†/ (see Proposition 4.20) and, as a consequence, the supremum (2.9) and
(2.10) can be attained at ergodic measures (see Remark 8.2).

Next we consider a class of affine IFSs.

THEOREM 2.15 Let ˆ D fSig`iD1 be an affine IFS on Rd given by

Si .x1; : : : ; xd / D .�1x1; : : : ; �dxd /C .ai;1; : : : ; ai;d /;
where �1 > � � � > �d > 0 and ai;j 2 R. Let K denote the attractor of ˆ, and
write �j D log.1=�j / for j D 1; : : : ; d and �dC1 D 1. View ˆ as the direct
product of ˆ1; : : : ; ˆd , where ĵ D fSi;j .xj / D �jxj C ai;j g`iD1. Assume that
ˆ1 � � � � � ĵ satisfies the AWSC for j D 1; : : : ; d . Then we have

dimH K D maxfdimH � W � D m ı ��1; m is ergodicg

D max
� dX

jD1

�
1

�j
� 1

�jC1

�
h�j .�;m/ W m is ergodic

�
;

where �j is the canonical projection with respect to the IFS ˆ1 � � � � � ĵ . Fur-
thermore,

dimB K D
dX

jD1

�
1

�j
� 1

�jC1

�
Hj ;

where Hj WD maxfh�j .�;m/ W m is ergodicg.
It is direct to check that if ĵ satisfies the AWSC for each 1 � j � d , then

so does ˆ1 � � � � � ĵ . Hence, for instance, the condition of Theorem 2.15 is
fulfilled when 1=�j are Pisot numbers or Salem numbers and .ai;1; : : : ; ai;d / 2
Zd . Different from the earlier works on the Hausdorff dimension of deterministic
self-affine sets and self-affine measures (see, e.g., [1, 5, 26, 33, 36, 44, 46]), our
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model in Theorem 2.15 admits certain overlaps. The two variational results in
Theorem 2.15 provide some new insights into the study of overlapping self-affine
IFS. An interesting question is whether the results of Theorem 2.15 remain true
without the AWSC assumption. It is related to the open problem of whether a
nonconformal repeller carries an ergodic measure of full dimension (see [21] for a
survey). We remark that, in the general case, we do have the following inequality
(see Lemma 9.2):

dimBK �
dX

jD1

�
1

�j
� 1

�jC1

�
supfh�j .�;m/ W m is ergodicg:

Furthermore, Theorem 2.15 can be extended somewhat (see Remark 9.3 and The-
orem 9.4).

3 Density Results about Conditional Measures
We prove some density results about conditional measures in this section. To

begin with, we give a brief introduction to Rohlin’s theory of Lebesgue spaces,
measurable partitions, and conditional measures. The reader is referred to [47, 55]
for more details.

A probability space .X;B; m/ is called a Lebesgue space if it is isomorphic to
a probability space that is the union of Œ0; s�, 0 � s � 1, with Lebesgue measure
and a countable number of atoms. Now let .X;B; m/ be a Lebesgue space. A
measurable partition � of X is a partition of X such that, up to a set of measure
zero, the quotient space X=� is separated by a countable number of measurable
sets fBig. The quotient spaceX=� with its inherit probability space structure, writ-
ten as .X�;B�; m�/, is again a Lebesgue space. Also, any measurable partition
� determines a sub-�-algebra of B, denoted by y�, whose elements are unions of
elements of �. Conversely, any sub-�-algebra B0 of B is also countably gener-
ated, say by fB 0ig, and therefore all the sets of the form

T
Ai , where Ai D B 0i

or its complement, form a measurable partition. In particular, B itself corresponds
to a partition into single points. An important property of Lebesgue spaces and
measurable partitions is the following:

THEOREM 3.1 (Rohlin [55]) Let � be a measurable partition of a Lebesgue space
.X;B; m/. Then, for every x in a set of full m-measure, there is a probability
measure m�x defined on �.x/, the element of � containing x. These measures are
uniquely characterized (up to sets of m-measure 0/ by the following properties:
if A � X is a measurable set, then x 7! m

�
x.A/ is y�-measurable and m.A/ DR

m
�
x.A/dm.x/. These properties imply that for any f 2 L1.X;B; m/, m�x.f / D

Em.f jy�/.x/ for m-a.e. x, and m.f / D R Em.f jy�/dm.

The family of measures fm�xg in the above theorem is called the canonical sys-
tem of conditional measures associated with �.
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Throughout the remaining part of this section, we assume that .X;B; m/ is a
Lebesgue space. Let � be a measurable partition of X , and let fm�xg denote the
corresponding canonical system of conditional measures. Suppose that � W X !
Rd is a B-measurable map. Denote 
 WD B.Rd /, the Borel-� -algebra on Rd . For
y 2 Rd , we use B.y; r/ to denote the closed ball in Rd of radius r centered at y.
Also, we denote for x 2 X ,

(3.1) B�.x; r/ D ��1B.�x; r/:
LEMMA 3.2 Let A 2 B.

(i) The map x 7! m
�
x.B

�.x; r/\A/ is O�_��1
–measurable for each r > 0,
where O�_��1
 denotes the smallest sub-� -algebra of B containing O� and
��1
 .

(ii) The functions

lim inf
r!0

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//
; lim sup

r!0

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//
;

and

inf
r>0

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//

are O� _ ��1
–measurable, where we interpret 0=0 D 0.

PROOF: We first prove (i). Let A 2 B and r > 0. For n 2 N, let Dn denote the
collection

Dn D fŒ0; 2�n/d C ˛ W ˛ 2 2�nZd g:
For y 2 Rd , denote

Wn.y/ D
[

Q2DnWQ\B.y;r/¤¿
Q:

Write Wn WD fWn.y/ W y 2 Rd g. It is clear that Wn is countable for each n 2 N.
Furthermore, we have Wn.y/ # B.y; r/ for each y 2 Rd as n ! 1, that is,
WnC1.y/ � Wn.y/ and

T1
nD1Wn.y/ D B.y; r/. As a consequence, we have

��1Wn.�x/ # B�.x; r/ and hence

m�x.B
�.x; r/ \ A/ D lim

n!1m
�
x.�
�1Wn.�x/ \ A/; x 2 X:

Therefore to show that x 7! m
�
x.B

�.x; r/\A/ is O�_��1
–measurable, it suffices
to show that x 7! m

�
x.�
�1Wn.�x/\A/ is O�_��1
–measurable for each n 2 N.

Fix n 2 N. For F 2 Wn, let �n.F / D fx 2 X W Wn.�x/ D F g. Then
�n.F / 2 ��1
 . By Theorem 3.1, m�x.��1F \ A/ is an O�-measurable function
of x for each F 2Wn. However,

m�x.�
�1Wn.�x/ \ A/ D

X

F 2Wn
��n.F /.x/m

�
x.�
�1F \ A/:

Hence m�x.��1Wn.�x/ \ A/ is O� _ ��1
–measurable; so is m�x.B�.x; r/ \ A/.
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To see (ii), note that for x 2 † and r > 0 satisfying m�x.B�.x; r// > 0, we
have

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//
D lim
q#rWq2QC

m
�
x.B

�.x; q/ \ A/
m
�
x.B

�.x; q//
:

Hence for the three limits in (ii), we can restrict r to be positive rationals. It to-
gether with (i) yields the desired measurability. ¤
LEMMA 3.3 Let A 2 B. Then for m-a.e. x 2 X ,

(3.2) lim
r!0

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//
D Em.�Aj O� _ ��1
/.x/:

PROOF: Let f .x/ and f .x/ be the values obtained by taking the upper and

lower limits in the left-hand side of (3.2). By Lemma 3.2, both f and f are

O� _ ��1
–measurable. In the following we only show that f .x/ D Em.�Aj O� _
��1
/.x/ for m-a.e. x. The proof for f .x/ D Em.�Aj O� _ ��1
/.x/ is similar.

We first prove that

(3.3)
Z

B\��1D

f dm D
Z

B\��1D

Em.�Aj O� _ ��1
/dm; B 2 O�; D 2 
:

By Theorem 3.1, for any given C 2 �, m�x (x 2 C ) represents the same measure
supported on C , which we rewrite asmC . Fix C 2 �. We define measures �C and
�C on Rd by �C .E/ D mC .��1E\A/ and �C .E/ D mC .��1E/ for allE 2 
 .
It is clear that �C � �C . Define

gC .´/ D lim sup
r!0

�C .B.´; r//

�C .B.´; r//
; ´ 2 Rd :

Then f .x/ D g�.x/.�x/ for all x 2 †. According to the differentiation theory of
measures on Rd (see, e.g., [43, theorem 2.12]), gC D d�C =d�C , �C -a.e. Hence
for each D 2 
 , we have

R
D gC .´/d�C .´/ D �C .D/, i.e.,

Z

��1D

gC .�y/dmC .y/ D �C .D/ D mC .��1D \ A/:

That is,

(3.4)
Z

��1D

f dm�x D m�x.��1D \ A/; x 2 X:

To see (3.3), let B 2 O�. ThenZ

B\��1D

f dm D
Z
�B���1Df dm

D
Z

Em.�B���1Df j O�/dm D
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D
Z
�BEm.���1Df j O�/dm

D
Z

B

� Z

��1D

f dm�x

�
dm.x/ .by Theorem 3.1/

D
Z

B

m�x.�
�1D \ A/dm.x/ .by (3.4)/

D
Z
�B.x/Em .���1D\Aj O�/ .x/dm.x/ .by Theorem 3.1/:

Thus we haveZ

B\��1D

f dm D
Z

Em .�B���1D\Aj O�/ .x/dm.x/

D
Z
�B���1D\A dm D m.B \ ��1D \ A/

D
Z

Em.�B\��1D�Aj O� _ ��1
/dm

D
Z
�B\��1DEm.�Aj O� _ ��1
/dm

D
Z

B\��1D

Em.�Aj O� _ ��1
/dm:

This establishes (3.3).
Let R D f � Em.�Aj O� _ ��1
/. Then R is O� _ ��1
–measurable andZ

B\��1.D/

Rdm D 0; B 2 O�; D 2 ��1
:

Denote F D fB \ ��1.D/ W B 2 O�; D 2 ��1
g and let

F 0 D
� k[

iD1
Fi W k 2 N; F1; : : : ; Fk 2 F are disjoint

�
:

It is clear that
R
F Rdm D 0 for all F 2 F 0. Moreover, it is a routine to check that

F 0 is an algebra that contains O� and ��1
 , and hence F 0 generates the � -algebra
O� _ ��1
 .

We claim that R D 0 m-a.e. Assume this is not true. Then there exists � > 0

such that the set fR > �g or fR < ��g has positive m-measure. Without loss of
generality, we assume that mfR > �g > 0. Since F 0 is an algebra that generates
O� _ ��1
 , there exists a sequence Fi 2 F 0 such that m.Fi4fR > �g/ tends
to 0 as i ! 1 (cf. [63, theorem 0.7]). We conclude that

R
Fi
Rdm tends toR

fR>�gRdm > 0 as i !1, which contradicts the fact that
R
Fi
Rdm D 0. ¤
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Remark 3.4.
(i) Letting � D N be the trivial partition of X in the above lemma, we obtain

lim
r!0

m.B�.x; r/ \ A/
m.B�.x; r//

D Em.�Aj��1
/.x/ m-a.e.

(ii) In general, Em�x .�Aj��1
/.x/ D Em.�Aj O� _ ��1
/.x/ m-a.e.; both of
them equal

lim
r!0

m
�
x.B

�.x; r/ \ A/
m
�
x.B

�.x; r//
m-a.e.

by (i).

PROPOSITION 3.5 Let � be a countable measurable partition of X . Then for m-
a.e. x 2 X ,

(3.5) lim
r!0

log
m
�
x.B

�.x; r/ \ �.x//
m
�
x.B

�.x; r//
D �Im.�j O� _ ��1
/.x/;

where Im. � j � / denotes the conditional information (see (2.2) for the definition).
Furthermore, set

(3.6) g.x/ D � inf
r>0

log
m
�
x .B

�.x; r/ \ �.x//
m
�
x .B

�.x; r//

and assume Hm.�/ <1. Then g � 0 and g 2 L1.X;B; m/.
PROOF: (3.5) follows directly from Lemma 3.3 and the following equality:

lim
r!0

log
m
�
x .B

�.x; r/ \ �.x//
m
�
x .B

�.x; r//
D
X

A2�
�A.x/ lim

r!0
log

m
�
x .B

�.x; r/ \ A/
m
�
x .B

�.x; r//
:

Now we turn to the proof of (3.6). It is clear that g is nonnegative. By Lem-
ma 3.2, g is measurable. In the following we show that g 2 L1.X;B; m/.

Let C 2 � and A 2 � be given. As in the proof of Lemma 3.3, we define mea-
sures �C and �C on Rd by �C .E/ D mC .��1E\A/ and �C .E/ D mC .��1E/
for all E 2 
 . By theorem 7.4 in [56], we have

�C

�
´ 2 Rd W inf

r>0

�C .B.´; r//

�C .B.´; r//
< �

�
� 3d�; � > 0:

Hence for any � > 0,

mC

��
x 2 X W inf

r>0

mC .B
�.x; r/ \ A/

mC .B�.x; r//
< �

�
\ A

�
� 3d�:

Integrating C with respect to m�, we obtain

m

��
x 2 X W inf

r>0

m
�
x .B

�.x; r/ \ A/
m
�
x .B

�.x; r//
< �

�
\ A

�
� 3d�:
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Denote

gA.x/ D inf
r>0

m
�
x .B

�.x; r/ \ A/
m
�
x .B

�.x; r//
:

Then the above inequality can be rewritten as

m.A \ fgA < �g/ � 3d�:
Note that by (3.6), g.x/ D �PA2� �A.x/ loggA.x/. Since g is nonnegative, we
haveZ

g dm D
Z 1
0

mfg > tgdt D
Z 1
0

X

A2�
m.A \ fgA < e�tg/dt

�
X

A2�

Z 1
0

minfm.A/; 3de�tgdt

�
X

A2�

��m.A/ logm.A/Cm.A/Cm.A/ log 3d
�

D Hm.�/C 1C log 3d :

This finishes the proof of the proposition. ¤
Remark 3.6. Consider the case X D † and � D P , where P is defined as in (2.3).
Suppose that fSig`iD1 is a family of mappings such that Si W �.†/! Si .�.†// �
Rd is homeomorphic for each i . Then in (3.5) and (3.6), we can change the terms
B�.x; r/ to ��1Rr;x.�x/, where Rr;x.´/ WD S�1x1 B.Sx1.´/; r/. To see this, fix i
and define � 0 D Si ı � . Then we have

lim
r!0

m
�
x.�
�1Rr;x.�x/ \ Œi �/

m
�
x.�
�1Rr;x.�x//

D lim
r!0

m
�
x.B

� 0.x; r/ \ Œi �/
m
�
x.B

� 0.x; r//

D Em.�Œi�j O� _ .� 0/�1
/.x/:
However, .� 0/�1
 D ��1
 due to the assumption on Si . Hence the last term in
the above formula equals Em.�Œi�j O� _ ��1
/.x/. Thus we can replace the terms
B�.x; r/ by ��1Rr;x.�x/ in (3.5). For the change in (3.6), we may use a similar
argument.

LEMMA 3.7 Let � W X ! Rd and � W X ! Rk be two B-measurable maps. Let
� be the partition of X given by � D f��1.´/ W ´ 2 Rd g. Let A 2 B and t > 0.
Then for m-a.e. x 2 X , we have

m�x.B
�.x; t/ \ A/ � lim sup

r!0

m.B�.x; t/ \ A \ B�.x; r//
m.B�.x; r//

(3.7)

and

m�x.U
�.x; t/ \ A/ � lim inf

r!0
m.U �.x; t/ \ A \ B�.x; r//

m.B�.x; r//
;(3.8)
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where B�.x; t/ WD ��1B.�x; t/ and U �.x; t/ WD ��1U.�x; t/I here U.´; t/
denotes the open ball in Rk centered at ´ of radius t .

