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ABSTRACT. We examine the interplay between the thermodynamic formalism and the
multifractal formalism on the so-called self-affine symbolic spaces, under the specification
property assumption. We investigate the properties of a weighted variational principle to
derive a new result concerning the approximation of any invariant probability measure
1 by sequences of weighted equilibrium states whose weighted entropies converge to the
weighted entropy of . This is a key property in the estimation of the Hausdorff dimension
of sets of generic points, and then in the multifractal analysis of non homogeneous Birkhoff
averages.

1. INTRODUCTION

The interplay between the thermodynamic formalism and the multifractal formalism
has been rigorously examined in the literature for expanding conformal dynamical systems
(see, e.g. [15, 40, 38, 6]). In this paper, we study this relationship on the so-called self-

affine symbolic spaces defined as follows.

Let k > 2. Assume that (X;,7;) (i = 1,..., k) are subshifts over finite alphabets .4; such
that X;1 is a factor of X; with a one-block factor map m; : X; — X;41fori=1,... k-1

(see Section 2 for the definitions). For convenience, we use 7y to denote the identity map

on Xj. Definer;: X1 — X4y by =mom_jo0---omgfori=0,1,....k—1.
Let a = (ai,...,a;) € R* so that a; > 0 and a; > 0 for i > 1. Define an ultrametric
distance d, on X by
mic1@)AT 1 (W)l
(1.1) da(x,y) = max (e arteote 0 1 << k‘) ,
where
_ 07 if (75} 7é V1,
|U/\U’_{ max{n: u; =vjfor 1 <j<n} ifu=u

for u = (u;)721,v = (vj)72; € X;. The metric space (X1, da) is called a self-affine symbolic
space. It is a natural model used to characterize the geometry of compact invariant sets

on the k-torus under a diagonal endomorphism [7, 35, 28].

For 1 <i <k, let M(X;,T;) denote the set of all T;-invariant Borel probability measures
on X;, endowed with the weak-star topology. Let £(X;,T;) denote the set of ergodic
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measures in M(X;,T;). For u € M(X1,T1), define
k

ha(Ty) = Z aih,o, -1 (1),
=1

which is called the a-weighted entropy of u. It was proved by Kenyon and Peres [28] that
(1.2) dimH,u = hz(Tl)

for each p € £(X1,T1), here dimy o denotes the Hausdorff dimension of p in the metric
space (X1,da), that is, dimy p = inf{dimy E : Borel E C X; with u(X;\E) = 0}.

For € M(Xy,T1), the set of generic points of p is defined by

n—1

(1.3) Gu( X1, )=z € X;: lim %Z(b(Tfm) = /¢ du for all ¢ € C(X1) p,
=0

where C(X) denotes the set of all real continuous functions on Xj.

We are going to establish a connection between the thermodynamic formalism and the
multifractal formalism on (X1, da) by considering the Hausdorff dimension of G, (X1, T1)
and the multifractal analysis of (non-homogeneous) Birkhoff averages (which will be de-

fined a little bit later) of continuous functions in (X1, da).

A key notion introduced for the above study is the weighted topological pressure, defined
for each ¢ € C(X1) by

P(T1.0) =sup{ [0 du+ 1T s we MOt |

Clearly the supremum is attainable, since the weighted entropy h?)(Tl) is upper semi-

continuous on M(X;,77). Each measure p which attains the supremum is called an
a-weighted equilibrium state of ¢. When a = (1,0,...,0), the a-weighted topological
pressure and a-weighted equilibrium states are reduced back to the classical topological

pressure and equilibrium states (cf. [43, 44, 38]).

We say that the subshift X, satisfies specification if there exists s € N such that, for
any two words I and J that are legal in X, there is a word K of length s such that the

word K J is legal in X;. For more details about this definition, see Section 2.

For n € N, let £,,(X1) denote the n-th language of X (see Section 2.1). Furthermore,
for I € £,,(X1), let [I] denote the n-th cylinder in X associated with I (see Section 2.1).
Define

Qn = {((])1eL,(xy) : M€ M(X1,T1)}
Clearly ), is a convex set. Let ri(€),) denote the relative interior of ,. Say that f €

C(X1) is an n-symbol function if f(x) only depends on the first n-coordinates of x.

One of the main results of this paper is the following.

Theorem 1.1. Assume that (X1,T1) is a subshift satisfying specification.
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(i) Letn € N and n € M(X1,T1). If (n([1]))1eL,(x,) € ri(§2n), then there is a unique
measure p = p(a,n,n) in M(X1,T1) attaining the following supremum

sup {h3y(T1) = p([1]) = n([I]) for all T € L,(X1)}.

Furthermore, u(a,n,n) is the a-weighted equilibrium state of some n-symbol func-
tion.

(ii) For any n € M(X1,T1), there exists (un)o>y C M(X1,T1) converging to n in the
weak-star topology such that for each n, wy, is the a-weighted equilibrium state of

some n-symbol function and

hzn (Th) > hZ(Tl), nh_bngo hin (Th) = hi(Tl).
The above result is well known in the special case that a = (1,0,...,0) and X; is a

irreducible subshift of finite type, for which u(a,n,n) is a (n — 1)-step Markov measure
(see, e.g. [19]). We remark that in our general setting, p(a, n,n) is typically not a Markov
measure of any order even in the full shift case. In the following, we give a simple example

(see Section 4 for a proof).

Example 1.2. Let X; = {a,b,c}" and Xo = {1,2}N. Let 7 : X; — X, be a one-block
factor map induced by a,b — 1 and ¢ — 2. Let a = (ay,az) with aj,as > 0. Let n be a
fully supported measure in M(X1,7Ty). If

(1.4) n(lac]) _ n(lbe) — — neal) _ n([cb])
' n(la]) — n([o]) n(fal) — n([b])

then u(a,n,2) is a one-step Markov measure; otherwise u(a, 7, 2) is not a Markov measure

of any order.

We point out that when X; = All\’ is a full shift and f is a continuous function on X3
with sufficiently regularity (Holder continuity, for instance), the a-weighted equilibrium
state of f is quasi-Bernoulli (see Theorem 3.5), furthermore it is the classical equilibrium
state of some continuous function g on X; (see Remark 3.7). Recall that a probability

measure p on A} is called quasi-Bernoulli if there exists C' > 1 such that
1 . > "
(15) () < p(E7) < Cuu(T), V1T € Ai = A7
n=0

Theorem 1.1 might have its own interest in ergodic theory. It is crucial in our study of

the Hausdorff dimension of generic points of invariant measures. Indeed, we have

Theorem 1.3. Assume that (X1,T1) is a subshift satisfying specification. Then for any
pe M(Xy,Th),

(16) dlmH G#(Xl,Tl) = hi(TI)
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We remark that G, (X1, T1) # 0 for each p € M(X1,T1) ([39, 20]). Theorem 1.3 is only
known in the literature for the case that a = (1,0,...,0) (cf. [9, 11, 39, 20]), which corre-
sponds to the conformal case. Our proof of the lower bound dimpy G, (X1,T1) > h(T1) in
the general case is based on a delicate concatenation of quasi-Bernoulli measures provided
by Theorem 1.1. The upper bound is not a simple adaptation of McMullen argument; we
need to overcome a difficulty coming from the fact that, in the specification case, weighted
equilibrium states of Holder continuous functions might not be quasi-Bernoulli. It is worth
to point out that (1.6) still holds for any p € £(X1,7T1) without assuming the specifica-
tion property of X (see Remark 1.5); this fact was proved by Bowen [9] in the case that
a=(1,0,...,0).

To formulate our result on the multifractal analysis, let d € N and let ®;, j =1,...,r,
be Re-valued continuous functions on X;. Let ¢ = (c1,...,¢) € R" with ¢; > 0 for all 4.
For o = (a1, ...,aq) € R, define the level set

,
. S\_Cjnj (I)j (:U>
E{q)j}§:17c(a) = T € X1 : nli»nc}o‘; W = p,
where S, ®;(z) = ZZL;OI ®,;(T{z), and |z| denotes the largest integer not greater than
8o ®;
x. The limit limy o0 35—, %
J

of (®1,...,®,) at . When c is a multiple of (1,...,1), this average reduces back to the
Birkhoff average of >°7_; ®;.

, provided it exists, is called the c-Birkhoff average

Theorem 1.4. Assume that the subshift X1 satisfies specification. Let ® = Z;Zl ®;. Set
Le = {f‘I’ dup: € M(Xl,Tl)}.

(1) For o € R4, E{q,j};:l@(a) # 0 if and only if & € Le.
(2) For a € Ly, we have

dim g E{<I>j}§:1,c(o‘) = max{hz(Tl) pe M(Xl,Tl), 'I>*(,u) = a}
:inf{Pa(Tl,q-‘I’)—a-q: qeRd},

where a - b denotes the standard dot product of a,b € R?,
(3) Suppose that Le is not a singleton. Then the set X1\ Uyery By o() has the

same Hausdorff dimension as X1.

Theorem 1.4 is concerned with the multifractal analysis of the level set of non-homogeneous
Birkoff averages, which was initially motivated by the study of the multifractal analysis
of a-weighted Gibbs measures (see Section 6). It also provides a unified way to study the
multifractal analysis of Birkhoff averages and Gibbs measures. As far as we know, this
result is new when r > 2, even in the case a = (1,0,...,0). The level sets E{<I>j}§:1,c(0¢>
do depend on ¢ (see Example 6.2). In the literature, there are some works considering

the multifractal analysis of Birkhoff averages of Holder continuous functions, and Gibbs
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measures on self-affine sponges [31, 37, 2, 3]. However no relation between the Hausdorff
spectra and any dynamical quantity like entropy was found in these papers. Moreover,
the methods employed in these papers do not provide the whole Hausdorff spectrum, and
they can not be used to study the cases of general continuous functions and weak Gibbs

measures.

Remark 1.5. Our proof of the upper bound for the Hausdorff dimension of level sets of
non homogeneous Birkhoff averages does not use the specification property; it follows that
the upper bound dimy G, (X1,T1) < hf(T1) holds for any p € M(Xy,T1) without this
property. Consequently, due to (1.2), (1.6) holds for any u € £(X1,7T1) without assuming
the specification property of X;. Furthermore, the upper bound

dimp G,(X1,Th) < hiy(Th)

also holds for any p € M(X1,T1) in the general subshift setting, where dimp denotes the
packing dimension (see Remark 5.10 for details). Hence we have dimp G,(X1,T1) = hf(T1)
in the setting of Theorem 1.3.

The paper is organized as follows. Some definitions and known results on sub-additive
thermodynamic formalism on subshifts are given in Section 2. In Section 3, we study the
weighted topological pressure and equilibrium states for sub-additive potentials. In Sec-
tion 4, we prove Theorem 1.1 and the statement given in Example 1.2. Then, in Section 5
we prove Theorems 1.3-1.4. In Section 6, we give some extensions of the multifractal anal-
ysis to asymptotically additive potentials and weighted equilibrium states. In Appendix

A, we summarize the main notation and conventions used in this paper.

2. SUB-ADDITIVE THERMODYNAMIC FORMALISM ON SUBSHIFTS

In this section, we present some definitions and known results about the sub-additive
thermodynamic formalism on subshifts, which plays an important role in our study of

weighted topological pressures and weighted equilibrium states.

2.1. Subshifts over finite alphabets. Let p > 2 be an integer and A = {1,...,p}.
Denote

AN = {(2)2,: zie Afori>1}.
Then AN is compact endowed with the product discrete topology (cf. [33]). We say that
(X,T) is a subshift over A, if X is a compact subset of AN and T(X) C X, where T is
the left shift map on AN defined as

T((2:)32)) = (mig1)52y, V¥ (22)52, € A",

In particular, (X, T) is called the full shift over A if X = AYN. For any n € Nand I € A",
we write

1 ={(z)2, € AN: ..y =T}
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and call it an n-th cylinder in AN.

The language L(X) of a subshift X is the set of all finite words (including the empty
word ¢) that occur as consecutive strings zi ...z, in the sequences x = (z;)5°; which

comprise X. That is,
LX)={I€A": I =x...x, for some z = (2;)7°, € X and n > 1} U {e}.
Denote by |I| the length of a word I. For n > 0, denote
La(X) = {T € £(X) : |T] = n},
and we call £,,(X) the n-th language of X.

Let s € N. A subshift X is said to satisfy s-specification if for any I, J € L(X), there
exists K € L4(X) such that IKJ € L£(X). We say that X satisfies specification if it

satisfies s-specification for some s € N.

Let (X,T) and (Y, .S) be two subshifts over finite alphabets A and D, respectively. We
say that Y is a factor of X, if there is a continuous surjective map 7w : X — Y such that
7T = Sw. Here 7 is called a factor map. Furthermore 7 is called a one-block factor map

if there exists a map 7 : A — D such that
m((@)i21) = (m(@:)i21, YV (zi)2 € X.

It is well known (see, e.g. [33, Proposition 1.5.12]) that each factor map 7 : X — Y
between two subshifts X and Y, will become a one-block factor map if we enlarge the

alphabet for X and recode X appropriately.

2.2. Sub-additive thermodynamic formalism. Let (X, T) be a subshift over a finite
alphabet A. Let ® = (log¢,)>2, be a sequence of real functions on X. We say that
® is a sub-additive potential and write ® € Cs(X,T) if ¢, is non-negative and upper

semi-continuous!' on X for each n and there exists a constant ¢ > 0 such that
Ontm () < cpp(2)pm(T"x), Ve X, n,meN.

(we admit that ¢, takes the value zero). More generally, ® = (log ¢,,)72 ; is said to be
an asymptotically sub-additive potential and write ® € Cqs5(X,T) if for any ¢ > 0, there
exists a sub-additive potential ¥ = (log,,)2%; on X such that
lim sup — sup | og 6, () — log ¥, (x| < =,
n—oo N geX
where we take the convention log 0 —log 0 = 0. Furthermore ® is called an asymptotically
additive potential and write ® € Cusq(X,T) if both ® and —® are asymptotically sub-
additive, where —® denotes (log(1/¢y,))s> ;. We say that ® is almost additive if ¢, is

"n the previous definition in [12, 23], ¢, is assumed to be non-negative and continuous.
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positive and continuous on X for each n and there is a constant ¢ > 0 such that
1
Egbn(l')qu(Tnm) < Gntm(z) < cpn(x)pm(T"z), V2 e X, n,meN.

For convenience, we denote by C,q(X,T') the collection of almost additive potentials on
X. In particular, ® is called additive if each ¢,, is a continuous positive-valued function
so that ¢pim () = dn(x)Pm(T"x) for all x € X and m,n € N; in this case, there is a
continuous real function g on X such that ¢, (z) = exp(Z?:_Ol g(T'z)) for each n.

For @ = (log ¢)22 € Cuss(X,T'), and a compact set K C X, define
(2.1) P,(T,®,K) = > sup  ¢n ().
reAn, [Nnk 0 “EHINK

and

1
(2.2) P(T,®,K) = limsup — log P,,(T, ®, K).

n—oo

For yp € M(X,T), let h,(T') denote the measure-theoretic entropy of 1 with respect to
T, and write
(2.3) () = Jim [ 1060 (2) dufa).
The existence of the limit (which may take value —oo) in (2.3) follows from the sub-
additivity of ®. We list below some basic properties of asymptotically sub-additive poten-

tials.

Lemma 2.1 ([23], Appendix A). Let ® = (log ¢,,)02 € Cass(X,T). Then we have the

following properties.

(i) Let p € M(X,T). The limit Ao(z) 1= limp oo = log ¢ () exists (which may take
value —o0) for p-a.e. z € X, and [o(z) du(xz) = ®.(u). When p is ergodic,
Ao(z) = Ou(p) for p-a.e. v e X.

(ii) The map @, : M(X,T) — R U {—o0} is upper semi-continuous, and there is
C € R such that for all p € M(X,T), Ao(x) < C p-a.e and ®,.(n) < C. If
O € Cosa(X,T), Dy is continuous on M(X,T).

(iii) ® € Cusa(X,T) if and only if for any € > 0, there exists a continuous function g
on X such that

1
lim sup — sup |log ¢, () — Spg(z)| < ¢,
n—oo N zecX

where Spg(x) = E;:& g(T'z).

The following variational principle plays a key role in our analysis.

Proposition 2.2 ([12]). Let P(T,®,X) be defined as in (2.2). Then for any ® €

Cass(X,T), we have the following variational principle:

(2.4) P(T,®,X) = sup{®. () + hu(T) : € M(X,T)}.
7



We call P(T,®) := P(T,®,X) the topological pressure of ®. We remark that the
variational principle for sub-additive potentials has been studied in [17, 4, 21, 27, 30, 5, 36]
under additional assumptions on the corresponding sub-additive potential and TDS. Say
that p € M(X,T) is an equilibrium state of ® if the supremum in (2.4) is attained at
p. Note that ®.(-) is upper semi-continuous on M(X,T) (cf. Lemma 2.1(ii)), and so is
h(y(T) for subshifts. Hence any ® € Cus5(X,T') has at least one equilibrium state.

Proposition 2.3 ([5, 36]). Let (X,T) be a full shift or mizing subshift of finite type. Let
O = (logn)02 € Caa(X,T). Assume that ® has the bounded distortion property. Then
® has a unique equilibrium state p. Furthermore, there exists a constant ¢ > 0 such that

for any n € N and v = (x;)2, € X,

o i)

= exp(—nP(T,®)) pn(z) —

Remark 2.4. (1) Lemma 2.1 was proved in [23] under a slightly stronger assumption

that ¢, is continuous on X. However it is easy to extend the result to the case
that ¢,, is upper semi-continuous, by using the property that, if f is an upper
semi-continuous function on X, then so is the map g — [ f dp on M(X) (cf.
[16, (A8)]). Similarly, Proposition 2.2 was only stated in [12] for sub-additive
potentials under a slight stronger assumption that ¢,, is continuous. However, the
proof given there works well for this new setting. Indeed, using the property we
mentioned above, one sees that Lemma 2.3 in [12] can be extended to the case
P € Cous(X,T).

(2) A special case of Proposition 2.3 was first proved in [24, 21] for the almost additive
potentials given by

n(z) = |M(2)M(Tz)... M(T""'z)|l, neN,

where M is a Holder continuous function taking values in the set of d x d positive
matrices.
(3) According to Lemma 2.1(iii), for p € M(X,T), the set G,,(X,T1) of generic points
of p defined as in (1.3) is just equal to
1
{:L’ € X: lim 70g<bn(x)

n—oo n

=&, (n), V&= (logdn) € CasalX, T)} .

2.3. Relativized sub-additive thermodynamic formalism. Let 7 : X — Y be a
one-block factor map between two subshifts (X, 7T) and (Y, S). The following relativized
variational principle was proved in [45] for sub-additive potentials ® = (log ¢, })5 ; with
¢n, being continuous, under a general random setting. It does hold for ® € C,s5(X,T) by
modifying the proof in [45] slightly. This extends the relativized variational principle of
Ledrappier and Walters [32] for additive potentials.
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Proposition 2.5. Let ® € Cys5(X,T) and v € M(Y,S). Then

(2.5) Sup{®. (1) + by (T) — hy(S)} = /Y P(T, ®,77(y)) dv(y),

where the supremum is taken over the set of u € M(X,T) such that pon! = v,

P(T,®,771(y)) is defined as in (2.2).

By the upper semi-continuity of ®.(-) and h()(T") on M(X,T), the supremum in (2.5)
is attainable. Any measure p € M(X,T) for which the supremum in (2.5) is attained at

w is called a conditional equilibrium state of ® with respect to v.