PROOF: Fix A 2 B and t > 0. Similar to the proof of Lemma 3.2, for n 2 N,
let Dn denote the collection

Dn D fŒ0; 2�n/k C ˛ W ˛ 2 2�nZkg:
For y 2 Rk , denote

Wn.y/ D
[

Q2DnWQ\B.y;t/¤¿
Q; yWn.y/ D

[

Q2DnWQ�U.y;t/
Q:

Write Wn WD fWn.y/ W y 2 Rkg and yWn WD f yWn.y/ W y 2 Rkg. It is clear that
both Wn and yWn are countable for each n 2 N. Furthermore, we have Wn.y/ #
B.y; t/ and yWn.y/ " U.y; t/ for each y 2 Rk as n! 1. As a consequence, we
have ��1Wn.�x/ # B�.x; t/ and ��1 yWn.�x/ " U �.x; t/ for x 2 X . Therefore

m�x.B
�.x; t/ \ A/ D lim

n!1m
�
x.�
�1Wn.�x/ \ A/

and
m�x.U

�.x; t/ \ A/ D lim
n!1m

�
x.�
�1 yWn.�x/ \ A/

for each x 2 X .
In the following we only prove (3.7). The proof of (3.8) is essentially identical.

For n 2 N and F 2Wn, let �n.F / D fx 2 X W Wn.�x/ D F g. Then form-a.e. x
and all n 2 N, we have

m�x.�
�1Wn.�x/ \ A/

D
X

F 2Wn
��n.F /.x/m

�
x.�
�1F \ A/

D
X

F 2Wn
��n.F /.x/Em.���1F\Aj O�/.x/

D
X

F 2Wn
��n.F /.x/Em.���1F\Aj��1
/.x/

D
X

F 2Wn
��n.F /.x/ lim

r!0
m.��1F \ A \ B�.x; r//

m.B�.x; r//
.by Lemma 3.3/

D lim
r!0

m.��1Wn.�x/ \ A \ B�.x; r//
m.B�.x; r//

� lim sup
r!0

m.B�.x; t/ \ A \ B�.x; r//
m.B�.x; r//

:

Letting n!1, we obtain (3.7). ¤
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Remark 3.8. Under the conditions of Lemma 3.7, assume that

g W �.X/! g.�.X// � Rd

is a homeomorphism. Then we may replace the terms B�.x; r/ in (3.7) and (3.8)
by Bg�.x; r/. To see this, let � 0 D g ı� . It is easy to see the partition � is just the
same as f.� 0/�1.´/ W ´ 2 Rd g.
PROPOSITION 3.9 Let T W X ! X be a measure-preserving transformation on
.X;B; m/, and let � be a measurable partition of X . Suppose that � W X ! Rd is
a bounded B-measurable function. Then for any r > 0,

lim
n!1

1

n
logm�T nx.B

�.T nx; r// D 0 for m-a.e. x 2 X:

PROOF: Fix r > 0 and t > 0. Since �.X/ is a bounded subset of Rd , we can
cover it by ` balls B.�xi ; r2/ of radius r

2
, where xi 2 X and i D 1; : : : ; `. Define

An D fx 2 X W m�x.B�.x; r// � e�ntg; n 2 N:

If a ball B�.xi ; r2/ intersects An, then for any y 2 An \ B�.xi ; r2/, we have
B�.xi ;

r
2
/ � B�.y; r/ because B.�xi ; r2/ � B.�y; r/ by the triangle inequality.

So the definition of An gives m�y.An \ B�.xi ; r2// � m
�
y.B

�.y; r// � e�nt .
Hence

m.An \ B�.xi ; r2// D
Z
m�y.An \ B�.xi ; r2//dm.y/ � e�nt

and m.An/ � `e�nt .
This estimate gives directly that g.x/ WD logm�x.B�.x; r// 2 L1.X;B; m/.

Note that g.T nx/ D Pn
iD1 g.T

ix/ �Pn�1
iD1 g.T

ix/. By the Birkhoff ergodic
theorem we can get limn!1 1

n
g.T nx/ D 0 form-a.e. x 2 X , which is the desired

result. ¤
LEMMA 3.10 Let A be a sub-� -algebra of B. Let A 2 B with m.A/ > 0. Then

Em.�AjA/.x/ > 0
for m-a.e. x 2 A.

PROOF: Let W WD fEm.�AjA/ � 0g. Then W 2 A. Hence

0 �
Z

W

Em.�AjA/dm D
Z

W

�A dm.x/ D m.A \W /;

which implies m.A \W / D 0. This finishes the proof. ¤

4 Projection Measure-Theoretic Entropies Associated with IFSs

Throughout this section, let fSig`iD1 be an IFS on a closed set X � Rd , and
.†; �/ the one-sided full shift over f1; : : : ; `g. Let M� .†/ denote the collection
of all �-invariant Borel probability measures on†. Let � W †! Rd be defined as
in (2.1), and h�.�; � / as in Definition 2.1.
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4.1 Some Basic Properties
In this subsection, we present some basic properties of projection measure-

theoretic entropy. Our first result is the following:

PROPOSITION 4.1
(i) 0 � h�.�;m/ � h.�;m/ for every m 2 M� .†/, where h.�;m/ denotes

the classical measure-theoretic entropy of m.
(ii) The projection entropy function is affine onM� .†/, i.e., for anym1; m2 2

M� .†/ and any 0 � p � 1, we have

(4.1) h�.�; pm1 C .1 � p/m2/ D ph�.�;m1/C .1 � p/h�.�;m2/:
The proof of the above proposition will be given later. Now let us recall some

notation. If � is a partition of †, then y� denotes the �-algebra generated by � . If
�1; : : : ; �n are countable partitions of †, then

Wn
iD1 �i denotes the partition con-

sisting of sets A1 \ � � � \ An with Ai 2 �i . Similarly for �-algebras A1;A2; : : : ;W
nAn denotes the � -algebra generated by

S
nAn.

Let P be the partition of † defined as in (2.3). Write Pn0 D
Wn
iD0 �

�iP for
n � 0. Let 
 denote the Borel � -algebra B.Rd / on Rd . Similar to Definition 2.1,
we give the following definition:

DEFINITION 4.2 Let k 2 N and � 2M�k .†/. Define

h�.�
k; �/ WD H�.Pk�10 j��k��1
/ �H�.Pk�10 j��1
/:

The term h�.�
k; �/ can be viewed as the projection measure-theoretic entropy

of � with respect to the IFS fSi1 ı � � � ı Sik W 1 � ij � ` for 1 � j � kg. The
following proposition exploits the connection between h�.�k; �/ and h�.�;m/,
where m D 1

k

Pk�1
iD0 � ı ��i .

PROPOSITION 4.3 Let k 2 N and � 2M�k .†/. Set m D 1
k

Pk�1
iD0 � ı ��i . Then

m is � -invariant, and h�.�;m/ D 1
k
h�.�

k; �/.

To prove Propositions 4.1 and 4.3, we first give some lemmas about the (condi-
tional) information and entropy (see Section 2 for the definitions).

LEMMA 4.4 (cf. [48]) Let m be a Borel probability measure on †. Let �; � be
two countable Borel partitions of † with Hm.�/ < 1, Hm.�/ < 1, and A a
sub-�-algebra of B.†/. Then we have the following:

(i) Imı��1.�jA/ ı � D Im.��1�j��1A/.
(ii) Im.� _ �jA/ D Im.�jA/C Im.�jy� _A/.

(iii) Hm.� _ �jA/ D Hm.�jA/CH.�jy� _A/.
(iv) If A1 � A2 � � � � is an increasing sequence of sub-�-algebras with An "

A, then Im.�jAn/ converges almost everywhere and in L1 to Im.�jA/. In
particular, limn!1Hm.�jAn/ D Hm.�jA/.
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LEMMA 4.5 Denote g.x/ D �x log x for x � 0. For any integer k � 2 and
x1; : : : ; xk � 0, we have

1

k

kX

iD1
g.xi / � g

�
1

k

kX

iD1
xi

�
�

kX

iD1
g

�
xi

k

�

and

(4.2)
kX

iD1
g.xi / � .x1 C � � � C xk/ log k � g.x1 C � � � C xk/ �

kX

iD1
g.xi /:

Moreover, for any p1; p2 � 0 with p1 C p2 D 1,

(4.3)
2X

jD1
pjg.xj / � g

� 2X

jD1
pjxj

�
�

2X

jD1
pjg.xj /C g.pj /xj :

PROOF: The proof is standard. ¤

LEMMA 4.6 Let m be a Borel probability measure on †. Assume � and � are two
countable Borel partitions of † such that each member in � intersects at most k
members of �. Then Hm.�/ � Hm.� _ �/ � log k.

PROOF: Although the result is standard, we give a short proof for the conve-
nience of the reader. Denote g.x/ D �x log x for x 2 Œ0; 1�. Then

Hm.�/ D
X

A2�
g.m.A// D

X

A2�
g

� X

B2�; B\A¤¿
m.A \ B/

�

�
X

A2�

�� X

B2�; B\A¤¿
g.m.A \ B//

�
�m.A/ log k

�
(by (4.2))

�
�X

A2�

X

B2�
g.m.A \ B//

�
� log k

D Hm.� _ �/ � log k:

This finishes the proof. ¤

The following simple lemma plays an important role in our analysis.

LEMMA 4.7 yP _ ��1��1
 D yP _ ��1
 .

PROOF: We only prove yP _ ��1��1
 � yP _ ��1
 . The other direction
can be proved by an essentially identical argument. Note that each member in
yP _ ��1��1
 can be written as

[̀

jD1
Œj � \ ��1��1Aj
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with Aj 2 
 . However, it is direct to check that

Œj � \ ��1��1Aj D Œj � \ ��1.Sj .Aj //:
Since Sj is injective and contractive (thus continuous), we have Sj .Aj / 2 
 .
Therefore

S`
jD1Œj � \ ��1��1Aj 2 yP _ ��1
 . ¤

LEMMA 4.8 Let m be a Borel probability measure on † and k 2 N. We have

Hm.Pk�10 j��k��1
/ �Hm.Pk�10 j��1
/ D
k�1X

jD0
Hmı��j .Pj��1��1
/ �Hmı��j .Pj��1
/:

Moreover, if m 2M� .†/, then

Hm.Pk�10 j��k��1
/ �Hm.Pk�10 j��1
/ D kh�.�;m/:
PROOF: For j D 0; 1; : : : ; k � 1, we have

Im.Pk�10 j��j��1
/ � Im.Pk�10 j��.jC1/��1
/

D Im.��jPj��j��1
/C Im
� _

0�i�k�1;
i¤j

��iP
ˇ̌
��j yP _ ��j��1


�

� Im.Pk�10 j��.jC1/��1
/ .by Lemma 4.4(ii)/

D Im.��jPj��j��1
/C Im
� _

0�i�k�1;
i¤j

��iP
ˇ̌
��j yP _ ��.jC1/��1


�

� Im.Pk�10 j��.jC1/��1
/ .by Lemma 4.7/

D Im.��jPj��j��1
/ � Im.��jPj��.jC1/��1
/ .by Lemma 4.4(ii)/

D Imı��j .Pj��1
/ ı �j � Imı��j .Pj��1��1
/ ı �j .by Lemma 4.4(i)/:

Summing j over f0; : : : ; k � 1g yields

(4.4) Im.Pk�10 j��1
/ � Im.Pk�10 j��k��1
/ D
k�1X

jD0

�
Imı��j .Pj��1
/ ı �j � Imı��j .Pj��1��1
/ ı �j

�
:

Integrating, we obtain the desired formula. ¤
For any n 2 N, let Dn be the partition of Rd given by

(4.5) Dn D fŒ0; 2�n/d C ˛ W ˛ 2 2�nZd g:
LEMMA 4.9 Let m 2M� .†/. For each n 2 N, we have

Hm.Pj��1��1 yDn/ �Hm.Pj��1 yDn/ � �d log.
p
d C 1/:
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PROOF: Since m is �-invariant, by Lemma 4.4(iii), we have

Hm.Pj��1��1 yDn/ �Hm.Pj��1 yDn/
D Hm.P _ ��1��1Dn/ �Hm.��1��1Dn/
�Hm.P _ ��1Dn/CHm.��1Dn/

D Hm.P _ ��1��1Dn/ �Hm.P _ ��1Dn/:

(4.6)

Observe that for each 1 � j � ` and Q 2 Dn,

Œj � \ ��1��1.Q/ D Œj � \ ��1.Sj .Q//:
Since Sj is contractive, diam.Sj .Q// � 2�n

p
d and thus Sj .Q/ intersects at most

.
p
d C 1/d members in Dn. We deduce that Œj � \ ��1��1.Q/ intersects at most

.
p
d C 1/d members in P _ ��1Dn. By Lemma 4.6, we have

Hm.P _ ��1��1Dn/ � Hm.P _ ��1��1Dn _ ��1Dn/
� d log.

p
d C 1/

� Hm.P _ ��1Dn/ � d log.
p
d C 1/:

(4.7)

Combining this with (4.6) yields the desired inequality. ¤

PROOF OF PROPOSITION 4.1: We first prove part (i) of the proposition, i.e.,

0 � h�.�;m/ � h.�;m/:
Since yDn " 
 as n tends to1, by Lemma 4.4(iv), we have

lim
n!1Hm.Pj�

�1��1 yDn/ �Hm.Pj��1 yDn/ D
Hm.Pj��1��1
/ �Hm.Pj��1
/:

This together with Lemma 4.9 yields

Hm.Pj��1��1
/ �Hm.Pj��1
/ � �d log.
p
d C 1/:

Applying the same argument to the IFS fSi1���ik W 1 � ij � `; 1 � j � kg, we
have

Hm.Pk�10 j��k��1
/ �Hm.Pk�10 j��1
/ � �d log.
p
d C 1/:

This together with Lemma 4.8 yields h�.�;m/ � �d log.
p
d C 1/=k. Since k is

arbitrary, we have h�.�;m/ � 0. To see h�.�;m/ � h.�;m/, it suffices to observe
that

kh�.�;m/ D Hm.Pk�10 j��k��1
/ �Hm.Pk�10 j��1
/
� Hm.Pk�10 j��k��1
/ � Hm.Pk�10 /:
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Now we turn to the proof of part (ii). Let m1; m2 2M� .†/ and m D pm1 C
.1 � p/m2 for some p 2 Œ0; 1�. Using (4.3), for any finite or countable Borel
partition � we have

(4.8) jHm.�/ � pHm1.�/ � .1 � p/Hm2.�/j � g.p/C g.1 � p/ � log 2:

Let k 2 N. By Lemma 4.8, Lemma 4.4(iv), and (4.6), we have

h�.�;m/ D
1

k

�
Hm.Pk�10 j��k��1
/ �Hm.Pk�10 j��1
/�

D 1

k
lim
n!1

�
Hm.Pk�10 j��k��1 yDn/ �Hm.Pk�10 j��1 yDn/

�

D 1

k
lim
n!1

�
Hm.Pk�10 _ ��k��1Dn/ �Hm.Pk�10 _ ��1Dn/

�
:

(4.9)

The above statement is true whenm is replaced by m1 and m2. However, by (4.8),

Hm.Pk�10 _ ��k��1Dn/ �Hm.Pk�10 _ ��1Dn/
differs from

2X

jD1
pj ŒHmj .Pk�10 _ ��k��1Dn/ �Hmj .Pk�10 _ ��1Dn/�

at most 2 log 2, where p1 D p and p2 D 1 � p. This together with (4.9) yields
(4.1). ¤

PROOF OF PROPOSITION 4.3: Let k � 2 and � 2 M�k .†/. We claim that
h�.�

k; � ı ��j / D h�.�
k; �/ for any 1 � j � k � 1. To prove the claim, it

suffices to prove h�.�k; � ı ��1/ D h�.�k; �/. Note that both � and � ı ��1 are
�k-invariant. By Lemma 4.8, we have

h�.�
k; �/ D H�.Pk�10 j��k��1
/ �H�.Pk�10 j��1
/

D
k�1X

jD0

�
H�ı��j .Pj��1��1
/ �H�ı��j .Pj��1
/

�
;

while

h�.�
k; � ı ��1/ D H�ı��1.Pk�10 j��k��1
/ �H�ı��1.Pk�10 j��1
/

D
k�1X

jD0

�
H�ı��j�1.Pj��1��1
/ �H�ı��j�1.Pj��1
/

�
:

Since � is �k-invariant, we obtain h�.�k; � ı ��1/ D h�.�k; �/. This finishes the
proof of the claim.
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To complete the proof of the proposition, letm D 1
k

Pk�1
iD0 �ı��i . It is clear that

m is � -invariant. By Proposition 4.1(ii), h�.�k; � / is affine on M�k .†/. Hence

h�.�
k; m/ D 1

k

k�1X

iD0
h�.�

k; � ı ��i / D h�.�k; �/:

Combining this with Lemma 4.8 yields the equality h�.�;m/ D 1
k
h�.�

k; �/. ¤

4.2 A Version of the Shannon-McMillan-Breiman Theorem
Associated with IFSs

In this subsection, we prove the following Shannon-McMillan-Breiman type
theorem associated with IFSs, which is needed in the proof of Theorem 2.11. It is
also of independent interest.