3. WEIGHTED THERMODYNAMIC FORMALISM

In this section, we define the weighted topological pressure for general asymptotically
sub-additive potentials, and we discuss the uniqueness and Gibbs properties of weighted
equilibrium states. These properties are needed in the proofs of our main results listed in

Section 1.

First we recall our basic settings. Let k > 2. Assume that (X;,7T;) (i = 1,...,k) are
subshifts over finite alphabets A; such that X, is a factor of X; with a one-block factor
map 7; : X; — X411 fori=1,...,k—1. For convenience, we use my to denote the identity
map on Xi. Define 7, : X1 - X;4qy by s =mom_j10---omgfori=0,1,...,k—1.

Let a = (a1,...,a;) € R¥ so that a; > 0 and a; > 0 for i > 1. For ® € Cuss(X1,T1).
We define the a-weighted topological pressure of ® as

P(Ty,®) = sup {@u(p) + hiy(Th) - pe M(X1,T)}.

By Lemma 2.1(ii), ®,(-) is upper semi-continuous on M (X7, 7T7), and so is hiy (T1), whence

the above supremum is attainable. Each measure p which attains the supremum is called

an a-weighted equilibrium state of ®.
For i =1,...,k — 1, we define 0; : Cuss(X;,T;) — Cass(Xit1,Ti+1) by (log ¢n)5, —
(log ¥ )pZq, where
A;

Un (y) = Z sup ) ®n (x)l/Ai
TeA?: (1w (y)20 “EHNT (W)

for y € X;y1, with A; = a1 + -+ + a;. In particular, let S,ss denote the collection of

o0

asymptotically sub-additive additive (scalar) sequences (log ¢, )22 ;

(a sequence (log ey )02,
where ¢, > 0, is called asymptotically sub-additive if, for any € > 0, there exists a sequence

(dn)221, so that 0 < dyiym < dpdy, and limsup,_. 1|loge, — logd,| < €). Let 6 :
9



Cass(Xk, Ti) — Sass be defined as (log ¢y,)02; — (logc,)o2,, where
A

o= D sup gn ()
I€AY z€(l]

Our first result in this section is the following.
Theorem 3.1. Let ® = (log ¢,)02; € Cuss(X1,11). Then

(i) For any1<i<k—1, PA(Ty,®) = PEi01 95 620 (T o 0 0(D)).
(ii) P2(Th,®) = lim,—oo(1/n)log ¢y, where (cp)02 = 6O 0---001(P).

(iii) p € M(X1,Th) is an a-weighted equilibrium state of ® if and only if p o 7',;11 is

O—10-001(®) and, fori =k —2,k—3,...,0, ,uori_1 is a

0;0--001 (P) . . -1
S with respective to o T, ;.

an equilibrium state of

conditional equilibrium state of

The above result establishes the relation between weighted topological pressures and
non-weighted ones, as well as the relation between weighted equilibrium states, non-
weighted equilibrium sates and conditional equilibrium states. We remark that Theorem
3.1 was proved in [22] for a special class of sub-additive potentials (log ¢,,)5 ;, where ¢,
are assumed to be n-symbol functions. Yayama [47, 46] also considered the case ® = 0

independently.

The following simple lemma plays a key role in the proof of Theorem 3.1.

Lemma 3.2. Let 7 : X — Y be a one-block factor map between two subshifs (X,T) and
(Y,S). Let ® = (log ¢,,)5% 1 € Cass(X,T) and v € M(Y,S). Then we have

(31 sup{®a() + hu(T) — ho(S) s p € M(X,T), por = v} = (),
where U = (log 1y )02, € Cuss(Y,S) is defined by
7%(3/) = Z sup Cbn(x)

IeA™: [IInm—1(y)#£0 ze[llnT=1(y)

Proof. By Proposition 2.5, the left-hand side of (3.1) equals [ P(T,®, 7 1(y)) dv(y). How-
ever by (2.2)-(2.1),
1
P(T,®,7 ' (y)) = limsup - log P (T, ®, 7 (y))
and
P07 ) = Y )
T€A™: (TN~ (y) ze[I]Nm=1(y)
Clearly v, (y) = P, (T, ®, 7 (y)). It is direct to check that ¥ = (log ;)% € Cuss(Y; S).
Hence by Lemma 2.1,
. 1 _
V() = [ timsup | log v, (v) duly) = [ PT.@ 7)) dvly)

n—oo T

This finishes the proof of the lemma. U
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Remark 3.3. In Lemma 3.2, it seems that 1, might be discontinuous when ¢,, is con-

tinuous. However when both X and Y are full shifts, if ¢, is continuous, then so is

Un.

Proof of Theorem 3.1. To show (i), we only prove the case when i = 1. The general case
then just follows by a recursive argument. Write b = (a2, as,...,a;) and ¢ = (a1 +
ag,as,...,ar). Then we have

(3.2)

sup{®.(u) + hy,(T1), p € M(X1,T1)}
= sup{®.(p) + a1h,(T1) + hll;’(Tg) v e M(Xo, To), p€ M(X1,Ty), po 7rf1 =v}
=sup{A(v) + hi(Ts) : v e M(Xy,T3)},

where
1
A(v) := a1 sup {alq)*(u) +hu(Th) — hy(T2) : p € M(X1,Th), pomy ' = V} .

By Lemma 3.2, we have A(v) = W, (v), where ¥ = (log 1),)5%; € Cuss(Y, S) is defined as

a1
Q/Jn(y) = 2 sSup ¢n($)1/a1
TeAn: [TJna—1(y)20 *EUINT1 ()
That is, ¥ = 6;(®). Hence by (3.2), we have P?(T1,®) = P¢(T», 61(®)), as desired. To
see (ii), note that by (i) we have

PA(Ty, @) = Pl F)(T T) = sup{Ts(n) + (a1 + - + ap)hy(Tk), 1 € M(Xy, Ti)},

where I' := 0;_1 0 --- 001 (P). Then (ii) follows from Proposition 2.2.

lis a c-weighted

By (3.2), p is an a-weighted equilibrium state of ® if and only if pony
equilibrium state of 6 (®) and u is a conditional equilibrium state of i@l(é) with respect

to pom; . A recursive argument then yields (iii). O

In the remaining part of this section, we assume that X satisfies specification. Let
® = (log )%, € Casa(X1,T1). Define ¢ : L£(X;) — (0,00) by ¢(O(I) = SUPge(r) Pn ()
for I € £,(X;). Furthermore, define ¢ : £(X;;1) — [0,00) (i = 1,...,k—1) recursively
by

(3.3) qﬁ(i)(J) = ( Z ¢(i—1)(1) a1+}'+ai)a1+~-+ai

1€Ln(X5): mil=J
forn € N, J € L£,(X;11). Furthermore, define ¢(*) : N — [0, 00) by

W) = Y I @ET

Iely, (Xk)
Then we define the a-weighted potential associated with ® by

k—1
(34) @ = (log¢?)pL,;, where ¢A(x) = ¢\ (2, )/ T 0 (7i(ay)) /A =1/
=1
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where A; = a1 + -+ + a;, and xp, 1= 71... 7, for ¥ = (7;){2; € X;. Since there exists a
sequence (g(")),>1 of Holder potentials such that lim,,_q lim sup,,_ . [|®n—Sng® |lec/n =0
(see Lemma 2.1(iii)), it is easily seen that all the potentials (log ¢ (Ti—1(jn)) ey and
(log $2)2° ; belong to Cose (X, T).

We say that ® = (log ¢,,)02 ;1 € Caa(X1,T1) has the bounded distortion property if there
exists a constant ¢ > 0 such that

1
—n(y) < dn(x) < copp(y) whenever z,y € X are in the same n-th cylinder.
c

For two families of real numbers {a;}iez and {b;};cz, we write
a; ~b; if there is ¢ > 0 such that %bz- <a; <cb; fori €T,
a; = b; if there is ¢ > 0 such that a; > ¢b; for 1 € 7.

The following result was proved in [22].

Theorem 3.4 (Theorem 7.3 in [22]). Assume that X satisfies specification. Suppose
that ® = (log ¢,,)5; € Caa(X1,0x,) has the bounded distortion property. Then ® has a
unique a-weighted equilibrium state p. Furthermore, u is ergodic and has the following
properties: p([I]) ~ o*(I) = ¢(I) for I € L(X)), where ¢, ¢* : L(X1) — [0,00) are
defined respectively by

PP Tt el W el Y
=0 @+ (g4 I) it Faitt »*) (n)
for I € L,(X1), n €N, and
oD = ms’ggo Z (I 11o), IeL(Xy).

helm(Xt), IneLn(X1): TI2€L(X1)
Applying Theorem 3.1(ii) and Theorem 3.4 to the full shift case, we obtain
Theorem 3.5. Assume that X1 is a full shift.
(i) Let ® = (log ¢n)72 1 € Casa(X1,T1). Then
P3(T,®) = A nlin;o(l/n) log o) (n).

(ii) Suppose that ® = (log ¢pn)>2 | € Coa(X1,T1) has the bounded distortion property.
Then ® has a unique a-weighted equilibrium state p. Furthermore, u is fully sup-

ported and quasi-Bernoulli, and it satisfies the following Gibbs property
(3.5) () = exp (- )0, 1€ AT,
where P = P2(T1,®), and ¢2 is defined as in (3.4). Consequently, fori=2,...,k,
P k=1
(3.6)  pi([ri_1l]) ~ exp <Tk>¢(l_l)(n’11)lmi H ¢ (1) /A=A e An

j=i
12



where p; == o 7';_11. Furthermore,
k
On(x) exp(—nP) ~ Hui([n_lqn])ai forx e Xy, n>1.
i=1

Definition 3.6. A Borel probability measure p (not necessarily to be invariant) on X;

satisfying (3.5) is called an a-weighted Gibbs measure for ®.