PROPOSITION 4.10 Let fSig`iD1 be an IFS and m 2M� .†/. Then

(4.10) lim
k!1

1

k
Im.Pk�10 j��1
/.x/ D Em.f jI/.x/ D h.�;m; x/�h�.�;m; x/

almost everywhere and in L1, where

f WD Im.Pj��1B.†//C Im.Pj��1
/ � Im.Pj��1��1
/;
I D fB 2 B.†/ W ��1B D Bg, and h.�;m; x/, h�.�;m; x/ denote the classical
local entropy and the local projection entropy ofm at x (see Definition 2.1), respec-
tively. Moreover, ifm is ergodic, then the limit in (4.10) equals h.�;m/�h�.�;m/
for m-a.e. x 2 †.

Remark 4.11. If � is a countable Borel partition of †, and A � B.†/ is a sub-�-
algebra with ��1A D A, then the relativized Shannon-McMillan-Breiman theo-
rem states that

lim
k!1

1

k
Im
�
�k�10

ˇ̌
A�.x/ D Em.gjI/.x/ for m-a.e. x 2 †;

where g D Im.�jA _ �11 / (see, e.g., [8, lemma 4.1]). However, under the setting
of Proposition 4.10, the sub-�-algebra ��1
 is not invariant in general.

In the following we present a generalized version of Proposition 4.10.

PROPOSITION 4.12 Let � be a countable Borel partition of † with Hm.�/ < 1,
and letA � B.†/ be a sub-� -algebra so that y�_��1A D y�_A. Letm 2M� .†/.
Then

(4.11) lim
k!1

1

k
Im
�
�k�10

ˇ̌
A�.x/ D Em.f jI/.x/
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almost everywhere and in L1, where

f WD Im
�
�
ˇ̌
ˇ��1A _

1_

iD1
��i y�

�
C Im.�jA/ � Im.�j��1A/

and I D fB 2 B.†/ W ��1B D Bg.
To prove Proposition 4.12, we need the following lemma:

LEMMA 4.13 ([42], corollary 1.6, p. 96) Letm 2M� .†/. Let Fk 2 L1.†;m/ be
a sequence that converges almost everywhere and in L1 to F 2 L1.†;m/. Then

lim
k!1

1

k

k�1X

jD0
Fk�j .�j .x// D Em.F jI/.x/

almost everywhere and in L1.

PROOF OF PROPOSITION 4.12: For k � 2 and x 2 †, we write

gk.x/ D Im
�
�k�10

ˇ̌
A�.x/ � Im

�
�k�20

ˇ̌
A�.�x/:

Then

(4.12) Im
�
�k�10

ˇ̌
A�.x/ D Im.�jA/.�k�1x/C

k�2X

jD0
gk�j .�jx/:

We claim that

gk.x/ D Im
�
�
ˇ̌
��1A _

k�1_

iD1
��i y�

�
.x/C Im.�jA/.x/

� Im.�j��1A/.x/:
(4.13)

By the claim and Lemma 4.4(iv), gk converges almost everywhere and in L1 to f .
Hence (4.11) follows from (4.12) and Lemma 4.13.

Now we turn to the proof of (4.13). Let k � 2. We have

Im
�
�k�10

ˇ̌
��1A�.x/

D Im
�
�
ˇ̌
��1A�.x/C Im

�k�1_

iD1
��i�

ˇ̌
��1A _ y�

�
.x/

D Im
�
�
ˇ̌
��1A�.x/C Im

�k�1_

iD1
��i�

ˇ̌
A _ y�

�
.x/;

(4.14)
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using the property ��1A _ y� D A _ y� . Meanwhile, we have

Im
�
�k�10

ˇ̌
��1A

�
.x/

D Im
�k�1_

iD1
��i�

ˇ̌
��1A

�
.x/C Im

�
�
ˇ̌
��1A _

k�1_

iD1
��i y�

�
.x/

D Im
�
�k�20

ˇ̌
A�.�x/C Im

�
�
ˇ̌
��1A _

k�1_

iD1
��i y�

�
.x/:

(4.15)

Combining (4.14) with (4.15) yields

(4.16) Im
�
�
ˇ̌
��1A�.x/C Im

�k�1_

iD1
��i�

ˇ̌
A _ y�

�
.x/ D

Im
�
�k�20

ˇ̌
A�.�x/C Im

�
�
ˇ̌
��1A _

k�1_

iD1
��i y�

�
.x/:

However,

(4.17) Im
�
�k�10

ˇ̌
A�.x/ D Im.�jA/.x/C Im

�k�1_

iD1
��i�

ˇ̌
A _ y�

�
.x/:

Combining (4.16) with (4.17) yields (4.13). This finishes the proof of Proposi-
tion 4.12. ¤

We remark that Proposition 4.10 can be stated in terms of conditional measures.
To see this, let

� D f��1.´/ W ´ 2 Rd g
be the measurable partition of† generated by the canonical projection � associated
with fSig`iD1. For m 2 M� .†/, let fm�xgx2† denote the canonical system of
conditional measures with respect to �. For x 2 † and k 2 N, let Pk0 .x/ denote
the element in the partition Pk0 containing x. Then Proposition 4.10 can be restated
as follows:

PROPOSITION 4.14 For m 2M� .†/, we have

(4.18) � lim
k!1

1

k
logm�x.Pk0 .x// D Em.f jI/.x/ for m-a.e. x 2 †;

where f WD Im.Pj��1B.†//C Im.Pj��1
/� Im.Pj��1��1
/. Moreover, if m
is ergodic, then the limit in (4.18) equals h.�;m/ � h�.�;m/ for m-a.e. x 2 †.

PROOF: It suffices to show that for each k 2 N,

logm�x.Pk0 .x// D �Im.Pk0 j��1
/.x/ almost everywhere:
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To see this, by Theorem 3.1 we have
X

A2Pk0

�A.x/m
�
x.A/ D

X

A2Pk0

�A.x/Em.�Aj��1
/.x/ for m-a.e. x 2 †:

Taking the logarithm yields the desired result. ¤
Remark 4.15. In Proposition 4.14, for m-a.e. x 2 †, we have

lim
k!1

�1
k

logm�x.Pk0 .y// D Em.f jI/.y/ for m�x-a.e. y 2 �.x/:
To see this, denote

R D
�
y 2 † W � lim

k!1
1

k
logm�y.Pk0 .y// D Em.f jI/.y/

�
:

Then 1 D m.R/ D R m�x.R\ �.x//dm.x/. Hence m�x.R\ �.x// D 1 m-a.e. For
y 2 R \ �.x/, we have

lim
k!1

� 1
k

logm�x.Pk0 .y// D lim
k!1

� 1
k

logm�y.Pk0 .y// D Em.f jI/.y/:

As a corollary of Proposition 4.14, we have the following:

COROLLARY 4.16 Let m 2M� .†/. Then

h�.�;m/ D h.�;m/” lim
k!1

1

k
logm�x.Pk0 .x// D 0 m-a.e.

” dimH m�x D 0 m-a.e.

In particular, if dimH ��1.´/ D 0 for each ´ 2 Rd , then h�.�;m/ D h.�;m/.
Here dimH denotes the Hausdorff dimension.

PROOF: Let f be defined as in Proposition 4.14. ThenZ
Em.f jI/dm D

Z
f dm D h.�;m/ � h�.�;m/:

By (4.18), Em.f jI/.x/ � 0 for m-a.e. x 2 †. Hence we have

h.�;m/ D h�.�;m/” Em.f jI/ D 0 m-a.e.

” lim
k!1

1

k
logm�x.Pk0 .x// D 0 m-a.e.

Using dimension theory of measures (see, e.g., [14]), we have

dimH m�x D ess supy2�.x/ lim inf
k!1

logm�x.Pk0 .y//
log `�k

:

This together with Remark 4.15 yields

Em.f jI/ D 0 m-a.e.” dimH m�x D 0 m-a.e.

This finishes the proof of the first part of the corollary.
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To complete the proof, assume that dimH ��1.´/ D 0 for each ´ 2 Rd . Then
for each x 2 †, dimH �.x/ D 0 and hence dimH m

�
x D 0. Thus h�.�;m/ D

h.�;m/. ¤
4.3 Projection Entropy under the Ergodic Decomposition

In this subsection, we first prove the following result:

PROPOSITION 4.17 Let fSig`iD1 be an IFS and m 2M� .†/. Assume that m DR
� dP .�/ is the ergodic decomposition of m. Then

h�.�;m/ D
Z
h�.�; �/dP .�/:

PROOF: Let I denote the � -algebra fB 2 B.†/ W ��1B D Bg, and let
m 2M� .†/. Then there exists an m-measurable partition " of † such that y" D I
modulo sets of zero m-measure (see [47, pp. 37–38]). Let fm"xg denote the con-
ditional measures of m associated with the partition ". Then m D R

m"x dm.x/

is just the ergodic decomposition of m (see, e.g., [31, theorem 2.3.3]). Hence to
prove the proposition, we need to show that

(4.19) h�.�;m/ D
Z
h�.�;m

"
x/dm.x/:

We first show the direction “�” in (4.19). Note that I is � -invariant and yP _
��1��1
 D yP _ ��1
 . Hence we have yP _ ��1��1
 _ I D yP _ ��1
 _ I.
Taking � D P and A D ��1
 _ I in Proposition 4.12 yields

(4.20) lim
k!1

1

k
Im.Pk�10 j��1
 _ I/.x/ D Em.f jI/.x/

almost everywhere and in L1, where

f WD Im.Pj��1B.†//C Im.Pj��1
 _ I/ � Im.Pj��1��1
 _ I/:
By Remark 3.4(ii), we have

Im"x .Pk�10 j��1
/.x/ D Im.Pk�10 j��1
 _ I/.x/:
Hence according to the ergodicity of m"x and Proposition 4.10, we have

h.�;m"x/ � h�.�;m"x/ D lim
k!1

1

k
Im"x .Pk�10 j��1
/.x/

D lim
k!1

1

k
Im.Pk�10 j��1
 _ I/.x/

almost everywhere and

(4.21)
Z
h.�;m"x/ � h�.�;m"x/dm.x/ D lim

k!1
1

k
Hm.Pk�10 j��1
 _ I/:

Using Proposition 4.10 again we have

(4.22) h.�;m/ � h�.�;m/ D lim
k!1

1

k
Hm.Pk�10 j��1
/:



DIMENSION THEORY OF IFS 29

However, Hm.Pk�10 j��1
 _ I/ � Hm.Pk�10 j��1
/ (see, e.g., theorem 4.3(v) in
[63]). By (4.21), (4.22), and the above inequality, we have

Z
h.�;m"x/ � h�.�;m"x/dm.x/ � h.�;m/ � h�.�;m/:

It is well-known (see [63, theorem 8.4]) that
R
h.�;m"x/dm.x/ D h.�;m/. Hence

we obtain the inequality h�.�;m/ �
R
h�.�;m

"
x/dm.x/.

Now we prove the direction “�” in (4.19). For any n 2 N, let Dn be defined as
in (4.5). Since yDn " 
 , we have

(4.23) h�.�;m/ D lim
n!1Hm.Pj�

�1��1 yDn/ �Hm.Pj��1 yDn/:

Now fix n 2 N and denote A.m/ D Hm.Pj��1��1 yDn/ �Hm.Pj��1 yDn/ and

B.m/ D Hm.��1��1DnjP _ ��1 yDn/
D Hm.P _ ��1��1Dn _ ��1Dn/ �Hm.P _ ��1Dn/:

Then by (4.6) and (4.7), we have

(4.24) B.m/ � c � A.m/ � B.m/;
where c D d log.

p
d C1/. As a conditional entropy function, B.m/ is concave on

M� .†/ (see, e.g., [25, lemma 3.3(1)]). Hence by Jensen’s inequality and (4.24),
we have

A.m/ � B.m/ � c �
Z
B.m"x/dm.x/ � c �

Z
A.m"x/dm.x/ � c:

That is,

Hm.Pj��1��1 yDn/ �Hm.Pj��1 yDn/ �Z
Hm"x .Pj��1��1 yDn/ �Hm"x .Pj��1 yDn/dm.x/ � c:

Letting n ! 1 and using (4.23) and the Lebesgue dominated convergence theo-
rem, we have

h�.�;m/ �
Z
h�.�;m

"
x/dm.x/ � c:

Replacing � by �k we have

(4.25) h�.�
k; m/ �

Z
h�.�

k; m"kx /dm.x/ � c;

where "k denotes a measurable partition of † such that

y"k D fB 2 B.†/ W ��kB D Bg
modulo sets of zero m-measure. Note that m D R

m
"k
x dm.x/ is the ergodic de-

composition of m with respect to �k . Hence m D R
1
k

Pk�1
iD0 m

"k
x ı ��i dm.x/ is
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the ergodic decomposition of m with respect to � . It follows that

(4.26)
1

k

k�1X

iD0
m"kx ı ��i D m"x m-a.e.

By (4.25), Proposition 4.3, and (4.26), we have

h�.�
k; m/ D 1

k

k�1X

iD0
h�.�

k; m ı ��i /

� 1

k

k�1X

iD0

Z
h�.�

k; m"kx ı ��i /dm.x/ � c

D
Z
h�

�
�k;

1

k

k�1X

iD0
m"kx ı ��i

�
dm.x/ � c

D
Z
h�.�

k; m"x/dm.x/ � c:

Using Proposition 4.3 again yields

h�.�;m/ �
Z
h�.�;m

"
x/dm.x/ �

c

k
for any k 2 N.

Hence we have h�.�;m/ �
R
h�.�;m

"
x/dm.x/, as desired. ¤

PROOF OF THEOREM 2.2: It follows directly from Propositions 4.1, 4.10,
and 4.17. ¤

4.4 Projection Entropy for Certain Affine IFSs and Proof of Theorem 2.3
In this subsection, we assume that ˆ D fSig`iD1 is an IFS on Rd of the form

Si .x/ D Ax C ci ; i D 1; : : : ; `;
where A is a d � d nonsingular real matrix with kAk < 1 and ci 2 Rd . Let K
denote the attractor of ˆ.

LetQ denote the partition fŒ0; 1/d C ˛ W ˛ 2 Zd g of Rd . For n D 0; 1; : : : , and
x 2 Rd , we set

Qn D fAnQ W Q 2 Qg; Qn C x D fAnQC x W Q 2 Qg:
We have the following geometric characterization of h� for the IFS ˆ (i.e., Theo-
rem 2.3).

PROPOSITION 4.18
(i) Let m 2M� .†/. Then

(4.27) h�.�;m/ D lim
n!1

Hm.�
�1Qn/
n

:
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(ii)

lim
n!1

log #fQ 2 Q W AnQ \K ¤ ¿g
n

D supfh�.�;m/ W m 2M� .†/g:

To prove the above proposition, we need the following lemma:

LEMMA 4.19 Assume that� is a subset of f1; : : : ; `g such that Si .K/\Sj .K/ D
¿ for all i; j 2 � with i ¤ j . Suppose that � is an invariant measure on †
supported on �N , i.e., �.Œj �/ D 0 for all j 2 f1; : : : ; `gn�. Then h�.�; �/ D
h.�; �/.

PROOF: It suffices to prove that h�.�; �/ � h.�; �/. Recall that

h�.�; �/ D H�.Pj��1��1
/ �H�.Pj��1
/
and H�.Pj��1��1
/ � H�.Pj��1B.†// D h.�; �/. Hence we only need to
show H�.Pj��1
/ D 0. To do this, denote

ı D minfd.Si .K/; Sj .K// W i; j 2 �; i ¤ j g:
Then ı > 0. Let � be an arbitrary finite Borel partition of K so that diam.A/ < ı

2

for A 2 �. Set W D fŒi � W i 2 �g. Since � is supported on �N , we have

H�.Pj��1y�/ D H�.P _ ��1�/ �H�.��1�/
D H�.W _ ��1�/ �H�.��1�/:

However, for each A 2 �, there is at most one i 2 � such that Si .K/ \ A ¤ ¿,
i.e., Œi � \ ��1A ¤ ¿. This forces H�.W _ ��1�/ D H�.��1�/. Hence

H�.Pj��1y�/ D 0:
By the arbitrariness of � and Lemma 4.4(iv), we have H�.Pj��1
/ D 0. ¤

PROOF OF PROPOSITION 4.18: We first prove (i). Let m 2 M� .†/. Denote

 D B.Rd /. According to Proposition 4.3, we have

Hm.Pp�10 j��p��1
/ �Hm.Pp�10 j��1
/ D ph�.�;m/; p 2 N:

Now fix p. Since yQn " 
 , by Lemma 4.4(iv), there exists k0 such that for k � k0,

jHm.Pp�10 j��p��1
/ �Hm.Pp�10 j��p��1 yQkp/j � 1
and

jHm.Pp�10 j��1
/ �Hm.Pp�10 j��1 yQ.kC1/p/j � 1:
It follows that for k � k0,

ph�.�;m/ � 2 � Hm.Pp�10 j��p��1 yQkp/ �Hm.Pp�10 j��1 yQ.kC1/p/
� ph�.�;m/C 2:

(4.28)
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Now we estimate the difference of conditional entropies in (4.28). Note that

Hm.Pp�10 j��p��1 yQkp/ D Hm.Pp�10 _ ��p��1Qkp/ �Hm.��p��1Qkp/
D Hm.Pp�10 _ ��p��1Qkp/ �Hm.��1Qkp/

and

Hm.Pp�10 j��1 yQ.kC1/p/ D Hm.Pp�10 _ ��1Q.kC1/p/ �Hm.��1Q.kC1/p/:
Hence we have

Hm.Pp�10 j��p��1 yQkp/ �Hm.Pp�10 j��1 yQ.kC1/p/
D Hm.Pp�10 _ ��p��1Qkp/ �Hm.Pp�10 _ ��1Q.kC1/p/
CHm.��1Q.kC1/p/ �Hm.��1Qkp/:

(4.29)

Observe that for each Œu� 2 Pp�10 and any Q 2 Q,

Œu� \ ��p��1AkpQ D Œu� \ ��1SuAkpQ:
Since the linear part of Su is Ap , the set SuAkpQ intersects at most 2d elements
of Q.kC1/p. Therefore each element of Pp�10 _ ��p��1Qkp intersects at most
2d elements of Pp�10 _ ��1Q.kC1/p. Similarly, the statement is also true if the
two partitions are interchanged. Therefore by Lemma 4.6 we have

jHm.Pp�10 _ ��p��1Qkp/ �Hm.Pp�10 _ ��1Q.kC1/p/j � d log 2:

This together with (4.28) and (4.29) yields

ph�.�;m/ � 2 � d log 2 � Hm.��1Q.kC1/p/ �Hm.��1Qkp/
� ph�.�;m/C 2C d log 2

for k � k0. Hence we have

lim sup
k!1

Hm.�
�1Qkp/
kp

� h�.�;m/C
2C d log 2

p

and

lim inf
k!1

Hm.�
�1Qkp/
kp

� h�.�;m/ �
2C d log 2

p
:

By a volume argument, there is a large integer N (N depends on A, d , and p and
is independent of k) such that for any i D 0; 1; : : : ; p � 1, each element of QkpCi
intersects at most N elements of Qkp, and vice versa. Hence by Lemma 4.6,
jHm.��1Qkp/ �Hm.��1QkpCi /j < logN for 0 � i � p � 1. It follows that

lim sup
k!1

Hm.�
�1Qkp/
kp

D lim sup
n!1

Hm.�
�1Qn/
n
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and

lim inf
k!1

Hm.�
�1Qkp/
kp

D lim inf
n!1

Hm.�
�1Qn/
n

:

Thus we have

h�.�;m/ �
2C d log 2

p
� lim inf

n!1
Hm.�

�1Qn/
n

� lim sup
n!1

Hm.�
�1Qn/
n

� h�.�;m/C
2C d log 2

p
:

Letting p tend to infinity, we obtain (4.27).
To show (ii), we assume K � Œ0; 1/d without loss of generality. Note that the

number of (nonempty) elements in the partition ��1Qn is just equal to

Nn WD #fQ 2 Q W AnQ \K ¤ ¿g:
Hence by (4.2), we have

Hm.�
�1Qn/ � logNn 8m 2M� .†/:

This together with (i) proves

lim inf
n!1

logNn
n
� supfh�.�;m/ W m 2M� .†/g:

To prove (ii), we still need to show

(4.30) lim sup
n!1

logNn
n
� supfh�.�;m/ W m 2M� .†/g:

We may assume that lim supn!1 logNn=n > 0; otherwise there is nothing to
prove. Let n be a large integer so that Nn > 7d . Choose a subset � of

fQ W AnQ \K ¤ ¿; Q 2 Qg
such that #� > 7�dNn, and

(4.31) 2Q \ 2 zQ D ¿ for different Q; zQ 2 �;
where 2Q WDSP2QWP\Q¤¿ P , andP denotes the closure ofP . For eachQ 2 � ,
since AnQ \ K ¤ ¿, we can pick a word u D u.Q/ 2 †n in such a way that
SuK \ AnQ ¤ ¿.

Consider the collection W D fu.Q/ W Q 2 �g. The separation condition (4.31)
for elements in � guarantees that

Su.Q/.K/ \ Su. zQ/.K/ D ¿ for all Q; zQ 2 � with Q ¤ zQ:
Define a Bernoulli measure � on W N by

�.Œw1 � � �wk�/ D .#�/�k; k 2 N; w1; : : : ; wk 2 W:
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Then � can be viewed as a �n-invariant measure on† (by viewingW N as a subset
of †). By Lemma 4.19, we have h�.�n; �/ D h.�n; �/ D log #� . Define � D
1
n

Pn�1
iD0 � ı ��i . Then � 2M� .†/, and by Proposition 4.3,

h�.�; �/ D
h�.�

n; �/

n
D log #�

n
� log.7�dNn/

n
;

from which (4.30) follows. ¤

4.5 Upper Semicontinuity of h�.�; � / under the AWSC
In this subsection, we prove the following proposition:

PROPOSITION 4.20 Assume that fSig`iD1 is an IFS that satisfies the AWSC (see
Definition 2.14). Then the map m 7! h�.�;m/ on M� .†/ is upper semicontinu-
ous.

We first prove a lemma.

LEMMA 4.21 Let fSig`iD1 be an IFS with attractor K � Rd . Assume that

#f1 � i � ` W x 2 Si .K/g � k
for some k 2 N and each x 2 Rd . Then H�.Pj��1
/ � log k for any Borel
probability measure � on †.

PROOF: A compactness argument shows that there is r0 > 0 such that

#f1 � i � ` W B.x; r0/ \ Si .K/ ¤ ¿g � k
for each x 2 Rd . Let n 2 N so that 2�n

p
d < r0. Then for each Q 2 Dn,

where Dn is defined as in (4.5), there are at most k different i 2 f1; : : : ; `g such
that Si .K/ \Q ¤ ¿. It follows that each member in ��1Dn intersects at most k
members of P _ ��1Dn. By Lemma 4.6, we have

H�.Pj��1 yDn/ D H�.P _ ��1Dn/ �H�.��1Dn/ � log k:

Note that ��1 yDn " ��1
 . Applying Lemma 4.4(iv), we obtain

H�.Pj��1
/ D lim
n!1H�.Pj�

�1 yDn/ � log k:

¤
As a corollary, we have the following:

COROLLARY 4.22 Under the condition of Lemma 4.21, we have

h�.�;m/ � h.�;m/ � log k for any m 2M� .†/.

PROOF: By the definition of h�.�;m/ and Lemma 4.21, we have

h�.�;m/ D Hm.Pj��1��1
/ �Hm.Pj��1
/ � Hm.Pj��1��1
/ � log k:

However, Hm.Pj��1��1
/ � Hm.Pj��1B.†// D h.�;m/. This implies the
desired result. ¤
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To prove Proposition 4.20, we need the following lemma:

LEMMA 4.23 Let fSig`iD1 be an IFS with attractor K. Suppose that � is a subset
of f1; : : : ; `g such that there is a map g W f1; : : : ; `g ! � so that

Si D Sg.i/; i D 1; : : : ; `:
Let .�N ; z�/ denote the one-sided full shift over �. Define G W † ! �N by
.xj /

1
jD1 7! .g.xj //

1
jD1. Then

(i) K is also the attractor of fSigi2�. Moreover, if we let z� W �N ! K denote
the canonical projection with respect to fSigi2�, then we have � D z� ıG.

(ii) Let m 2 M� .†/. Then � D m ı G�1 2 Mz� .�N/. Furthermore,
h�.�;m/ D hz�.z�; �/. In particular, h�.�;m/ � log.#�/.

PROOF: (i) is obvious.
To see (ii), let m 2 M� .†/. It is easily seen that the following diagram com-

mutes:
†

�����! †

G

??y
??yG

�N z�����! �N :

That is, z� ı G D G ı � . Hence � D m ı G�1 2 Mz� .�N/. To show that
h�.�;m/ D hz�.z�; �/, let Q D fŒi � W i 2 �g be the canonical partition of �N .
Then

hz�.z�; �/ D HmıG�1.Qjz��1z��1
/ �HmıG�1.Qjz��1
/
D Hm.G�1.Q/jG�1z��1z��1
/ �Hm.G�1.Q/jG�1z��1
/
D Hm.G�1.Q/j��1��1
/ �Hm.G�1.Q/j��1
/;

using the facts G ı � D z� ıG and z� ıG D � . Since P _G�1.Q/ D P , we have

h�.�;m/ � hz�.z�;m ıG�1/
D �Hm.Pj��1��1
/ �Hm.Pj��1
/

�

� �Hm.G�1.Q/j��1��1
/ �Hm.G�1.Q/j��1
/
�

D �Hm.Pj��1��1
/ �Hm.G�1.Q/j��1��1
/
�

� �Hm.Pj��1
/ �Hm.G�1.Q/j��1
/
�

D Hm.Pj��1��1
 _G�1. yQ// �Hm.Pj��1
 _G�1. yQ//:
An argument similar to the proof of Lemma 4.7 shows that

��1��1
 _G�1. yQ/ D ��1
 _G�1. yQ/:
Hence we have h�.�;m/ D hz�.z�;m ıG�1/. ¤
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PROOF OF PROPOSITION 4.20: Let .�n/ be a sequence in M� .†/ converging
to m in the weak-star topology. We need to show that lim supn!1 h�.�; �n/ �
h�.�;m/. To see this, it suffices to show that

(4.32) lim sup
n!1

h�.�; �n/ � h�.�;m/C
1

k
log tk

for each k 2 N, where tk is given as in Definition 2.14.
To prove (4.32), we fix k 2 N. Define an equivalence relation � on f1; : : : ; `gk

by u � v if Su D Sv. Let u denotes the equivalence class containing u. Denote
Su D Su. Set J D fu W u 2 f1; : : : ; `gkg. Let .JN ; T / denote the one-sided full
shift space over the alphabet J . Let G W †! JN be defined by

.xi /
1
iD1 7! .xjkC1 � � � x.jC1/k/1jD0:

It is clear that the following diagram commutes:

†
�k����! †

G

??y
??yG

JN T����! JN
That is, T ıG D G ı �k . It implies that �n ıG�1, m ıG�1 2MT .JN/, and

lim
n!1 �n ıG

�1 D m ıG�1:
Hence we have

(4.33) h.T;m ıG�1/ � lim sup
n!1

h.T; �n ıG�1/;

where we use the upper semicontinuity of the classical measure-theoretic entropy
map on .JN ; T /.

Define z� W JN ! K by

z�..ui /1iD1/ D lim
n!1Su1 ı � � � ı Sun.K/:

Then z� ıG D � . By the assumption of AWSC (2.11) and Corollary 4.22 (consid-
ering the IFS fSu W u 2 J g), we have

hz�.T;m ıG�1/ � h.T;m ıG�1/ � log tk

� lim sup
n!1

h.T; �n ıG�1/ � log tk .by (4.33)/

� lim sup
n!1

hz�.T; �n ıG�1/ � log tk;

where the last inequality follows from Proposition 4.1(i). Then (4.32) follows from
the above inequality, together with Proposition 4.3 and the following claim:

(4.34) hz�.T; � ıG�1/ D h�.�k; �/; � 2M� .†/:
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However, (4.34) just comes from Lemma 4.23, where we consider the IFS fSu W
u 2 f1; : : : ; `gkg rather than fSig`iD1. ¤

5 Some Geometric Properties of C 1 IFSs
In this section we give some geometric properties of C 1 IFSs.

LEMMA 5.1 Let S W U ! S.U / � Rd be a C 1 diffeomorphism on an open set
U � Rd , and X a compact subset of U . Let c > 1. Then there exists r0 > 0 such
that

(5.1) c�1Œ�S 0.x/Œ� � jx � yj � jS.x/ � S.y/j � ckS 0.x/k � jx � yj
for all x 2 X , y 2 U , with jx � yj � r0, where S 0.x/ denotes the differential of S
at x, and Œ� � Œ� and k � k are defined as in (2.4). As a consequence,

(5.2) B.S.x/; c�1Œ�S 0.x/Œ�r/ � S .B.x; r// � B.S.x/; ckS 0.x/kr/
for all x 2 X and 0 < r � r0.