Remark 3.7. In the setting of Theorem 3.4, if & = (5,f)72, for f € C(X;) with
sufficiently regularity (for instance, the Holder continuity), then the a-weighted Gibbs
measure of ® is the classical equilibrium state of a continuous function g € C(X;) with
weaker regularity. To see this, we need to use an invariance of the recent result of Chazottes
and Ugalde [14, Theorem 4.1], which claims that if ¢~ is a function on .A? such that

qb(i_l)(xm) ~ exp(Spu(x)), =€ X;

for some function u(z) € C(X;) satistying var,(u) < D;exp(—cin™), where var,(u) =
maxg =y, [u(z) — u(y)|, and let % be defined as in (3.3), then there exist v € C(Xi41
and Dy > D1, 0 < y2 <71, 0 < ¢ < ¢1 so that

oW (z),) = exp(Spv(@)), = € Xip

and var,(v) < Dyexp(—cen??). Using this claim repeatedly, we see that if f € C(X;)
satisfies var,(f) < 1~)exp(—57”ﬁ) for some constants l~),Eﬁ > 0, then the potential ¢2
defined as in (3.4) will satisfy

¢a($|n) ~ exp(Sng(x))7 r € Xy

for some g € C(X)) satisfying var,(g) < D exp(—cn?) with some constants D, ¢,y > 0.
Then according to (3.5), the a-weighted equilibrium state p of ® is just the equilibrium
state of g.

In the reminder of this section, we consider the question when ®, ¥ € Cy,(X1,77) have

the same a-weighted equilibrium state.

Definition 3.8. We say that two almost additive potentials ® = (log¢,)52, and ¥ =
(log )y, are cohomologousif sup,, || log ¢n—1og ¥n || < 00, where || f|loo = supgey, [f(2)]
for f € C(X;. If there exists C' € R such that log 1, = Cn, we say that ® is cohomologous

to a constant.

The following proposition is a direct consequence of Theorem 3.5.

Proposition 3.9. Suppose ®, ¥ € Cuq(X1,T1) satisfy the bounded distortion property.
Then, ® and VU share the same a-weighted equilibrium state if and only if ® — ¥ is coho-

mologous to a constant.
13



4. THE PROOF OF THEOREM 1.1

In this section, we always assume that (X1,77) is a subshift satisfying specification. To

prove Theorem 1.1, we need the following result.

Proposition 4.1. Let ®,..., P4 € Cuo(X1,T1) satisfy the bounded distortion property.
Then the map Q : RY — R defined as

(Q17"'an (Tl,zf_h Z)a
is C' over R with
vQ(le cee an) = (((I)l)*(:uq)v R ((I)d)*(:uq»’

where VQ denotes the gradient of Q, g s the unique a-weighted equilibrium state of
d
Zi:l q;®;.

To prove Proposition 4.1, we need the following result coming from convex analysis.

Proposition 4.2 ([23], Proposition 2.3). Let Z be a compact convex subset of a topological
vector space which satisfies the first aziom of countability (i.e., there is a countable base
at each point) and U C RY a non-empty open set. Suppose f: U x Z — RU{—o0} is a

map satisfying the following conditions:

(i)

(i1) f(q,2) is affine in z;
) f
)

flaq, ) is conver in q;

(iii 18 upper semi-continuous over U X Z;

(iv) g(q) = sup.ey f(a,2) > —o0 for any q € U.

For each q € U, denote Z(q) := {z €Z: flq,2) =g(q )} Then
= U 9/
2€Z(q)
where Of(q, z) denotes the subdifferential of f(-,z) at q.

Proof of Proposition 4.1. In Proposition 4.2, we let U = R? Z = M(X1,T1), and define
f:UxZ—Rby

Z% i)« () + hi(Th), a=(q1,---,94), p € M(X1,Th).

Set g(q) = sup,cy f(q,2) = PA(T1, Y, q;®;). Since &; € Caa(X1,T1), 1t (0i)u(p)
is continuous on M(X1,T}) (see Lemma 2.1(ii)). Thus, f and ¢ satisfy the assumptions
(i)-(iv) in Proposition 4.2. Note that Z(q) just corresponds to the set of all a-weighted
equilibrium states of >>% | ¢;®;. By Theorem 3.5, Z(q) = {iq} is a singleton for each

q € R?. By Proposition 4.2, Vg(q) = ((®1)«(ptq);- -, (®a)«(pq)). Since g is convex and
14



differentiable on RY, it is C! on R? (see, e.g. [42, Corollary 25.5.1]). This finishes the
proof of Proposition 4.1. O

Before proving Theorem 1.1, we still need some notation and basic facts in convex
analysis. Let g : R? — RU {+00} be convex and not identically equal to +0c. Then the
function ¢g* : R? — R U {400} defined by

s — g*(s) :==sup{s-x — g(x) : x € R%}

is called the conjugate function of g, where s - x denotes the standard dot product of s
and x in R? It is known that g* is also convex and not identically equal to 4+oc (cf. [26,
p. 211]). Let g** denote the conjugate of g*. The following result is well known in convex
analysis (cf. [42, Theorem 12.2, Corollary 26.4.1]).

Proposition 4.3. (i) Let g : R4 — RU {+o0} be conver and not identically equal to

+o00. Letx € RY. Assume that g is lower semi-continuous at X, i.e., lim infy .« g(y) >
g(x). Then g**(x) = g(x).

(ii) Let g be real convex and differentiable on R?. Let D = {Vg(x) : x € R?}. Then
ri(dom g*) C D, where dom g* := {x € R?: ¢*(x) # 400}, and ri(A) denotes the
relative interior of a convex set A.

Proof of Theorem 1.1. We first prove part (i) of the theorem. Fix n € N and define a
function f: Q, — R by
f(p) =sup {h;(T1) : pe M(X1,Th): (u(lI])ies,x) =P} -
Define g : RE»(X1) - R U {400} by
— if p e Qy,
o(p) = { fp) ifp

400 otherwise.
It is easily checked that g is convex and lower semi-continuous on R€»(X1) Let g* denote

the conjugate of g, and ¢** the conjugate of g*. By Proposition 4.3(i), ¢** = g on REn(X1),
However, by the definition of f, we have for q = (q(I)) ez, (x,)

9" (q) ZSUP{f(p)+p-q: p ERE"(XI)} =sup{f(p)+p-q: p ey}

= sup > Q(I)/X[I] du | +h(Th) : p € M(Xy,Th)
Ieln(X1)

— Pa Tl) Z Q(I)(I)I )
Ieln(X1)

where (7 denotes the indicator function of [I], and ®; denotes the additive potential
. 00
(Z?i?)l X1 (fo)) . By Proposition 4.1, ¢* is differentiable over R%»(X1) and
m=
15



(4.1) Vg (a) = (1)«(pq))rear = (tq(]))1ec,(x1),
where pq denotes the unique a-weighted equilibrium state of > ;. (X1) q(I)®;. Applying

Proposition 4.3(ii) to g*, we have

(4.2) {vg*(q) L qe Rﬂn%)} > ri(dom ¢**) = ri(dom g) = Ti(().

Now let n € M(X71,T1) so that (([1])) ez, (x,) € 1i(2n). Therefore by (4.2), there exists

q € R 5o that Vg*(a) = (0([1])rec, (x,); and thus by (4.1), (ua([1))rec,x)) =
(n(1])) re£.(x,)- Now assume that fi is a Ti-invariant measure different from pq such that

(B rec,xry = 1I))rec, (x,)- Since piq is the unique a-weighted equilibrium state of
2orec,(x,) 4(0)®r, we have

Py, Y gD = )

/X[I] dug + i (T7)
IEEn(Xl)

~
m
D
3
>
=
=

q(1)
> Yl [ i+ ),
Ie n(X1)
It follows that hj, (T1) > h&(T1). This proves (i).

|

To prove (ii), let g € M(X1,71) be the measure having the maximal a-weighted
entropy. Clearly, ng is the a-weighted equilibrium state of f = 0. If n = g, then we just
take p, = no for n > 1 and we are done. In the following we assume that 1 # 7ng. For each
n € N, we pick &, € M(X1,T1) such that (§,([1]))rec,, (x,) € ri(€2n). Then choose a small
pn > 0such that p,h2 (T1)+ (1—pp)hd, (T1) > ha(T1). Define &, = ppé&n+ (1 —pn)no. Let
M = (1—1/n)77+(1/n)§~n. Then it is readily checked that n,, € ri(2,,). Let u, = p(a, n,,n).
Then the sequence (p,,) has the desired properties. O

Remark 4.4. Let X; be a full shift and p € M(X;,71). Taking a = (1,...,1) in
Theorem 1.1 and using the upper semi-continuity of the entropy, we see that there is
a sequence of quasi-Bernoulli measures (1,,)22; which converges to p in the weak-star
pmor (T;) = huonlll (T;) for all 1 < ¢ < k. Moreover,
one can deduce from Theorem 3.5 that for any a = (aq, ..., ax) with a; > 0 and a; > 0 for

topology, such that we have lim,, .o, h

1 > 2, each invariant quasi-Bernoulli measure is the a-weighted equilibrium state of some

almost additive potential satisfying the bounded distortion property.

In the remainder of this section, we prove our statement in Example 1.2. Let X; =
{a,b,c}N and Xo = {1,2}N. Let 7 : X; — X3 be a one-block factor map induced by

a,b— 1 and c — 2. We first prove the following lemma.

Lemma 4.5. Let n be a fully supported one-step Markov measure on Xy. If

) nlloc)) _n(lee) - ullea)) _ n((ch)

n(la]) — n([o]) n(fal) — n([b])
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-1 -1

then m o w—" is a one-step Markov measure on Xo; otherwise mo w~ " is not a Markov

measure of any order.