PROOF: Let c > 1. We only prove (5.1), for it is not hard to derive (5.2) from
(5.1). Assume on the contrary that (5.1) is not true. Then there exist two sequences
.xn/ � X; .yn/ � U such that xn ¤ yn, limn!1 jxn � ynj D 0, and for each
n � 1,

either jS.xn/ � S.yn/j � ckS 0.xn/k � jxn � ynj
or jS.xn/ � S.yn/j � c�1Œ�S 0.xn/Œ� � jxn � ynj:

(5.3)

Since X is compact, without lost of generality, we assume that

lim
n!1 xn D x D lim

n!1yn:

Write S D .f1; f2; : : : ; fd /
T. Then each component fj of S is a C 1 real-valued

function defined on U . Choose a small � > 0 such that

f´ 2 Rd W j´ � xj � � for some x 2 Xg � U:
Take N 2 N such that jxn � ynj < � for n � N . By the mean value theorem, for
each n � N and 1 � j � d , there exists ´n;j on the segment Lxn;yn connecting
xn and yn such that

fj .xn/ � fj .yn/ D rfj .´n;j / � .xn � yn/;
whererfj denotes the gradient of fj . Therefore jS.xn/�S.yn/j D jMn.xn�yn/j
with Mn WD .rf1.´n;1/; : : : ;rfd .´n;d //T. It follows that

(5.4) Œ�MnŒ� � jxn � ynj � jS.xn/ � S.yn/j � kMnk � jxn � ynj:
Since S is C 1, Mn tends to S 0.x/ as n!1. Thus we have Œ�MnŒ�! Œ�S 0.x/Œ� and
kMnk ! kS 0.x/k. Meanwhile, Œ�S 0.xn/Œ� ! Œ�S 0.x/Œ� and kS 0.xn/k ! kS 0.x/k.
These limits together with (5.4) lead to a contradiction with (5.3). ¤
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Let fS1; : : : ; S`g be a C 1 IFS on a compact set X � Rd . Let � W † ! Rd be
defined as in (2.1). By Lemma 5.1, we directly have the following:

LEMMA 5.2 Let c > 1. Then there exists r0 > 0 such that for any 1 � i � `,
x 2 †, and 0 < r < r0,

B.Si .�x/; c
�1Œ�S 0i .�x/Œ�r/ � Si .B.�x; r// � B.Si .�x/; ckS 0i .�x/kr/:

Let �; � W †! R be defined by

(5.5) �.x/ D kS 0x1.��x/k; �.x/ D Œ�S 0x1.��x/Œ�; x D .xi /1iD1 2 †:
Let P be the partition of † defined as in (2.3). For x 2 †, let P.x/ denote the
element in P that contains x. Then we have the following:

LEMMA 5.3 Let c > 1. Then there exists r0 > 0 such that for any ´ 2 † and
0 < r < r0,

B�.´; c�1�.´/r/ \ P.´/ � B�� .´; r/ \ P.´/ � B�.´; c�.´/r/ \ P.´/;
where B�.´; r/ is defined as in (3.1).

PROOF: Let ´ D . j́ /1jD1 2 †. Taking i D ´1 and x D �´ in Lemma 5.2, we
obtain

B.S´1.��´/; c
�1Œ�S 0´1.��´/Œ�r/ � S´1.B.��´; r//

� B.S´1.��´/; ckS 0´1.��´/kr/:
That is,

B.�´; c�1�.´/r/ � S´1B.��´; r/ � B.�´; c�.´/r/;
where we use the fact that S´1.��´/ D �´, which can be checked directly from
the definition of � . Thus we have

B�.�´; c�1�.´/r/ \ P.´/ � ��1�S´1.B.��´; r//
� \ P.´/

� B�.´; c�.´/r/ \ P.´/:
Finally, we show that

��1
�
S´1 .B.��´; r//

� \ P.´/ D B�� .´; r/ \ P.´/:
To see this, let y D .yj /1jD1 2 †. Then we have the following equivalent implica-
tions:

y 2 ��1 .S´1.B.��´; r/// \ P.´/
” y1 D ´1; �y 2 S´1.B.��´; r//;
” y1 D ´1; Sy1.��y/ 2 S´1.B.��´; r//;
” y1 D ´1; ��y 2 B.��´; r/;
” y1 D ´1; y 2 B�� .´; r/;
” y 2 B�� .´; r/ \ P.´/:

This finishes the proof of the lemma. ¤
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LEMMA 5.4 Assume that fSig`iD1 is a weakly conformal IFS with attractor K.
Then for any c > 1, there exists D > 0 such that for any n 2 N, u 2 f1; : : : ; `gn,
and x; y 2 K we have

D�1c�nkS 0u.x/k � jx � yj � jSu.x/ � Su.y/j � DcnkS 0u.x/k � jx � yj
and

(5.6) D�1c�nkS 0u.x/k � diam.Su.K// � DcnkS 0u.x/k:
PROOF: The results were proved in the conformal case in [18, lemma 3.5 and

corollary 3.6]. A slight modification of that proof works for the weakly conformal
case. ¤

As a corollary, we have the following:

COROLLARY 5.5 Under the assumption of Lemma 5.4, for ˛ > 0, there is r0 > 0
such that for any 0 < r < r0 and ´ 2 K, there exist n 2 N and u 2 f1; : : : ; `gn
such that Su.K/ � B.´; r/ and

(5.7) jSu.x/ � Su.y/j � r1C˛jx � yj; x; y 2 K:
PROOF: Denote a D inffŒ�S 0i .x/Œ� W x 2 K; 1 � i � `g and b D supfkS 0i .x/k W

x 2 K; 1 � i � `g. Then 0 < a � b < 1. Choose c so that

(5.8) 1 < c < b
�˛

3.2C˛/ :

Let D be the constant in Lemma 5.4 corresponding to c. Take n0 2 N and r0 > 0
such that

(5.9)
�
c3b

˛
2C˛

�n0 < D�3ab ˛
2C˛ ;

�
1C ˛

2

�
� log r0

log a
D n0:

Now fix ´ 2 K and 0 < r < r0. We shall show that there exist n 2 N and
u 2 f1; : : : ; `gn such that Su.K/ � B.´; r/ and (5.7) holds. To see this, take
! D .!i /

1
iD1 2 † such that ´ D �!, where � is defined as in (2.1). Let n be the

unique integer such that

(5.10) kS 0!1���!n.��n!/k < r1C
˛
2 � kS 0!1���!n�1.��n�1!/k:

It follows that an < r1C˛=2 � bn�1, which together with (5.9) forces that

(5.11) n > n0 and c3n < D�3ar�
˛
2 :

To see (5.11), we first assume on the contrary that n � n0. Then

an � an0 D a.1C˛2 /
log r0
log˛ D r1C

˛
2

0 > r1C
˛
2 ;

contradicting the fact an < r1C˛=2. Hence n > n0. To see c3n < D�3ar�˛=2,
note that

c3nr
˛
2 � c3nb.n�1/ ˛

2C˛ .using r1C
˛
2 � bn�1 /

� �c3b ˛
2C˛

�n
b�

˛
2C˛ �
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� �c3b ˛
2C˛

�n0b� ˛
2C˛ .using n > n0 and (5.8)/

� D�3a .by (5.9)/:

This completes the proof of (5.11).
By (5.6), we have

diamS!1���!n.K/ � DcnkS 0!1���!n.��n!/k � Dcnr1C
˛
2 < r:

Since ´ 2 S!1���!n.K/, the above inequality implies S!1���!n.K/ � B.´; r/. By
(5.6) again, we have

(5.12) kS 0u.x/k � D�2c�2nkS 0u.y/k 8u 2 f1; : : : ; `gn; 8x; y 2 K:
By Lemma 5.4, we have for x; y 2 K,

jS!1���!n.x/ � S!1���!n.y/j
� D�1c�nkS 0!1���!n.x/k � jx � yj
� D�3c�3nkS 0!1���!n.��n!/k � jx � yj (by (5.12))

� D�3c�3nkS 0!1���!n�1.��n�1!/kŒ�S 0!n.��n!/Œ� � jx � yj
� D�3c�3nar1C˛2 jx � yj (by (5.10))

� r1C˛jx � yj (by (5.11)):

Hence the corollary follows by taking u D !1 � � �!n. ¤

PROPOSITION 5.6 Let fSig`iD1 be a C 1 IFS with attractor K. Assume that K is
not a singleton. Then:

(i) For any m 2M� .†/, we have for m-a.e. x D .xi /1iD1 2 †,

lim inf
n!1

log diamSx1���xn.K/
n

� ��.x/;

lim sup
n!1

log diamSx1���xn.K/
n

� ��.x/;

where �; � are defined as in Definition 2.5. In particular, if fSig`iD1 is
m-conformal, then for m-a.e. x D .xi /1iD1 2 †,

lim
n!1

log diamSx1���xn.K/
n

D ��.x/:

(ii) If fSig`iD1 is weakly conformal, then it is m-conformal for each m 2
M� .†/.

PROOF: We first prove (i). Take c > 1 so small that c supx2† �.x/ < 1. Let
r0 > 0 be given as in Lemma 5.2. Let x D .xi /

1
iD1 2 †. Applying Lemma 5.2

repeatedly, we have

(5.13) Sx1���xn.B.��
nx; r0// � B.�x; cn�.x/ � � � �.�n�1x/r0/:
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Since fSig`iD1 is contractive, there is a constant k such that

SxnC1���xnCk .K/ � B.��nx; r0/:
This together with (5.13) yields

diamSx1���xnCk .K/ � diamSx1���xn.B.��
nx; r0//

� 2cn�.x/ � � � �.�n�1x/r0:
(5.14)

SinceK is not a singleton, there exists 0 < r1 < r0 such that for each ´ 2 K, there
exists w 2 K such that r1 � j´ � wj � r0. Indeed, to obtain r1, one chooses an
integer n0 large enough such that supu2†n0 diamSu.K/ � r0 and then sets

r1 D
1

2
inf

u2†n0
diamSu.K/:

For each such pair .´; w/, applying (5.1) repeatedly yields

diamSx1���xn.K/ � jSx1���xn.´/ � Sx1���xn.w/j

� r1c�n
nY

jD1
Œ�S 0xj .SxjC1���xn.´/Œ�:

Hence by taking ´ D ��nx, we have

(5.15) diamSx1���xn.K/ � r1c�n�.x/ � � � �.�n�1x/:
Denote

g�.x/ D lim inf
n!1

log diamSx1���xn.K/
n

and

g�.x/ D lim sup
n!1

log diamSx1���xn.K/
n

:

It is clear that g�.x/ D g�.�x/ and g�.x/ D g�.�x/. Let I denote the � -algebra
fB 2 B.†/ W ��1B D Bg. Then by (5.15), the Birkhoff ergodic theorem, and
theorem 34.2 in [7], we have for m-a.e. x 2 †,

g�.x/ D Em.g�jI/.x/

� Em
�

lim
n!1

�n log c CPn�1
iD0 log � ı ��i
n

ˇ̌
ˇ̌I
�
.x/

D � log c C lim
n!1

1

n

n�1X

iD0
Em.log � ı ��i jI/.x/

D � log c C Em.log �jI/.x/

(5.16)
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and similarly by (5.14),

(5.17) g�.x/ � log c C Em.log �jI/.x/:
For p 2 N, write

Ap.x/ D logŒ�S 0x1���xp .��
px/Œ� and A�p.x/ D logkS 0x1���xp .��px/k:

Consider the IFS fSi1���ip W 1 � ij � `; 1 � j � pg rather than fSig`iD1. Then
(5.16) and (5.17) can be replaced by

g�.x/ � � log c C 1

p
Em.ApjIp/.x/; g�.x/ � log c C 1

p
Em.A�pjIp/.x/;

where Ip WD fB 2 B.†/ W ��pB D Bg. Taking the conditional expectation with
respect to I in the above inequalities and noting that g�; g� are � -invariant, we
obtain

g�.x/ � � log c C 1

p
Em.ApjI/.x/;

g�.x/ � log c C 1

p
Em.A�pjI/.x/:

(5.18)

Since Ap.x/ is sup-additive (i.e., ApCq.x/ � Ap.x/ C Aq.�px/) and A�p.x/ is
sub-additive (i.e., A�pCq.x/ � A�p.x/ C A�q.�

px/), by Kingman’s sub-additive
ergodic theorem (cf. [63]), we have

(5.19) lim
p!1

Ap.x/

p
D ��.x/; lim

p!1
A�p.x/
p
D ��.x/

almost everywhere and in L1. Hence letting c ! 1 and p ! 1 in (5.18) and
using theorem 34.2 in [7], we obtain that g�.x/ � ��.x/ and g�.x/ � ��.x/
almost everywhere. This finishes the proof of (i).

To see (ii), assume that fSig`iD1 is weakly conformal and m 2 M� .†/. Then
jAp.x/ � A�p.x/j=p converges to 0 uniformly as p tends to infinity. This together
with (5.19) yields �.x/ D �.x/ for m-a.e. x 2 †. This proves (ii). ¤

6 Estimates for Local Dimensions of Invariant Measures for C 1 IFSs
In this section, we prove a general version of Theorem 2.6, which is also needed

in the proof of Theorem 2.11. Let fTig`iD1 be a C 1 IFS on Rd and fSig`iD1 a C 1

IFS on Rk . Let � W † ! Rd and � W † ! Rk denote the canonical projections
associated with fTig`iD1 and fSig`iD1, respectively. Let � and � be two partitions of
† defined, respectively, by

� D f��1.´/ W ´ 2 Rd g; � D ��1�:
Let P be the partition of † given as in (2.3), and let �.x/; �.x/ be defined as in

(5.5). Applying Lemma 5.3 to the IFS fSig`iD1, we have for any c > 1 that there
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exist 0 < ı < c � 1 and r0 > 0 such that for any r 2 .0; r0/ and x 2 †,

B�.x; .c � ı/�1�.x/r/ \ P.x/ � B�� .x; r/ \ P.x/
� B�.x; .c � ı/�.x/r/ \ P.x/:(6.1)

The following technical proposition is important in our proof.

PROPOSITION 6.1 Let m 2M� .†/ and c > 1. Let ı; r0 be given as above. Then
there exists ƒ � † with m.ƒ/ D 1 such that for all x 2 ƒ and r 2 .0; r0/,

(6.2)
m
�
x.B

�.x; c�.x/r/ \ P.x//
m
�
�x.B

�.�x; r//
� f .x/ � m

�
x.B

�� .x; r/ \ P.x//
m
�
x.B

�� .x; r//

and

(6.3)
m
�
x.B

�.x; c�1�.x/r/ \ P.x//
m
�
�x.B

�.�x; r//
�

f .x/ � m
�
x.B

�� .x; .1 � cı=2/r/ \ P.x//
m
�
x.B

�� .x; .1 � cı=2/r//
;

where f WDPA2P �A
Em.�Aj��1
/

Em.�Aj��1��1
/ , 
 D B.R
d /.

PROOF: Write Rt;x.´/ D T �1x1 B.Tx1´; t/ for t > 0, x D .xi /
1
iD1 2 †, and

´ 2 Rd . It is direct to check that

(6.4) ��1��1Rt;x.��x/ \ P.x/ D B�.x; t/ \ P.x/:
Hence for m-a.e. x,

m.��1Rt;x.��x//
m.B�.x; t//

D m.B�.x; t/ \ P.x//
m.B�.x; t//

� m.�
�1Rt;x.��x//

m.B�.x; t/ \ P.x//

D m.B�.x; t/ \ P.x//
m.B�.x; t//

� m.��1��1Rt;x.��x//
m.��1��1Rt;x.��x/ \ P.x//

:

Letting t ! 0 and applying Proposition 3.5 and Remark 3.6, we have

(6.5) lim
t!0

m.��1Rt;x.��x//
m.B�.x; t//

D
X

A2P
�A.x/

Em.�Aj��1
/.x/
Em.�Aj��1��1
/.x/

DW f .x/:

for m-a.e. x.
Let zƒ denote the set of x 2 † such that the following properties hold:

(1) lim
t!0

m.B�.x; t/ \ P.x//
m.B�.x; t//

D
X

A2P
�AEm.�Aj��1
/.x/ > 0.