Proof. Our argument is inspired by the work of Chazottes and Ugalde [13]. Denote p; j =
n([ig])/n(li]) for i, j € {a,b,c}. Clearly

(4.4) n([z1z2 ... zn]) = n([X1])De1 o - - - Pan1 2 Vai...z, €{a,b,c}".
According to (4.4), it is direct to check that

no W_l([y1y2 s yn]) = VylMylyz cet Mynflynu5n7 v Y1-.-Yn € {17 2}71’

where

vi = (n(fa]),n([b))), v2=n(c]), w=(11), ug=1
Pa,a  Pa,b Pac
M — 3 ; , M — R M g , y M = .
11 ( Dha Dby > 12 < o > 21 = (Pea, Peb) 22 = Pec
Note that n o7~ ! is a (k — 1)-step Markov measure if and only if

nox ([yiyz - yn))
nom [yz2-- . ynl)
However, it is easy to check

nom ([ylyz ynl) _ mom Hlyye .- uil)

ror W val)  mom W2 uil)
provided that y; = 2 for some 2 < i < n. Thus to check whether (4.5) holds for all
Y1Y2 - . . Yn, it suffices to check the property for the words 17, 12, 21", 21"2. However,
it is direct to check that (4.5) holds for the words 1™, 172, 21", 21™2 for some k > 2 if
and only if vi and My, are the left eigenvectors of My, or, Mo and u; are the right
eigenvectors of My; and this holds if and only if (4.3) holds. In the end, if (4.3) holds
then, (4.5) holds for k = 2. This finishes the proof of the lemma. O

(4.5)

depends only on y; ...yr when n > k.

Proof of Example 1.2. Let n € M(X1,T1) be fully supported. Write u = u(a,n,2). By
Theorem 1.1, p is the a-weighted equilibrium state of some 2-symbol function f on X;.
Define ¢ : {a,b,c}* — (0,00) and ¢ : {1,2}* — (0, 00) respectively by
¢ (I) = sup exp(S, f(z)) for I € {a,b,c}" and
z€(l]

al
o) =1{ DY O] forJe{1,2}",
Ier—1(J)
here and afterwards, S, f(z) denotes the sum Z?:_ol (Tiz). Then by Theorem 3.5,

~ exp [ — ©) (Va1 ¢ () oz a1 *
40wl xew (-0 )eODFOEDTE L, Te fund
and

on 1 (I ~exp (——"E ) g (gyatm :
(47) pon <m>~ep( a1+a2)¢ (atm, Je {12y,
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where P = P2(Ty, f). Let m be the equilibrium state of chlf' Since %f is a 2-symbol

function, m is a one-step Markov measure on X;. Clearly
m([1]) ~ exp(—n@)¢(1)/*,  mor ! ([1]) ~ exp(—nQ)¢!) (x 1)/
for I € {a,b,c}*, where Q := P(T1,(1/a1)f). By Lemma 4.5, m o7~ ! is either a one-step

Markov measure, or not a Markov measure of any order. Hence, either there exists a

2-symbol function h on Xy such that

(4.8) oW (J) &~ sup exp(S,h(y)), Je{1,2}",
y€[J]

or (4.8) does not hold for any finite-symbol function h on Xs.

Assume that p is a Markov measure of finite order. Then there exists a finite-symbol
function g on X such that u([I]) ~ sup,cp exp(Sng(z)) for I € {a,b, c}". Combining this
with (4.6) yields that there exists k > 2 such that (4.8) holds for some k-symbol function
h on Xo. Therefore (4.8) holds for some 2-symbol function h on Xo. Applying this to
(4.6) and (4.7), we see that both y and pon~! are one-step Markov measures. By Lemma
4.5, (1.4) must hold (noting that u([I]) and n([I]) coincide for all 2-nd cylinders [I]).

Conversely, assume that (1.4) holds. Define a measure ;1 on X; by

a([zrza .. zp)]) = 0([@1])P21as - - - Pan_1.2ns Vai...z, €{a,b,c}",

where p; ; = n([ij])/n([i]) for i,j € {a,b,c}. Then p is a one-step Markov measure so
that 7i([I]) and n([I]) coincide for all 2-nd cylinders [I]. By Lemma 4.5, fio 7! is also

a one-step Markov measure. Hence h;(T1) > hyz(T1) and hjor—1(T2) > hjor-1(T2) for

any 17 € M(X1,T1) so that 5([I]) and n([I]) coincide for all 2-nd cylinders [I] (cf. [19,
Propositions 1-2]). Therefore = u(a,n,2). O

5. PROOFS OF THEOREMS 1.3 AND 1.4

5.1. Preliminary lemmas. Let us introduce some more notation and give useful prelim-
inary facts.

For1<i<kandné€eN, let

li(n)=min{p e N:p> (a1 + -+ a;)n/ar},
and by convention set £o(n) = 0. It is easy to check that
Lemma 5.1. In (X1,d,), the closed ball centered at x of radius e~™% s given by
B(;U,e_”/‘“) = {y € X1 : i 1(Yt;(n)) = Tim1(Z)y(ny) for all 1 < i < k} .
For convenience, sometimes for a measure pon X; (i = 1,...,k), we write u(I) = p([Z])

for I € L(X;). The following result estimates the value of an a-weighted Gibbs measure

on a ball in (X1,da).
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Lemma 5.2. Suppose that (X1,T1) is a full shift. Let ® = (log¢p)02, € Caa(X1,Th)
satisfy the bounded distortion property. Let u denote the a-weighted Gibbs measure of ®.
Then, uniformly in x = (2;)52, € X1 and n > 1, we have

K
(5.1) p(B(w,e ™))~ [ w(rio1(@e_ 1 Tem))

—nPA(T, q’f))eﬁ ()1 kl_[l S (7 (1,4, (m)) /4041
a1 " O (7j(2)0,(m))) A

where pu; = MOTZ-__ll for1 < i<k, and ¢, j =0,...,k — 1, are defined as in (3.3),
Aj=a1+---+aj for 1 <5< k.

(5.2) R exp (
j=1

Proof. We first prove (5.1). Let = (2;)72; € X1 and n > 1. For i = 1,...,k, write
Ui = Ty, (n)+1° " Tgy(n)- Let B denote B(z,e~™%). By Lemma 5.1, B={y:V1<i<
k, Ti_1<y) S Ti—l([Ul e Uz])}, SO

w(B) = Z p(Jr - i),

(J1,--,JK)€EO
where
@Z:{Jl,‘.., EH‘AI V1<i<k, 1,_ 1(J)—T11(UZ)}
Applying k — 1 times the quasi Bernoulli property of p to each term of the above sum, we
get
pwB)x > p(Jr) - p(r),
(J1,J1)€EO
and (5.1) follows by summing over Jg, ..., Jo successively.

Now we prove (5.2). Let us transform (5.1) by using (3.6). Since each word U; is of
length ¢;(n) — ¢;—1(n) and by construction ¢x(n)/Ar — n/a1 = O(1/n), (3.6) yields

—/ a(Ty, i
w(B) = exp( k() ! )H¢ D (7 Uy) /A H¢ U;) Ai+1=1/4
j=i
~ —nP(T, @ YL/As S 1/Aj 1 —1/A;
- exp(a—l)(m - >I[[I —
—nP3(Ty, ®) ©) 1 - ¢(j (r;(U; ))1/Aj+1
~ exp|——= )" (Up) /™
( ay ) ]1;[1 (J)( ( ))I/A
o enp (2L s T S s
' “ ’ o PO @) Y
This finishes the proof of the lemma. U
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5.2. Proof of Theorem 1.3. The main result of this section is the following.

Theorem 5.3. Suppose that X, satisfies the specification property. Let € M(Xy,T1).
Then dlmH G,u(Xla Tl) Z hZ(Tl)

Proof of Theorem 1.3. By Theorem 5.3, to complete the proof of Theorem 1.3 it remains
to control dimy G,,(X1,71) from above.

For any ¢ € C(X}), denote u(p) = [ ¢dp. Furthermore for o € R, denote
1
E (a) = {w € X lim —Spp(z) = a}.
n—oo N

Then by (1.3), Gu(X1,T1) = Npec(x,) Ee(i(@)). Thus, by using Lemma 5.6 whose proof
is independent of the present one, we obtain

dimy G, (X1, 7)) < inf dimpg E
img G (X1 1)_@6151()(1) imy E,(u(e)

)
< inf  inf (P*(T; —
S ;relR( (11, qp) — qu(p))

=inf inf (P*T —
;IElR (pEIC'n(XI)( (T1, qp) — qu(p))

— inf (P3(Ty. o) — .
@elcn(Xl)( (T, ¢) — u(e))

Now we note that, on the one hand, the a-weighted topological pressure is the Legendre-
Fenchel transform of the a-weighted entropy defined on the compact convex set M (X1, T7)
of C(X)* endowed with the weak-star topology, and on the other hand, the a-weighted
entropy is upper semi-continuous. Hence we have inf,cc(x,)(P?(T1, ¢) — u(p)) = hf(T1)
by mimicking the proof of Theorem 3.12 in [43]. This yields the conclusion. O

Let (AY,T1) denote the full shift over the alphabet A;. Then X; can be viewed as an
T)-invariant subset of AY. For p € N, write £, := £,(X1) for short, where £,(X;) denotes
the p-th language of X; (cf. Section 2.1). We use (CEI ,T?) to denote the full shift over
the alphabet £,. Again ZZEI can be viewed as a subset A?, and X7 C £§ .

Proof of Theorem 5.3. Let us outline the main steps in our approach. Fix u € M(Xy,T1).
We first construct a set G, C A} such that

(5.3) G, C Gu(AY,T1) and dimy G, > h3(T1),

where p is considered as an element of M(AY,T}). Once this is done, we will define an
injective map conc : G — Xj such that conc(G,) C G,(X1,T1) and dimpg conc(G,) =
dimy G,. Hence G,(X1,T1) > dimy G, > hZ(Tl)-

Now we start the rigorous construction of G,. Pick a countable family of Holder con-

tinuous functions

C={om: m=1,2,...}ycC(A)
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so that it is dense in C'(AY). Next we construct a sequence (p,) of measures on A} as
below.