(2) lim
t!0

m.��1��1Rt;x.��x/ \ P.x//
m.��1��1Rt;x.��x//

D
X

A2P
�AEm.�Aj��1��1
/.x/

> 0.
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(3) For all q 2 QC,

m�x.B
�.x; q/ \ P.x// � lim sup

t!0

m
�
B�.x; q/ \ P.x/ \ B�.x; t/�

m
�
B�.x; t/

� ;

m�x.U
�.x; q/ \ P.x// � lim inf

t!0
m
�
B�.x; q/ \ P.x/ \ B�.x; t/�

m
�
B�.x; t/

� ;

m�x.B
�� .x; q/ \ P.x// � lim sup

t!0

m
�
B�� .x; q/ \ P.x/ \ ��1��1Rt;x.��x/

�

m.��1��1Rt;x.��x//
;

m�x.U
�� .x; q/ \ P.x// � lim inf

t!0
m
�
B�� .x; q/ \ P.x/ \ ��1��1Rt;x.��x/

�

m.��1��1Rt;x.��x//
;

where

U �.x; q/ WD ��1U.�x; q/; U �� .x; q/ WD ��1��1U.��x; q/;
and U.´; q/ denotes the open ball in Rk of radius q centered at ´.

(4) lim
t!0

m.��1Rt;x.��x//
m.B�.x; t//

D f .x/.

Then we have m.zƒ/ D 1 by Proposition 3.5, Lemma 3.7, Remarks 3.6 and 3.8,
and (6.5).

Now let ƒ D zƒ \ ��1 zƒ. Then m.ƒ/ D 1. Fix x 2 ƒ and r 2 .0; r0/. Let
q1 2 QC \ .r; cr=.c � ı//. Choose q2; q3 2 QC such that q1 < q2 < cr=.c � ı/
and q2.c � ı/�.x/ < q3 < c�.x/r . By (6.1), we have B�.x; q3/ \ P.x/ �
B�� .x; q2/ \ P.x/: This together with (6.4) yields

(6.6) B�.x; q3/ \ P.x/ \ B�.x; t/ �
B�� .x; q2/ \ P.x/ \ ��1��1Rt;x.��x/:

Hence we have
m
�
x.B

�.x; c�.x/r/ \ P.x//
m
�
�x.B�.�x; r//

� m
�
x.B

�.x; q3/ \ P.x//
m
�
�x.U �� .x; q1//

� lim supt!0m.B
�.x; q3/ \ P.x/ \ B�.x; t//=m.B�.x; t//

lim inft!0m.B�.�x; q1/ \ ��1Rt;x.��x//=m.��1Rt;x.��x//
.by Lemma 3.7 and Remark 3.8/

� lim
t!0

m.��1Rt;x.��x//
m.B�.x; t//

� lim sup
t!0

m.B�.x; q3/ \ P.x/ \ B�.x; t//
m.��1B�.�x; q1/ \ ��1��1Rt;x.��x//

D lim
t!0

m.��1Rt;x.��x//
m.B�.x; t//

� lim sup
t!0

m.B�.x; q3/ \ P.x/ \ B�.x; t//
m.B�� .x; q1/ \ ��1��1Rt;x.��x//

:



DIMENSION THEORY OF IFS 45

Denote

Xt WD m.B�� .x; q2/ \ P.x/ \ ��1��1Rt;x.��x//;
Yt WD m.B�� .x; q1/ \ ��1��1Rt;x.��x//;
Zt WD m.��1��1Rt;x.��x//:

Using property (4), we have

m
�
x.B

�.x; c�.x/r/ \ P.x//
m
�
�x.B

�.�x; r//

� f .x/ � lim sup
t!0

m.B�.x; q3/ \ P.x/ \ B�.x; t//
m.B�� .x; q1/ \ ��1��1Rt;x.��x//

� f .x/ � lim sup
t!0

Xt=Yt .by (6.6)/

� f .x/ � lim sup
t!0

Xt=Zt

Yt=Zt
� f .x/ � lim inft!0Xt=Zt

lim supt!0 Yt=Zt

� f .x/ � m
�
x.U

�� .x; q1/ \ P.x//
m
�
x.B

�� .x; q1//
.by Lemma 3.7 and Remark 3.8/

� f .x/ � m
�
x.B

�� .x; r/ \ P.x//
m
�
x.B

�� .x; q1//
:

Letting q1 # r , we obtain (6.2). Inequality (6.3) follows from an analogous argu-
ment. ¤

Let .�; �/ denote the map †! Rd �Rk , x 7! .�x; �x/. It is easy to see that
.�; �/ is the canonical projection with respect to the direct product of fTig`iD1 and
fSig`iD1. In the following we give a general version of Theorem 2.6.

THEOREM 6.2 Let m 2M� .†/. Then for m-a.e. x 2 †, we have

lim sup
r!0

logm�x.B�.x; r//
log r

� Em.gjI/.x/
��.x/(6.7)

and

lim inf
r!0

logm�x.B�.x; r//
log r

� Em.gjI/.x/
��.x/

;(6.8)

where

g WD Im.Pj��1��1B.Rd // � Im.Pj��1B.Rd //
C Im.Pj.�; �/�1B.Rd �Rk// � Im.Pj��1.�; �/�1B.Rd �Rk//;
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and �.x/, �.x/ denote the upper and lower Lyapunov exponents of fSig`iD1 at x
(see Definition 2.5). In particular, if fSig`iD1 is m-conformal, we have

lim
r!0

logm�x.B�.x; r//
log r

D h.�;�/.�;m; x/ � h�.�;m; x/
�.x/

:

PROOF: It suffices to prove (6.7) and (6.8). For brevity, we prove only (6.7).
The proof of (6.8) is analogous.

We first prove the inequality

(6.9) lim sup
r!0

logm�x.B�.x; r//
log r

� Em.gjI/.x/
Em.log �jI/.x/ m-a.e.;

where �.x/ D kS 0x1.�x/k for x D .xi /1iD1. To see this, let c > 1 so that

c sup
x2†

�.x/ < 1:

Let r0 and f be given as in Proposition 6.1. For n 2 N and x 2 †, define

�n.x/ D �.x/�.�x/ � � � �.�n�1x/:
Write

Hn.x/ WD log
m
�
x.B

�.x; cn�n.x/r0//

m
�
�x.B

�.�x; cn�1�n�1.�x/r0//
;

Gn.x/ WD log
m
�
x.B

�.x; cn�n.x/r0/ \ P.x//
m
�
x.B

�.x; cn�n.x/r0//
;

Wn.x/ WD log
m
�
x.B

�� .x; cn�1�n�1.�x/r0/ \ P.x//
m
�
x.B

�� .x; cn�1�n�1.�x/r0//
:

Then by Proposition 6.1 we have for m-a.e. x, Hn.x/ C Gn.x/ � logf .x/ C
Wn.x/, that is,

Hn.x/ � logf .x/ �Gn.x/CWn.x/:
However,

logm�x.B
�.x; cn�n.x/r0// D

n�1X

jD0
Hn�j .�jx/C logm��nx.B

�.�nx; r0//:

Hence for m-a.e. x,

logm�x.B�.x; cn�n.x/r0//
n

� 1

n

n�1X

jD0
Œlogf .�jx/ �Gn�j .�jx/CWn�j .�jx/�

C 1

n
logm��nx.B

�.�nx; r0//:



DIMENSION THEORY OF IFS 47

Note that by Proposition 3.5,

Gn ! G WD �Im.Pj O� _ ��1B.Rk//;
Wn ! W WD �Im.Pj��1 O� _ ��1��1B.Rk//

pointwise and in L1. By Lemma 4.13 and Proposition 3.9, we have for m-a.e. x,

lim inf
n!1

logm�x .B�.x; cn�n.x/r0//
n

� Em..logf �G CW /jI/.x/
D Em.gjI/.x/:

In the meantime, by the Birkhoff ergodic theorem, we have

lim
n!1

1

n
log.cn�n.x/r0/ D log c C Em.log �jI/.x/ m-a.e.

Hence we have

lim sup
r!0

logm�x .B�.x; r//
log r

D lim sup
n!1

logm�x .B�.x; cn�n.x/r0//
log.cn�n.x/r0/

� Em.gjI/.x/
log c C Em.log �jI/.x/ :

Taking c ! 1, we obtain (6.9).
Let q 2 N. Considering the IFS fTi1���iq W 1 � ij � `; 1 � j � qg and

fSi1���iq W 1 � ij � `; 1 � j � qg, analogously to (6.9) we have

(6.10) lim sup
r!0

logm�x.B�.x; r//
log r

� Em.gqjI/.x/
Em.loghqjI/.x/

;

where

gq WD Im.Pq�10 j��q��1B.Rd // � Im.Pq�10 j��1B.Rd //
C Im.Pq�10 j.�; �/�1B.Rd �Rk//

� Im.Pq�10 j��q.�; �/�1B.Rd �Rk//

and hq.x/ WD kS 0x1���xq .�qx/k for x D .xi /1iD1.
Due to (4.4), we have Em.gqjI/.x/ D qEm.gjI/.x/. It is easily seen that

hq.x/ is sub-multiplicative in the sense that hpCq.x/ � hp.x/hq.�px/. Thus by
the Kingman sub-additive ergodic theorem (cf. [63]), we have

lim
q!1

1

q
Em.log hqjI/.x/ D ��.x/ for m-a.e. x:

Hence letting q ! 1 in (6.10) we obtain (6.7). This finishes the proof of Theo-
rem 6.2. ¤
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PROOF OF THEOREM 2.6: In Theorem 6.2, we take Ti .x/ D x
2

for all 1 � i �
` to obtain Theorem 2.6. To see this, we know that the attractor of fTig`iD1 is just
the singleton f0g. Hence � is the trivial partition f†;¿g of †, and thus we have
m
�
x � m. ¤

7 Proofs of Theorem 2.11 and Theorem 2.12
7.1 Proof of Theorem 2.11

Let ˆ D fSig`iD1 be the direct product of k C 1 IFSs ˆ1; : : : ; ˆk , which are de-
fined, respectively, on compact Xi � Rqi , i D 1; : : : ; k. For each i , let �i denote
the canonical projection with respect to ˆi , and let �i .x/ denote the Lyapunov
exponent of ˆi at x provided it exists.

Let m 2M� .†/. Assume that ˆ1; : : : ; ˆk are m-conformal. Let � denote the
collection of all permutations of f1; : : : ; kg. For � 2 �, we denote

ƒ� WD fx 2 † W �i .x/ exists for all i , ��.1/.x/ � � � � � ��.k/.x/g:
Thenm.

S
�2�ƒ� / D 1. Let � denote the canonical projection associated with the

IFS ˆ. In the following we show that the local dimension d.m ı ��1; �x/ exists
for m-a.e. x 2 †.

Without loss of generality we only show that d.m ı ��1; �x/ exists for m-
a.e. x 2 ƒe, where e denotes the identity in �. Here we may assume m.ƒe/ > 0.
For other ƒ� ’s, the proof is essentially identical under a change of coordinates.

For i D 1; : : : ; k, let �i denote the canonical projection with respect to ˆ1 �
� � � �ˆi . It is clear that � D �k . Bear in mind that

�1.x/ � � � � � �k.x/; x 2 ƒe:
For i D 1; : : : ; k, we use fmixg to denote the family of conditional measures

fm�ix g of m associated with the partition

�i D
�
��1i .´/ W ´ 2

iY

tD1
Rqt

�
:

For convenience, we use fm0xg to denote the family of conditional measures of m
with the trivial partition f†;¿g. It is clear that m0x D m for all x 2 †.

For i D 1; : : : ; k, we give a metric di on
Qi
tD1Rqt by

di ..´1; : : : ; ´i /; .w1; : : : ; wi // D sup
1�t�i

j´t � wt jRqt

and define d D dk . We claim that for any x 2 ƒe and � > 0,

(7.1) �i .x/ \ Pn0 .x/ � B�.x; e�n.�iC1.x/��//
when n is large enough. Here B�.x; r/ is defined as in (3.1). To see the claim, let
x 2 ƒe and y 2 �i .x/. Then �iy D �ix. Thus

d.�y; �x/ D sup
1�t�k

j�ty � �txjRqt D sup
iC1�t�k

j�ty � �txjRqt :
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Since y 2 Pn0 .x/ and �iC1.x/ � � � � � �k.x/, by Proposition 5.6, we have

d.�y; �x/ � e�n.�iC1.x/��/

when n is large enough, and (7.1) follows.
For i D 0; 1; : : : ; k and x 2 †, denote

hi .x/ D lim
n!1

� logmix.Pn0 .x//
nC 1

provided that the limit exists. By Proposition 4.14,

(7.2) hi .x/ D h.�;m; x/ � h�i .�;m; x/ for m-a.e. x 2 †:
For i D 0; 1; : : : ; k � 1 and x 2 †, denote

#i .x/ D lim inf
r!0

logmix.B
�iC1.x; r//

log r
:

By Theorem 6.2 and (7.2), we have

(7.3) #i .x/ D
h�iC1.�;m; x/ � h�i .�;m; x/

�iC1.x/
D hi .x/ � hiC1.x/

�iC1.x/

for m-a.e. x 2 †.
For i D 0; 1; : : : ; k and x 2 †, define

ıi .x/ D lim sup
r!0

logmix.B
�.x; r//

log r
; ıi .x/ D lim inf

r!0
logmix.B

�.x; r//

log r
:

We claim that
(C1) ık.x/ D ık.x/ D 0 for all x 2 †.
(C2) hi .x/ � hiC1.x/ � �iC1.ıi .x/ � ıiC1.x// for m-a.e. x 2 ƒe and i D

0; 1; : : : ; k � 1.
(C3) ıiC1.x/C #i .x/ � ıi .x/ for m-a.e. x 2 ƒe and i D 0; 1; : : : ; k � 1.
It is easy to see that (C1)–(C3) together with (7.2)–(7.3) force that form-a.e. x 2

ƒe, ıi .x/ D ıi .x/ (we denote the common value as ıi .x/) for i D 0; 1; : : : ; k and,
furthermore,

(7.4) d.m ı ��1; �x/ D ı0.x/ D
k�1X

iD0
#i .x/ D

k�1X

iD0

hi .x/ � hiC1.x/
�iC1.x/

:

which is the desired result in Theorem 2.11.
In what follows we prove (C1)–(C3).

PROOF OF (C1): Since �k D f��1.´/ W ´ 2
Qk
tD1Rqt g, we have

mkx.B
�.x; r// D mkx.�k.x// D 1

for all x 2 †. Thus ık.x/ D ık.x/ D 0 for all x 2 †. ¤
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PROOF OF (C2): We give a proof by contradiction, which is modified from
[40, §10.2]. Assume that (C2) is not true. Then there exists 0 � i � k such that

hi .x/ � hiC1.x/ < �iC1.x/.ıi .x/ � ıiC1.x//
on a subset ofƒe with positive measure. Hence there exist ˛ > 0 and real numbers
hi ; hiC1; �iC1; ıi ; ıiC1 with �iC1 > 0 such that

(7.5) hi � hiC1 < �iC1.ıi � ıiC1/ � ˛;
and for any � > 0, there exists B� � ƒe with m.B�/ > 0 so that for x 2 B�,

jhi .x/ � hi j <
�

2
; jhiC1.x/ � hiC1j <

�

2
; j�iC1.x/ � �iC1j <

�

2
;

and
jıi .x/ � ıi j <

�

2
; jıiC1.x/ � ıiC1j <

�

2
:

Fix � > 0. There exists n0 W B� ! N such that for m-a.e. x 2 B� and
n > n0.x/, we have

(1)
logmiC1x .B�.x; e�n.�iC1�2�///

�n.�iC1 � 2�/
� ıiC1 C �I

(2) �1
n

logmiC1x .Pn0 .x// � hiC1 � � (by (7.2));

(3) �i .x/ \ Pn0 .x/ � B�.x; e�n.�iC1�2�// (by (7.1));

(4) �1
n

logmix.Pn0 .x// � hi C � (by (7.2)).