Let p € N. Since X7 C L’g , the measure p has a trivial extension to the Borel subsets of
£§ defined by A — u(ANXj). We still denote this extension by y; it is 77 invariant. As L§
is a full shift, by Remark 4.4, p is the limit in the weak-star topology of a sequence of quasi-
1 (T?) converges to h, -1 (TV) =

5071 HOT,;

ph, -1 (T;) for all 1 < i < k, and 7;(Sppm) converges to pu(Spem) = pu(pm) for all

HOT; 1

1 <m <p, as j — oo. Hence we may pick a large enough j, by setting p, = n;, we have

Bernoulli measures (1;);>1 on (£}, T7) such that h

1 .
p,pOTZ.__ll (j—ZLp) - Z)h"u,oTi__l1 (1-17/) S %? v 1 S ¢ S k?

(5.4) X
|1p (Spiom) — pr(iom)| < %" 1<m<p.

As above, we can obtain a sequence (up)gil so that (5.4) holds for each p € N; moreover
Hp is quasi-Bernoulli and ergodic on (,CEI ,I7), and it can be viewed as a T} -invariant and

ergodic measure on A}Y. Let (kp) be an increasing sequence of positive numbers such that

(55)  wy i) < (1) < ot (ML), V1.0 € | £,
=0

For p, N € N, let G(p, N) denote the set of points x € £§ C AY such that

‘ log 1 © Ti__ll(Ti—lx\pn)

(5.6) S - X
’W—pu(gpm)g forn>Nand 1 <m <p.
p

—ph,, 1 (T;)] <

HOT; 1

form>Nand1<i<k, and

K=

By using the Shannon-McMillian-Brieman theorem (cf. [44, p. 93]) and the Birkhoff
ergodic theorem to the ergodic measure dynamic systems (AiN, TP upotig) (1 <i<k),

we have for p,-a.e. x,

1
lim —log s © Ti__ll(n_lx‘pn) =—h,,(TF), i=1,...,k, and

n—oo N
. 1 ) 1 n—1 pi
Jim = Spom(x) = lim — g(spwm)(ﬂ ) = pip(Sppm), 1< m<p.
1=

Combining them with (5.4) yields
(G p, N)) = 1.
— 00
Hence we can choose a sequence (N,) of increasing positive integers such that

NP(G(}%NP))Zl_Q_p? p:1a2a

Next construct a sequence (M) of positive integers such that

5.7 M, > max 2”1’*1, Knp, 2Np+1 , p=2,3,....
p P
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and set
NI’?:prMp,, p=1,2,....

Then, for p > 1 let 1, be the discrete measure on AfN’,’ defined by
fip(I) = pp([1])-
Clearly, 1, is supported on Ci,\q’ . Now we define
0o
o G

(5.8) p=1
G, = {1 e L) : (1| N Glp, N,) # @}, p=1,2....
Finally, we define

G = 921Gy = {[112...]p... eAN:vp>1, Iper}.
By construction, the measure v is supported on G and we have

v(Gu) = H fip(Gp) = H 1p(G(p, Np)) = H(l —277)>0.

p=1 p=1 p>1

Now we prove that (5.3) holds for G,. It is enough to show that
(5.9) G, C G,(AY,Ty) and

(5.10) lim ing 108V (Bl e "/M)

n—o0 —n/a;
since (5.10) implies dimpy G}, > h%(T1) (see [18] for instance).

> hi(Th) forallz € G,

Proof of (5.9). Note that the sequence (¢,,) is dense in C(AY), it suffices to show that
for each x € G, and m € N,

. 1
lim —S,pm(z) = ulem)-

n—oo N

Now we fix such a pair z, m, and write ¢ = ¢,,. Write x in the concatenated form:
N ,
r=nLly...Iy..., IjeG;CL;” forj=>1.
For a large number n, let p be the unique integer so that Z?;i jN; <n< 25:1 jN]’-.

That is, p is the integer such that the n-th digit of x is located in the word I,,. Furthermore
let ¢ be the unique integer g € [1, M| such that

p—1 p—1
>IN+ (q— pN, <n <Y N} + qpN,.
j=1 j=1

That is, if we write I, = W1 Wa ... Wy, with W; € E;)Vp, then the n-th digit of x is located
in the word W,. The condition (5.7) guarantees that

p—2
ZjNJ’» =o((p—1)N)_1) =o(n), pN,=o(n).
j=1
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Hence

w u+(p—1)N/! _
(511)  Sup(@) = Sy, @(T2) + Sy (177772 + o(n),
where u = Z?;% jN;. Keep in mind that 7'z € [I,—1] and Tluﬂpil)N"_lx € [I,]. Since

I; € Gy, by the construction (5.8), [I;] N G(j, N;) # 0 for j = p —1,p. Hence, by (5.6),
there exist y € [I,—1] and z € [Ip] such that

(5.12) SNy, ey) = (p— DN, 1u(e) +o(n),  Sepn,9(2) = apNppu(e) + o(n).
Since ¢ is Holder continuous, it has the following bounded distortion property

Sp-nn;_ P(Ti'z) = Sp-nn:_ #(y) + O(1),

u+(p—1)N’ _
Swmy e (T1 777 0) = Sy, p(2) + O(1).

Combining (5.11)-(5.13) yields

(5.13)

Snip(x) = ((p = 1)N,_y + apNp) () + o(n) = npu(p) + o(n).
That is, lim,,— %Sncp(:c) = pu(p). This finishes the proof of (5.9). O

Proof of (5.10). Fix € G,,. Write x in the concatenated form:
N’

i’:IlIQ...Ip..., IJEGJC£]JfOT]21
Let n be a large integer. To estimate v(B(z, e "/®)), recall that (cf. Lemma 5.1)
(5.14) B(z,e /") = {yeXi: Ti1(Yjt;(n)) = Tim1(T)g;(ny) for all 1 <i < k} .
where

ti(n) =min{p € N:p > (a1 +--- +a;)n/ar},
in particular, ¢1(n) = n. For convention write ¢y(n) = 0.

For i = 1,...,k, let p; denote the unique integer such that the ¢;(n)-th digit of z is
located in the word I,,,. Note that p; depends only on n and 7, and is independent of =.
Due to (5.7), [I112...I,—1| = o(|Ip|), where |I| denotes the length of the word I. Hence

there are only two possibilities when n is large enough:
(C1) pr=p2=...=pi (=1 p);
(C2) thereexists 2 <:<ksothatpy=...=p_1 (=p),p.=...=pr=p+1;
Without loss of generality we assume that a; > 0 for all 1 <4 < k.
First we consider the case (C1). Write the word I, in the following form
I, = UW1U2Wsa ... UpWiUp1

in a way such that |W;| = pN, for i = 1,...,k and |U;| are multiples of pN,, (maybe 0)

for j = 1,...k+ 1, and in particular, the ¢;(n)-th digit of x is located in the word W;
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fori=1,...,k. Clearly, the above decomposition of I, is unique (i.e., |U;|’s are uniquely
P J

determined). Now we consider the following concatenation
Tr = 11]2 .. .Ip_1U1W1U2W2 e UkaUk+1Ip+1 e

Due to (5.7), we have

[LIy .. Ip—s| = o([p-1]) = o(n), [Wi] = o(n),

[p—1] + [U1] = £1(n) +-o(n),  |Uj = £;(n) = £j-1(n) + o(n)
fori=1,...,kand 2 <j <k.

By the construction of v (cf. (5.8)), and the quasi-Bernoulli property of y,, (cf. (5.5)),
we have the following estimation
k

V(@) < mpr (- Lp—2Dp—1 (pa]) | T o (1U31).
i=1

N/
Similarly for any y € G = H;’il L7, if we write y in the same form

y=n1,... I~p—1U1W1U2W2 . ﬁk’vaﬁkJrlfp-‘rl ces

we have
k

(i) < wpv (- Tp-2l)pp-1 (p-1]) [ T s (T3]
i=1
Then by (5.14), we obtain

k
v(B(z, ein/al)) S H’;(#ﬁgp)kw[h 2] prp—1([Ip—1]) Hﬂp © Tz‘_—ll([Ti—lUi])

(5.15) . =1
< iy AP 1 (L)) [T 1 0 7224 ([ U
i=1

Since [I;] N G(j,N;) # 0 for j =p —1,p, and |W;| = o(n), by (5.6), we have
(5.16) log pip-1([Ip-1]) = —=(p — DNy, hu(T1) + o(n),
and fori=1,...,k,

log 1 o 7, L ([Tt (Ui W .. . UWH))) = —(JUL| + ... + |Ui’)huor;11 (T;) + o(n).

log p o -y ([Ti-1(UiWr . . UiaWic))) = —([UL] + . + Uima D, 1 (T3) + ().

which implies that
log 1 © 7'1_711([7'1'71Ui]) = log iy © Ti111([7i71(UiWi)]) +o(n)

5.17
(5.17) = —|Uil o (T3) + o(n),

by using the quasi-Bernoulli property of j, and logk, = o(n). Combining (5.15)-(5.17)
yields

k
log v(B(x,e ™)) < —([Lp—1| + |U1]) by (Th) + Z ]Ui\huwl:ll (T3) + o(n).
=2
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Hence
(5.18) log v(B(z,e ™)) < (=n/a1)hi(T1) + o(n),

because |I,—i| + [Ui| = 41(n) + o(n) = n+ o(n) and |U;| = £;(n) — £i—1(n) + o(n) =
ain/ay + o(n) for 2 <i < k.

Next we consider the case (C2). Write the words I, 11 as
I, =UW U Wy... U W, 1V,, Ly =UW,. . UWpUi1,

so that |W;| = pNp, for i = 1,...,0— 1, and (p + 1)Np41 for i = ¢,..., k; furthermore,
\Uil, ..., |U~1], |[Vi—1] are multiples of pN,, whilst |U;|’s are multiples of (p + 1) Ny for
Jj=1t,...,k+1; in particular, the ¢;(n)-th digit of z is located in W; for i = 1,...,k. In

this way, we have the following concatenation
x=TIly.. . I {UWUWy...U_ W, 1V, UW,... UWrUps1lps2 ...,

for which we have
|11z ... Ip—1]| = o(|Ip]) = o(n), |Uj| =4;i(n) —Li—1(n)+o(n)for 1 <i<:—1and
V.| + U] =£4,(n) —L,—1(n), |Ui| =4i(n) —¥ti—1(n) +o(n) for t +1 < i <k,
|Wi| = o(n) for 1 <i<k.

Similar to the case (C1), we can show that

V(B(.%',e*n/al)) < ,‘Q #Al pr (HlupoT 7'Z 1UD) MpOT ([TL 1V])

H:“:DHOT ([r-1U;50)-

Then by a similar discussion as in case (Cl), we obtain the estimation (5.18). This finishes
the proof of (5.10). O

To end the proof of Theorem 5.3, we need to define an injective map conc : G — X;
such that conc(G,) C G,(X1,T1) and dimpy conc(G,) = dimy G,,. For this purpose,
assume that X satisfies s-specification for some integer s > 1. Then there exists a map
0:L(X1) x L(X1) — Ls such that

10(1,7)J € Lip4)0j4s0 VI, J € L(X7).
Forx € G = H;’il [,;V; , write z in the following concatenated form
z=WiiWig- Wy yyWoiWao - Wy Ny - Wp i Wpa - Wy Ny - -+
where W; ; € L; fori>1and 1 <j < N/!. Relabel the words Wi ; to get
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Then we define
conc(x) = W16, WabaWsbs - - - |

where the sequence (6,,) is defined inductively by 6, = 0(Wy, W3), 02 = (W16, Wa, W3),
and once 61, ...,60,—1 have been defined, then define 6, = (W16, Wy ... 0,1 W), Wpi1).

Clearly, conc(z) € Xi, and the map conc : G — X is injective. Since |W;| — oo
as j — 00, conc is almost Lipschitz, thus it preserves the Hausdorff dimension (i.e.,
dimg conc(E) = dimy E for any E C G). Furthermore, conc(G,) C G,(X1,T1). To see
this, it is enough to show that if lim 1 5,¢(z) = , then lim 1 S,¢(conc(z)) = a. This can
be done in a way similar to the proof of Proposition 6 in [19]. Thus we finish the proof of
Theorem 5.3.

Remark 5.4. The specification property used in this paper can be weakened to cover a
wider class of systems. For instance, one can ask that there exists s € N such that for all
I,J € L := L(X1), one can find a word K in J,_y L) such that IKJ € L (this covers
transitive subshifts of finite type). A more general situation is that for all I, J € L, one
can find a word K € £ such that IKJ € £ and |K| = o(min(|I|, |J|) as min(|I|, |.J|) tends
to oo [39]. Alternatively, one can ask that for all I,J € L, one can write [ = IT and
J = JJ so that IJ € £ and |I| + |J| = o(min(|I|,|J|) as min(|1],].J|) tends to oo [39]. In
all these cases our approach can be used to obtain the same conclusion as in Theorem 5.3.
The only difference is that in these cases the mapping conc introduced in the end of the
proof of Theorem 5.3 may take a slightly different form, and it has no reason to be one to
one. However, this mapping naturally satisfies the property conc(G,) C G, (X1,7T1), and
a (tedious, that we omit here) combinatoric argument shows that on the one hand, conc
is a-Holder continuous for all @ € (0,1), and on the other hand there exists a N-valued
function N'(r) (r > 0) such that lim,_,¢+ log N'(r)/|logr| = 0 and for any open ball B of
radius r > 0 in conc(G,,), conc™!(B) can be covered by at most N (r) balls of radius r.

Thus conc preserves the Hausdorff dimension.

5.3. Proof of Theorem 1.4. (1) We prove that the following assertions are equivalent:

(i) a € Lg;

(i) Eguyc(e) # 0;

(il inf { P(T1,q-®) —a-q: q € R} > 0:
(iv) inf {P?(T1,q-®) —a-q: q € R} > —o0;

For a € Lg let fo(a) = max{h{(T1) : p € M(X1,T1), () = a}. Since the mapping
p € M(Xy1,T1) — hi(T1) is upper semi-continuous and affine, the equality fe(a) =
inf {Pa(Tl, q-®)—a-q: q€ Rd} for o € Lg is obtained by exactly the same arguments
as those used to prove Theorem 5.2(iii) in [23]; one just replaces the usual entropy by the

a-weighted one. Similarly, the proof of the equivalence between (i), (iii) and (iv) follow
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the same lines as that of Theorem 5.2 (ii) in [23]. The equivalence of (ii) and the other

assertions will follow from the proof of Theorem 1.4(2) below.

(2) We only need to show

(5.19)  Eg,yc(@) # 0 and dimy Efg,} (@) > fa(a)if o € Ls;

(5.20)  dimy Ejg,) e(a) < inf {P"‘(Tl, q-®) —a-q: qe ]Rd} if Byg,).c(a) # 0,

This yields the equivalence of (i) and (ii) above, as well as the value of dimpy E(g,} (@)
Assertion (5.19) is an immediate consequence of Theorem 1.3 and the following lemma.

Lemma 5.5. Let a = (aq,...,a4) € Lg and p € M(X1,Th) such that [ ®du = a. We
have GH<X1,T1) - E{q)j}’C(a).

Proof of Lemma 5.5. Write each ®;5 as (¢j1,...,¢j4). By definition of ®, we have a; =
Z;Zl [ ¢jidp for each 1 < i < d. Moreover, by the definition of G,(X1,T}), we have

Gu(X1,Th) C E@j,i(f%,idu) for each 1 < j < r and 1 < i < d, hence for each x €

S cin 5t . . .
Gu(X1,T1) we have lim, . Z§:1 LJLCJ%Z(@ = q; for each 1 < ¢ < d. This yields
J

GM(Xl,Tl) C E{q,j}’c(a). O

Now we establish (5.20). We define the following sequence of functions
Slen|®j
B, =n Z L Plejn] Fi J

We first treat the case where (X1,71) is a full shift .

The upper bound in the full shift case. In this case we have the following lemma, which
yields (5.20).

Lemma 5.6. Assume that (X1,T}) is a full shift. Fiz o € R and suppose that Eigycla) #
0. For every e > 0 and q € R%, we have

dimpy Eyg,y.c(a,e) < P*(T1,q- ®) —a-q+ (4q| +a1)e,
where Eyg ) c(a,e) = {z € X1 : limsup, . [Pcn(®)/n — a| < e} Consequently, if
Eigyc(a) #0, then dimy Efg ) (o) < infyepa P2(T1,q- @) —a-q, i.e., (5.20) holds.
Proof of Lemma 5.6. Fix € > 0 and q € R%. For each 1 < j < r, choose a continuous
function ;IV)]- = (Pj1s---,Pja) in C(X1)? such that each @;4 is Holder continuous and
sup ||@j.a = @jdllee < /7.
1<i<d

Then we define ® = 22:1 :I;j, and the sequence of functions

_ S| ®;
(5.21) Bo,=n) —om



Endow the space R? with the norm |(z1, . . ., 24)| = max;<;<4|zi|. By construction we have

limsup,, . | ®en — D plloo/n < €80

Eycla,e) CEgy (a,2e) = {x € X1 : limsup | @ (z)/n —a] < 26} .

{®;}ec o
The definition of the a-weighted topological pressure implies
(5.22) |PA(T1,q- ®) — PA(T1,q- ®)| < |qle.

Let us denote by jiq the unique a-weighted equilibrium state of q - P (see Theorem 3.5).
The following key property holds.

Lemma 5.7. Let q € RY. For all x € X1, we have limsup,, . fo(x)'/™ > 1, where

Fula) = G (D N—
exp ((q- ®en(z) — nP2(T1,q- ®))/a1)

It is worth mentioning that the idea of considering the asymptotic behavior of such a
function f,, at each point of X7 goes back to [35] for the upper bound estimate of dimpy X
when k& = 2. The proof of Lemma 5.7 will be given later. To finish the proof of Lemma

5.6, we need the following classical lemma.

Lemma 5.8 ([8], Ch. 14). Let E be a non-empty subset of a compact metric space (Y, d)

endowed with an ultrametric distance. Let v be a positive Borel measure on Y. Then
: . logv(B(z,r))
< =2 N N7 7J7
dimy E < sup,cg hrrg(l]rlf logr .
Now, if z € E{ii 3 (@, 2¢) then, due to Lemma 5.7, for infinitely many n we have simul-
Ji _
taneously fy(z) > exp(—ne), and exp(q - ®cn(x)) > exp(na - q) — 3|g|en. Consequently,
1 B(z,e~™a
lim inf (08 Ha(B(@,e7))
n—o0 —n/a;

Now, Lemma 5.8 and (5.22) yield

< PA(T1,q- ®) —a-q+ (3la| +ar)e.

dimgy E{@].}p(a,&) < dimpg E{ij},c(a’ 26) < Pa(Tl,q : ‘i’) —a-q-+ (3|q| + a1)€
<P*Ti,q-®)—a-q+ (4df +ar)e.
Letting ¢ — 0, we obtain dimg E{q,j}vc(a) < P3(T1,q-®) — a-q. Since q € R? is

arbitrarily given, we have

dim g E{(I,j}yc(a) < qienﬂgd Pa(Tl7 q- <I>> —a-q.