Take N0 such that
� WD fx 2 B� W n0.x/ � N0g

has positive measure. By Lemma 3.3 and Lemma 3.10, there exist c > 0 and
�0 � � with m.�0/ > 0 such that for x 2 �0, there exists n D n.x/ � N0 such
that

(5)
miC1x .L \�/
miC1x .L/

� c where L WD B�.x; e�n.�iC1�2�//;

(6)
logmix.B

�.x; 2e�n.�iC1�2�///
�n.�iC1 � 2�/

> ıi � �I

(7)
log.1=c/

n
< �.

Take x 2 �0 such that (1)–(7) are satisfied with n D n.x/. DenoteC D �iC1.x/
and C 0 D �i .x/. Then by (5) and (1),

miC1x .L \�/ � cmiC1x .L/ � ce�n.�iC1�2�/.ıiC1C�/:
But for each y 2 L \�, we have by (2), miC1y .Pn0 .y// � e�n.hiC1��/. It follows
that the number of distinct Pn0 -atoms intersecting C \ L \� is larger than

miC1x .L \�/en.hiC1��/:
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However, each such Pn0 -atom, say Pn0 .y/, intersects C 0\L\�, and this together
with (3) guarantees that C 0 \ Pn0 .y/ is contained in C 0 \ B�.x; 2e�n.�iC1�2�//.
To see this, let ´ 2 Pn0 .y/ \ C 0 \ L \ �. Since ´ 2 �, we have d.�´; �x/ �
e�n.�iC1�2�/. Thus

C0 \ Pn0 .y/ D �i .´/ \ Pn0 .´/ � B�.x; e�n.�iC1�2�//
� B�.x; 2e�n.�iC1�2�//:

Meanwhile by (4), mix.Pn0 .y// � e�n.hiC�/ (for w 2 Pn0 .y/ \ C 0 \ L, we have
�i .x/ D �i .w/ and thus mix.Pn0 .y// D miw.Pn0 .w//). Hence we have

mix.B
�.x; 2e�n.�iC1�2�///

� #fPn0 -atoms intersecting C 0 \ L \�g � e�n.hiC�/

� miC1x .L \�/en.hiC1��/e�n.hiC�/

� ce�n.�iC1�2�/.ıiC1C�/en.hiC1��/e�n.hiC�/:
Comparing this with (6), we have

.�iC1 � 2�/.ıi � �/

� .�iC1 � 2�/.ıiC1 C �/.�i � 2�/C
log.1=c/

n
C hi � hiC1 C 2�

� .�iC1 � 2�/.ıiC1 C �/.�i � 2�/C hi � hiC1 C 3�:
Taking � ! 0 yields hi � hiC1 � �iC1.ıi � ıiC1/, which leads to a contradiction
with (7.5). ¤

PROOF OF (C3): Here we give a proof by contradiction, adopting an idea from
the proof of [40, lemma 11.3.1]. Assume that (C3) is not true. Then there exists
0 � i � k � 1 such that ıiC1.x/C #i .x/ > ıi .x/ on a subset of ƒe with positive
measure. Hence there exists ˇ > 0 and real numbers ıi ; ıiC1; �i such that

(7.6) ıiC1 C #i > ıi C ˇ;
and for any � > 0, there exists A� � ƒe with m.A�/ > 0 so that for x 2 A� ,
(7.7) jıi .x/ � ıi j <

�

2
; jıiC1.x/ � ıiC1j <

�

2
; j#i .x/ � #i j <

�

2
:

Let 0 < � < ˇ
4

. Find N1 and a set A0� � A� with m.A0�/ > 0 such that for
x 2 A0� and n > N1,

(7.8) miC1x .B�.x; 2e�n// � e�n.ıiC1��/:
By Lemma 3.3 and Lemma 3.10, we can find c > 0 and A00� � A0� withm.A00� / > 0
and N2 such that for all x 2 A00� and n � N2,

mix.A
0
� \ B�.x; e�n//

mix.B
�.x; e�n//

> c:
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For x 2 A00� and n � N2, we have

mix.B
�.x; e�n// � c�1mix.A0� \ B�.x; e�n//

D c�1
Z
miC1y .A0� \ B�.x; e�n//dmix.y/

D c�1
Z

B�iC1 .x;e�n/

miC1y .A0� \ B�.x; e�n//dmix.y/:
(7.9)

Let y 2 �i .x/ be such that �iC1.y/\A0� \B�.x; e�n/ ¤ ¿. Then there exists
w 2 A0� \ B�.x; e�n/ such that �iC1y D �iC1w. Hence A0� \ B�.x; e�n/ �
B�.w; 2e�n/ and by (7.8)

miC1y .A0� \ B�.w; e�n// D miC1w .A0� \ B�.w; e�n//
� miC1w .B�.w; 2e�n//

� e�n.ıiC1��/:
Combining this with (7.9), we have

mix.B
�.x; e�n// � c�1e�n.ıiC1��/mix.B�iC1.x; e�n//; x 2 A00� ; n � N2:

Letting n!1, we obtain ıi .x/ � ıiC1 � �C #i .x/ for x 2 A00� . Combining this
with (7.7) yields

ıi � ıiC1 C #i � 4� � ıiC1 C #i � ˇ;
which contradicts (7.6). ¤

7.2 Proof of Theorem 2.12
DEFINITION 7.1 A real square matrix A is called asymptotically similar if all the
(complex) eigenvalues of A are equal in modulus. Correspondingly, a linear trans-
formation T on a finite-dimensional vector space V is called asymptotically simi-
lar if its representation matrix (associated with some basis of V ) is asymptotically
similar.

LEMMA 7.2 Let .A1; : : : ; A`/ be an `-tuple of commuting linear transformations
on Rd . Then there are subspaces V1; : : : ; Vk of Rd such that

(i) Rd D V1 ˚ � � � ˚ VkI
(ii) Vi is Aj -invariant for 1 � i � k and 1 � j � `I

(iii) the restriction of Aj on Vi is asymptotically similar for 1 � i � k and
1 � j � `.

PROOF: For brevity, we only prove the lemma in the case ` D 2. The reader
will see that the idea works for all cases.

Let S; T be two commuting linear transformations on Rd . Let f denote the real
minimal polynomial of S . Suppose f D f t11 � � �f

tp
p is the decomposition of f into

powers of distinct, real irreducible monic factors fi . Let Wi denote the null space
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of Œfi .S/�ti , i D 1; : : : ; p. Then Wi ’s are S-invariant and Rd D W1 ˚ � � � ˚Wp
(cf. [62, theorem 7.3]). Moreover, SWi , the restriction of S toWi , is asymptotically
similar.

Since ST D TS , Wi is also T -invariant for each i . But TWi may be not
asymptotically similar. However, as above, for each i , we can decompose Wi
into Wi D Wi;1 ˚ � � � ˚Wi;ui such that Wi;j are the null spaces corresponding to
some factors of the minimal polynomial of TWi . Again, Wi;j is TWi -invariant and
SWi -invariant. Furthermore, TWi;j and SWi;j are asymptotically similar. Hence
Rd DLi;j Wi;j is the desired decomposition for S and T . ¤

PROOF OF THEOREM 2.12: Let fSig`iD1 be the IFS given in the theorem. Then
there is a nonsingular linear transformation Q on Rd such that fQSiQ�1g`iD1 is
the direct product of k asymptotically conformal IFS by Lemma 7.2. Hence the
desired result follows from Theorem 2.11. ¤

8 A Variational Principle about Dimensions of Self-Conformal Sets
In this section, we assume that K is the attractor of a C 1 weakly conformal IFS

ˆ D fSig`iD1 on a compact set X � Rd . The main result of this section is the
following variational principle (i.e., Theorem 2.13):

THEOREM 8.1 Under the above setting, we have

dimH K D dimB K(8.1)

D supfdimH � W � D m ı ��1; m 2M� .†/; m is ergodicg(8.2)

D maxfdimH � W � D m ı ��1; m 2M� .†/g(8.3)

D sup
�
h�.�;m/R
�dm

W m 2M� .†/

�
:(8.4)

PROOF: Without loss of generality we assume that dimB.K/ > 0, where dimB
denotes the upper box-counting dimension (cf. [13]). Let

0 < t3 < t2 < t1 < dimB.K/:

We first prove that there is an ergodic measure m 2M� .†/ such that dimH m ı
��1 � t3. To achieve this, let ˛ D t2=t3�1, and let r0 be given as in Corollary 5.5.
Since dimB.K/ > t1, for any 0 < � < r0, there exist r 2 .0; �/ and integer
N � r�t1 such that there are disjoint closed balls B.´i ; r/, i D 1; : : : ; N , with
centers ´i 2 K. By Corollary 5.5, we can find words wi 2 †�, i D 1; : : : ; N ,
such that Swi .K/ � B.´i ; r/ and

(8.5) jSwi .x/ � Swi .y/j � r1C˛jx � yj; x; y 2 K:
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This implies r1C˛ diam.K/ � diam.Swi .K// � 2r . According to this fact and
(5.6), there exist two positive constants A;B (independent of r) such that

B log
�
1

r

�
� jwi j � A log

�
1

r

�
for all 1 � i � N:

Hence by the pigeonhole principle, there is a subset J of f1; : : : ; N g with cardi-
nality

#J � N

.A � B/ log
�
1
r

�C 1 �
r�t1

.A � B/ log
�
1
r

�C 1 � r
�t2

such that the words wi (i 2 J ) have the same length, say n.
Now we adopt an argument from the proof of [12, theorem 4]. Let

ı D minfd.B.´i ; r/; B. j́ ; r// W i; j 2 J ; i ¤ j g:
For any positive integer q and distinct sequences i1; : : : ; iq and j1; : : : ; jq taking
values in J , let k be the least integer such that ik ¤ jk . Applying (8.5) .k � 1/
times, we have

d.Swi1 ı � � � ı Swiq .K/; Swj1 ı � � � ı Swjq .K// �
r.1C˛/.k�1/d.B.´ik ; r/; B. j́k ; r// � rq.1C˛/ı:

Define a measure � on the class of finite unions of sets Swi1 ı � � � ı Swiq .K/ by
letting �.Swi1 ı � � � ı Swiq .K// D .#J /�q . This extends to a measure � on the
�-algebra generated by these sets. Let U be any subset of K with diam.U / < ı

and let q be the least integer such that

r.qC1/.1C˛/ı � diam.U / < rq.1C˛/ı:

Then U intersects at most one set Swi1 ı � � � ı Swiq .K/, hence

�.U / � .#J /�q � r t2q � r�t2ı�
t2
1C˛ diam.U /

t2
1C˛

D r�t2ı�t3 diam.U /t3 :

This implies dimH � � t3.
We point out that the measure � constructed as above is, indeed, the projection

of a �n-invariant and ergodic measure � under � . Actually, � is the unique measure
on † satisfying

�.Œwi1 � � �wiq �/ D .#J /�q; q 2 N; i1; : : : ; iq 2 J :
Applying Theorem 2.8 to the IFS fSwi W i 2 J g, we have

dimH � D dimH � ı ��1 D
h�.�

n; �/

� R log kS 0x1���xn.��nx/kd�
:
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Take m D 1
n

Pn�1
iD0 � ı ��i . Then m is �-invariant and ergodic. Applying Theo-

rem 2.8 and Proposition 4.3, we have

dimH m ı ��1 D
h�.�;m/

� R log kS 0x1.��x/kdm
D h�.�

n; �/

� R log kS 0x1���xn.��nx/kd�
D dimH � � t3:

Since t3 < dimBK is arbitrarily given, we obtain (8.1) and (8.2).
To show (8.3), let .mi / be a sequence of measures in M� .†/ with

lim
i!1

dimH mi ı ��1 D dimH K:

Take a sequence of positive numbers .ai / such that
P1
iD1 ai D 1. Then m DP1

iD1 aimi is an element in M� .†/ with

dimH m ı ��1 D sup
i

dimH mi ı ��1 D dimH K:

To show (8.4), according to (8.2), it suffices to show that

(8.6) dimH m ı ��1 �
h�.�;m/

� R log kS 0x1.��x/kdm.x/
; m 2M� .†/:

Fix m and let � D m ı ��1. Denote by ƒ the right-hand side of (8.6). By
Theorem 2.8, d.�; ´/ exists for �-a.e. ´ 2 Rd . Hence to show (8.6), we only need
to show that for any � > 0, there is a Borel set E � Rd such that �.E/ > 0 and
d.�; ´/ � ƒ � � for ´ 2 E. Assume this is false. Then d.�; ´/ < ƒ � � for
�-a.e. ´ 2 Rd . Thus by Theorem 2.8 again, we have

h�.�;m; x/ < �.x/.ƒ � �/ for m-a.e. x 2 †:
Taking integration with respect to m on both sides yields

h�.�;m/ < .ƒ � �/
Z
�dm;

which leads to a contradiction. ¤
Remark 8.2. Assume that fSig`iD1 is a weakly conformal IFS that satisfies the
AWSC (see Definition 2.14). Then the supremum in (8.2) and (8.4) can be attained
by ergodic measures. To see this, by Proposition 4.20, the map m 7! h�.�;m/ is
upper semicontinuous onM� .†/; hence the supremum in (8.4) is attained at some
member, say m0, in M� .†/. Let m0 D

R
� dP .�/ be the ergodic decomposition

of m0. By Theorem 2.2(ii), we have

dimH K D
h�.�;m0/R
�dm0

D
R
h�.�; �/dP .�/’
�d� dP .�/

:

Since h�.�; �/=
R
�d� � dimH K for each �, the above equality implies that

h�.�; �/=
R
�d� D dimH K for P -a.e. �. Hence the supremum in (8.4) can be

attained at some ergodic measure, so do the supremum in (8.2).
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9 Proof of Theorem 2.15
We first present some lemmas.

LEMMA 9.1 Let fSig`iD1 be an IFS with attractor K. For n 2 N, write †n D
f1; : : : ; `gn and denote

Nn D #fSu W u 2 †ng:
Then

(1) supfh�.�;m/ W m 2M� .†/g � logNn=n.
(2) Let tn D supx2Rd #fSu W u 2 †n; x 2 Su.K/g. Then

supfh�.�;m/ W m 2M� .†/; m is ergodicg � logNn � log tn
n

:

PROOF: We first show (i). Let n 2 N and m 2M� .†/. By the definition of
Nn, we can construct a subset � of †n with #� D Nn such that for any u 2 †n,
there exists w 2 � so that Su D Sw . Hence there is a map g W †n ! � such that
Su D Sg.u/ for each u 2 †n. Let .�N ; T / denote the one-sided full shift over �.
Define G W †! �N by

G..xi /
1
iD0/ D .wj /1jD1 ..xi /

1
iD1 2 †/;

where wj D g.x.j�1/nC1x.j�1/nC2 � � � xjn/. Let z� W �N ! Rd denote the
canonical projection with respect to the IFS fSu W u 2 �g. By Lemma 4.23(ii), we
then have

h�.�
n; m/ D hz�.T;m ıG�1/ � log.#�/ D logNn:

It follows that h�.�;m/ � logNn=n. This proves (i).
To show (ii), let � be the Bernoulli measure on �N with probability weight

.1=Nn; : : : ; 1=Nn/. Then � can be viewed as a �n-invariant measure on †. By
Lemma 4.23(ii), we have h�.�n; �/ D hz�.T; �/. Note that for x 2 Rd , there are
at most tn words u in � such that x 2 Su.K/. By Corollary 4.22, we have

hz�.T; �/ � h.T; �/ � log tn D logNn � log tn:

Let � D 1
n

Pn�1
iD0 � ı ��i . Then � is � -invariant and ergodic; furthermore,

h�.�; �/ D
1

n
h�.�

n; �/ D 1

n
hz�.T; �/ �

logNn � log tn
n

;

as desired. ¤

LEMMA 9.2 Let ˆ D fSig`iD1 be an affine IFS on Rd given by

Si .x1; : : : ; xd / D .�1x1; � � � ; �dxd /C .ai;1; : : : ; ai;d /;
where 1 > �1 > � � � > �d > 0 and ai;j 2 R. Let K denote the attractor of ˆ,
and write �j D log.1=�j / for j D 1; : : : ; d and �dC1 D1. View ˆ as the direct
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product of ˆ1; : : : ; ˆd , where ĵ D fSi;j .xj / D �jxj C ai;j g`iD1. Let �j denote
the canonical projection with respect to the IFS ˆ1 � � � � � ĵ . Then we have

dX

jD1

�
1

�j
� 1

�jC1

�
Hj � dimB.K/ � dimB.K/

�
dX

jD1

�
1

�j
� 1

�jC1

�
zHj ;

(9.1)

with Hj D supfh�j .�;m/ W m 2M� .†/g and

zHj D lim
n!1

log #fS .j /u W u 2 †ng
n

;

where fS .j /i g`iD1 is the IFS ˆ1 � � � � � ĵ on Rj .

PROOF: Without loss of generality we assume that

Si .Œ0; 1�
d / � Œ0; 1�d ; i D 1; : : : ; `:

For n 2 N, we write

N .j /
n D #fS .j /u W u 2 †ng; j D 1; : : : ; d;

and

qd .n/ D n; qj .n/ D
��

log �d
log �j

� log �d
log �jC1

�
n

�
for 1 � j � d � 1;

where Œx� denotes the integral part of x.
Construct �n;j � †qj .n/, j D 1; : : : ; d , such that #�n;j D N

.j /

qj .n/
and for

each u 2 †qj .n/, there is w 2 �n;j so that S .j /u D S
.j /
w . Then the family of the

rectangles

(9.2)
dY

jD1
Swdwd�1���wj ;j .Œ0; 1�/; w1 2 �n;1; : : : ; wd 2 �n;d ;

is a cover of K. To see this, let uj 2 †qj .n/, j D 1; : : : ; d . Then we can find

wj 2 �n;j , j D 1; : : : ; d , such that S .j /uj D S .j /wj . Hence

Sudud�1���u1.K/ � Sudud�1���u1.Œ0; 1�d / �
dY

jD1
Sudud�1���u1;j .Œ0; 1�/

�
dY

jD1
Sudud�1���uj ;j .Œ0; 1�/ D

dY

jD1
Swdwd�1���wj ;j .Œ0; 1�/:
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It follows that the family of rectangles in (9.2) covers K. One can check that each
rectangle in (9.2) is an almost .�d /n-cube. Hence by the definition of box-counting
dimension, we have

dimBK � lim sup
n!1

Qd
jD1 #�n;j
� log.�d /n

D lim sup
n!1

Qd
jD1N

.j /

qj .n/

� log.�d /n

D
dX

jD1

�
1

�j
� 1

�jC1

�
zHj :

This proves one part of (9.1).
To see the other part of (9.1), for j D 1; : : : ; d , let Qj denote the collection

fŒ0; 1/j C ˛ W ˛ 2 Zj g, and define

M .j /
n D #fQ 2 Qj W diag.�n1 ; : : : ; �

n
j /Q \Kj ¤ ¿g;

where Kj denotes the attractor of ˆ1 � � � � � ĵ . Then by Proposition 4.18(ii), we
have Hj D limn!1 logM .j /

n =n. We claim that for n 2 N, there exists a subset
�n;j � †n with cardinality � 7�jM .j /

n such that

(9.3) S .j /w .Œ0; 1�j / \ S .j /w 0 .Œ0; 1�
j / D ¿ for all w;w0 2 �n;j with w ¤ w0:

To show the claim, we construct a finite subset of Qj , denoted by W .j /
n , such

that (i) #W .j /
n � 7�jM .j /

n , (ii) diag.�n1 ; : : : ; �
n
j /Q \ Kj ¤ ¿ for each Q 2

W
.j /
n , and (iii) 2Q \ 2 zQ D ¿ for Q; zQ 2 W .j /

n with Q ¤ zQ, where 2Q WDS
Q02Qj WQ0\Q¤¿Q

0. For each Q 2 W .j /
n , since diag.�n1 ; : : : ; �

n
j /Q \ Kj ¤ ¿,

we can pick a word w.Q/ 2 †n such that diag.�n1 ; : : : ; �
n
j /Q \ S .j /w.Q/

Kj ¤ ¿
and hence

diag.�n1 ; : : : ; �
n
j /Q \ S .j /w.Q/

.Œ0; 1�j / ¤ ¿:

Denote �n;j D fw.Q/ W Q 2 W
.j /
n g. The separation condition (iii) for the

elements in W .j /
n guarantees (9.3). This finishes the proof of the claim.

As above, we can construct �n;j well for each j D 1; : : : ; d and n 2 N. Now
fix n and consider the following collection of rectangles:

dY

jD1
Swdwd�1���wj ;j .Œ0; 1�/; wj 2 �qj .n/;j ; 1 � j � d:
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It is clear that the above rectangles are almost .�d /n-cubes and that each of them
intersects withK. Furthermore, they are disjoint due to (9.3). Hence by the defini-
tion of box-counting dimension, we have

dimB.K/ � lim inf
n!1

Qd
jD1 #�qj .n/;j
� log.�d /n

� lim inf
n!1

Qd
jD1 7

�jM .j /

qj .n/

� log.�d /n

D
dX

jD1

�
1

�j
� 1

�jC1

�
Hj :

This finishes the proof of (9.1). ¤
PROOF OF THEOREM 2.15: We divide the proof into two steps:

Step 1. Show the variational principle for dimH K.
We first give an upper bound for dimH K. Fix n 2 N. Define

Nj D #fS .j /u W u 2 †ng; j D 1; : : : ; d;
where fS .j /i g`iD1 denotes the IFS ˆ1 � � � � � ĵ . Then we can construct

�j � †n; j D d; d � 1; : : : ; 1;
such that #�j D Nj , †n � �d � �d�1 � � � � � �1 and furthermore, for each
u 2 †n and 1 � j � d , there is wj 2 �j such that S .j /u D S .j /wj . Hence there are
natural maps �d ; �d�1; : : : ; �1 with

†n
�d�! �d

�d�1�! �d�1
�d�2�! � � � �1�! �1

such that S .j /u D S
.j /

�j .u/
for any 1 � j � d and u 2 �jC1, with the convention

�dC1 D †n.
Let Zd W �d ! R be the indicator of �d , i.e., Zd .u/ D 1 for all u 2 �d .

Define
Zd�1.w/ D

X

u2��1
d�1.w/

Zd .u/; w 2 �d�1:

Define inductively

Zj .w/ D
X

u2��1
j
.w/

ZjC1.u/
log�jC1
log�jC2 w 2 �j ; j D d � 2; d � 3; : : : ; 1:

In particular, define

Z0 D
X

u2�1
Z1.u/

log�1
log�2 :

Using the technique by Kenyon and Peres [33] (which is an extension of McMullen
[44]), we have

(9.4) dimH K �
logZ0
�n log �1

:
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More precisely, define a probability vector .p.u//u2�d by

p.u/ D Zd .u/

Zd�1.�d�1.u//
�
d�1Y

jD1

Zj .�j �jC1 � � � �d�1.u//
log�j

log�jC1

Zj�1.�j�1�j � � � �d�1.u//

with convention Z0.�0 � � � �d�1.u// D Z0 for any u 2 �d . Let � be the product
measure on .�d /N by assigning probability p.u/ to each digit u 2 �d . The
measure � can be viewed as a measure on †, which is �n-invariant and ergodic.
Let � D � ı ��1. Then

(9.5) lim inf
r!0

log�.B.�x; r//
log r

� logZ0
�n log �1

; x 2 †:

A detailed proof of (9.5) was given by Shmerkin (see the proof of (4.3) in [60])
for the case d D 2, while a slight modification of the proof of [33, theorem 1.2]
provides a proof of (9.5) for d � 2. Then (9.4) follows from (9.5) and Billingsley’s
lemma.

We want to indicate a connection between the upper bound logZ0=.�n log �1/
and the projection entropies. First, we define the projections ��j W �N

jC1 ! �N
j ,

j D d � 1; : : : ; 1 by

��j ..uk/
1
kD1/ D .�j .uk//1kD1; .uk/

1
kD1 2 �N

jC1:

Then it is easy to see that for each 1 � j � d � 1, the measure

�j WD � ı .��j ı ��jC1 ı � � � ı ��d�1/�1

is a product measure on �N
j .

Let Tj denote the left shift operator on �N
j . By a direct calculation, we have

logZ0
�n log �1

D
dX

jD1

�
1

�j
� 1

�jC1

�
h.Tj ; �j /

n
:

Thus we have

(9.6) dimH K �
dX

jD1

�
1

�j
� 1

�jC1

�
h.Tj ; �j /

n
:

Let z�j , j D 1; : : : ; d , denote the canonical projection from �N
j to Rj with

respect to the IFS fS .j /u gu2�j (remember that �j denotes the canonical projection

from † to Rd with respect to fS .j /u W u 2 †ng). According to Lemma 4.23(ii), we
have

(9.7) hz�j .Tj ; �j / D h�j .�n; �/; j D 1; : : : ; d:
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Since ˆ1 � � � � � ĵ , j D 1; : : : ; d , satisfy the AWSC, there is a sequence .tn/ of
positive integers with limn log tn=n D 0 such that

(9.8) sup
x2Rj

#fS .j /u W u 2 �j ; x 2 S .j /u .Kj /g � tn; j D 1; : : : ; d;

where Kj denotes the attractor of ˆ1 � � � � � ĵ . By Corollary 4.22, we have

hz�j .Tj ; �j / � h.Tj ; �j / � log tn � h.Tj ; �j / � log tn:

This together with (9.7) yields h�j .�
n; �/ � h.Tj ; �j / � log tn. Now applying

Theorem 2.11 to the IFS fSu W u 2 †ng, we have

dimH � ı ��1 D
1

n

dX

jD1

�
1

�j
� 1

�jC1

�
h�j .�

n; �/

� 1

n

dX

jD1

�
1

�j
� 1

�jC1

�
.h.Tj ; �j / � log tn/

� dimH K �
log tn
n
�
dX

jD1

�
1

�j
� 1

�jC1

�
.by (9.6)/:

Letm D 1
n

Pn
iD1 � ı��i . Thenm is ergodic and dimH mı��1 D dimH � ı��1.

Letting n tend to1, we obtain

(9.9) supfdimH m ı ��1 W m 2M� .†/; m is ergodic g � dimH K:

It is clear the “�” in the above inequality can be replaced by “D” since m ı��1 is
supported on K. Note that h�j .�; � /, j D 1; : : : ; d , are upper semicontinuous on
M� .†/ (see Proposition 4.20 and (9.8)). By Theorem 2.2(ii) and Theorem 2.11,
we see that the supremum in (9.9) is attained at some ergodic element in M� .†/.
This finishes the proof of the variational principle for dimH K.

Step 2. Show the variational principle for dimB K.
By Lemma 9.2, we only need to show that under the assumption of Theo-

rem 2.15,

(9.10) Hj � zHj ; j D 1; : : : ; d;
where

Hj D supfh�j .�;m/ W m 2M� .†/g; zHj D lim
n!1

log #fS .j /u W u 2 †ng
n

:

To see (9.10), by (9.8) and Lemma 9.1, we have

Hj �
log #fS .j /u W u 2 †ng � log tn

n
; n 2 N:

Letting n ! 1, we obtain (9.10) by the assumption log tn=n ! 0. This finishes
the proof of the theorem. ¤
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Remark 9.3. With an essentially identical proof, Theorem 2.15 can be extended to
the following class of IFSs ˆ D ˆ1 � � � � �ˆk on Rq1 � � � � �Rqk , where ĵ has
the form fAj j́ C ci;j g`iD1 such that Aj is the inverse of an integral matrix and all
the eigenvalues of Aj equal �j in modulus, �1 > � � � > �k , ci;j 2 Qqj .

This together with Lemma 7.2 and the proof of Theorem 2.12 yields the follow-
ing:

THEOREM 9.4 Let ˆ D fSig`iD1 be an IFS on Rd of the form

Si .x/ D Ax C ci ; i D 1; : : : ; `;
where A is the inverse of an integral expanding d � d matrix, ci 2 Zd . Let K be
the attractor of the IFS. Then there is an ergodic measure on K of full Hausdorff
dimension.

10 A Final Remark about Infinite Noncontractive IFSs
In the previous sections, we have made the restriction that an IFS consists of

finitely many contractive maps. We remark that part of our results can be extended
to certain infinite noncontractive IFSs.

Let ˆ D fSig1iD1 be a family of maps on Rd of the form

Si .x/ D �iRi .x/C ai ; i D 1; 2; : : : ;
where �i > 0, Ri are orthogonal d � d matrices, and ai 2 Rd .

Let .X; �/ be the left shift over the alphabet fi W i 2 Ng, and letm be an ergodic
measure on X satisfying Hm.P1/ < 1, where P1 denotes the partition of X
given by

P1 D fŒi � W i 2 Ng;
where Œi � D f.xi /1iD1 2 X W x1 D ig. Assume that ˆ is m-contractive in the sense
that

(10.1)
1X

iD1
.log �i /m.Œi �/ < 0;

1X

iD1
.log jai j/m.Œi �/ <1:

Denote

� D �
1X

iD1
.log �i /m.Œi �/:

Let X 0 denote the set of points x D .xi /1iD1 2 X such that

lim
n!1

1

n
log.�x1�x2 � � � �xn/ D ��; lim

n!1
1

n
log jaxn j D 0:

Then X 0 satisfies ��1.X 0/ D X 0. Furthermore, by Birkhoff’s ergodic theorem,

m.X 0/ D 1:
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Define the projection map � W X 0 ! Rd by

�.x/ D lim
n!1Sx1 ı Sx2 ı � � � ı Sxn.0/; x 2 X 0:

It is easily checked that � is well-defined. Let � D m ı ��1 be the projection of
m under � . We have the following theorem:

THEOREM 10.1 Under the above setting, � D mı��1 is exactly dimensional and

dimH � D
h�.�;m/

�
;

where H�.�;m/ D Hm.P1j��1��1
/ �Hm.P1j��1
/, 
 D B.Rd /:
We remark that when m is a Bernoulli product measure, � D m ı ��1 is the

stationary measure of an affine random walk determined byˆ andm, and the decay
property of � at infinity has been extensively studied in the literature (cf. [23] and
references therein).

The proof of Theorem 10.1 is essentially identical to that given in Section 6.
Indeed, we only need to replace † in Section 6 by X 0, and replace “let c > 1 so
that c supx2† �.x/ < 1” in the proof of Theorem 6.2 by “let 1 < c < e�.”
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[1] Barański, K. Hausdorff dimension of the limit sets of some planar geometric constructions. Adv.

Math. 210 (2007), no. 1, 215–245.
[2] Barnsley, M. Fractals everywhere. Academic, Boston, 1988.
[3] Barral, J.; Mensi, M. Gibbs measures on self-affine Sierpiński carpets and their singularity
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