This finishes the proof of Lemma 5.6. U

Before we prove Lemma 5.7, we give some auxiliary lemmas.
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Lemma 5.9 ([28], Lemma 4.1). Let m > 1 be an integer. For 1 < j <mlet f; : N = R,
B; >0 and Xj > 0. If sup,>q |fj(n+1) — fj(n)| < oo for each j, then

iy S (5 ([ ]) - (152)) =0

Proof of Lemma 5.7. Fix q € R and € X;. By Lemma 5.2, we have

—nP*(T1,q-®) + Su(a- i>)(ﬂv)> kﬁ O (i )

ax i=1 Qs(Z) (Ti(x\ﬁi(n)))l/Ai
for certain functions ¢ on A? (1 <i < k). Combining this with the definition of f,(x)
yields

Ha(Bla,e™/™)) ~ exp (

P H k=1 () 7 (2 [Air1
(5.23) fn(z) =~ exp (Sn(q 1 2)(z) - ‘i)c’”(x)> H O (16,0 () ‘

a1 1 OOl ny)) A

Notice that ;I;cm has the following form (cf. (5.21)):
I~ nSLc in q : 6]) I~
d., <I> el R Nt A Sn(q-®;) | .
n(q- @)+ Z ( Le;n] (q-®;)

Now, for n > 1, let us define

u(j)(n)—allS(ID x) for 1<y <,
W (n) = ay log ¢ (ri(xy,))  for 1 <i <k — 1.

Since the potentials & and &.j are Holder continuous, for any v € {u(j),ﬂ(i) 1 <5<
r, 1 <i <k —1} the sequence (v(n)),>1 satisfies v(n 4+ 1) —v(n) = O(1). Then, by using
(5.23) we can get

r k—1 ~(5) /|~

1 n 1 a®) 7 @) 1
log fu(z) _ 1 Z(“()( )_fun lem) >+ (u ([Gsan)) @ (Lan))JrO(l)

n n\3 P Cit1 Ci
where ¢; := A;/ay for i = 1,... k. Then, the fact that limsup,,_, . W > 0 comes
from Lemma 5.9. This finishes the proof of Lemma 5.7. O

The upper bound in the general case. We show that the upper bound for dimgs E{(I,j},c(a)

is valid without any assumption like specification on (X1, 77).

For each p > 1, let I',, be the natural injection of (X1, da) into (Eg, da/p). The map I,
is easily seen to be a bi-Lipschitz map from X; onto its image, so it preserves Hausdorff
dimension.

For each 1 < j < r, the R? valued continuous potentials ®; can be extended to an R4

valued continuous potentials '/f)j defined on (A}, d,). By construction, for each a € L,
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we have I'y(Eg,}c(a)) C E
(LY, TV, dy)p) yields

(5,8 /p} (@) so the above study applied to the full shift
J b

dimp Efg }.c(@) < max{hf‘/p(Tf) D e M(L),TY) /S ®/pdy = a}

Let v, be one measure realizing the above maximum and extend it as an invariant measure
on (AY,T?P) (notice that v, is supported by EN). Then define on A} the Tj-invariant
measure fi, = %Z?;é vp o T, 7. By the affinity of h?gp(Tp) we have ha/p(Tp) = ha/p(Tp)
since all the measures v, o T}’ ' have the same a/p-weighted entropy with respect to T%.

Consequently, ha/ TPy = ha/ P(TP) = pha/ P(Th) = b3, (T1). Finally, by construction,

(5.24) dimp Eyg,} () < b3 (T1) and /@dup:a.

Now, without loss of generality we can suppose that p, converges to an element u €
M(AY,T1) in the weak-star topology. We have both h%(T1) > limsup,_, A3, (T1) and
J ®dp = a. Assume that p is supported on X;. Then by (5.24) we have dimy Egycla) <
max {hZ(Tl) g€ M(X1,Ty), [®dp=a} as desired. Now, the fact that y is supported
on X follows from the same argument as that used in the proof of [28, Theorem 1.1] to

build an invariant measure of full Hausdorff dimension on Xj.

(3) We will use a modification of the Moran construction achieved in the proof of Theo-

rem 5.3. To do so we need some preparation.

Let 1 be an invariant measure on X1 such that h3 (71) = dimpg X (the existence of such
a measure was first proved in [28]; this fact is also a consequence of Theorem 1.4 applied to
the null potential). Fixe > 0, and foreach 1 <4 < klet h; = h,, or- 1( Ti)—¢e/(a1+- - -+ag).
By our assumption, Lg is not a singleton. Let v € M(X1,T1) such that v(®) # v1(P).

Then take a large positive integer n so that

h (Ty)>h, 1 (1) —¢/(ar+-+ar), (1<i<k)

I/QOTi:I( — vioT;_
where v = (1 — 1/n)v; + (1/n)v. Note that § = |va(®) — v1(P)| > 0.

By Remark 4.4, for each | € {1,2} there exists a sequence (up)p2; of quasi Bernoulli
measures such that u, € M(L’E’, T7) and

hm’pot;ll (Tlp) > p(hlle‘riill (7‘7«) - 5/(&1 + o+ ak)) - 1/(2p) = ph% - 1/(2p>
for each 1 <4 < k and for p > 1.

Foreach 1 <j <rand1<i<d, take ¢;; € C(A?) such that ¢;; is Hélder continuous
and (|9 — @jillc < 6/8r. Moreover, for each [ € {1,2} the sequence (p,,)52; can be

chosen so that | ,(@j:) — vi(@;:)| < 0/8r.
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We are going to construct a sequence (N ! ) © , such that the set

2 00
D={zecq=T]L":liminf[®c,(x) — ny(®)|/n < 5/4y,
n—oo
=1 p=1
which is a subset of A\ Uners Ei@;1,c(@), contains a Moran subset G, with dimpy G, >
dimg X1 — 2¢. Then, by using the same imbedding conc as in the proof of Theorem 5.3,
we will get conc(Gp) C X1\ Uner, Er@;).c(@) and dimp conc(Gy) > dimy X1 —e.

Now we briefly explain how to modify the Moran construction done in the proof of
Theorem 5.3 to build G and G,. At first, without loss of generality, we suppose that the
c¢j’s are greater than 1. Also, we include the potentials ¢;; in the family C. Then, the
only changes are that for each p > 1, one takes 2,1 = v1, and po, = v2,. Then, for
p>1,letn,=>"r" LiN! + \/PN}. For p large enough, for each 1 < j < r we have

p—1 P
Lejmn) € !Z iN; + /PNy, Zz’N;] :
i=1 i=1
so that for each z € G|, 1 < j <rand 1 <14 < d we have

Umsup [S|¢;n,, 1] P5i(2)/ lejnop—1] — vi(@;i)] < 6/8r
p—00

and
Hmsup |S)¢;ny, | Pj.i(2)/ [cjnop| — v2(9))| < 6/8r.
p—00
Consequently, by construction for each z € G),, we have

limsup [®c pn,,_; (2)/n2p-1 — v1(P)| < 0/4 and plijélo |Pe.ny, (7)/112p — 12(P)| < 0/4,

p—00
so Gy C D. Moreover, the simultaneous controls from below of the entropies h,, Jorh (17)
by the ph; — 1/(2p) yield, for every z € G,
log v(B(z, e~"/m i
lim inf ogv(B(z,e ) > Zaihi > dimyg X; — €.
O

Remark 5.10. Without assuming the specification property, for any p € M(X1,T1), we
have dimp G,(X1,T1) < hi(T1), where dimp denotes the packing dimension (cf. [34]).
This is done by using a recent result of Reeves [41]. To see it, let (¢,)52; be a family of

continuous functions on X; which is dense in C(X1). For m > 1, define ®,,, = (é1,...,dm)
and
Em:{a:GXl: lim S<I> /qbld,u,.. /qudu}
n—oo n

By Reeves’ result [41],

dimp F,, < Zsup {azhnwr 1 /qﬁ]dn /czﬁjd,u for1<j< m}

=1
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(Indeed, Reeves only proved the above result in the case k = 2 and m = 1 in the full shift
case with the equality rather that <; however, it can be extended to the above general
form without additional difficulty.) Since (¢,)22 is dense in C(X;), by using the upper

semi-continuity of the entropy function, we obtain
k
limsupdimp E,, < Z aihyon—1(T;) = hZ(Tl)-
oo i=1

Since G,(X1,T1) C Eyy, for each m, we obtain the upper bound dimp G, (X1,71) < hfL(Tl).

6. MULTIFRACTAL ANALYSIS OF ASYMPTOTICALLY ADDITIVE POTENTIALS AND
APPLICATION TO WEIGHTED EQUILIBRIUM STATES

For & = (®1,...,®4) € Cusa(X1,T1)%, where &; = (log ¢ni)>2, =: (®,,)%,, and
p € M(Xy,Ty), write ®,(p) = ((1)«(p), .-, (®a)«(1)) and define Ly = {P. (1) : p €
M(X1,Th)}

Let {i’(j)}lgjgr be a family of elements of Cysq(X1,T1)?. Let ¢ = (c1,...,¢,) be a real

vector with positive entries. For o € R?, define

r (I)(Lj) |
S =i 5 -0}

Theorem 1.4 has the following easy extension, which is obtained thanks to the density of
continuous additive potentials in Cqsq(X71,T" 1)d. This extension is useful to get results on

the multifractal analysis of weighted equilibrium states.

Theorem 6.1. Let & =377, oU),

(1) For a € RY, E{q,(j)}?c(a) # 0 if and only if o € Le.
(2) For a € Ly, we have
dimpy Eg0)y o(@) = max {h}(T1) : p € M(X1,T1), ®u(p) = a}
:inf{Pa(Tl,q-@) —a-q: q€ Rd}.

(3) Suppose that Le is not a singleton. Then the set X \ Uyer, Eqauy (@) is of full

Hausdorff dimension.

Example 6.2. Generally, the level sets F {@j)}’c(a) depend on c. For example, let X =
{0,1}", and let g € C(X) be given by g(z) = 21 for x = (2;)32, € X. Set @) = (S,9)>,
and &) = (—-S,9)> ;. Then Eiguiz_, 1,1)(0) = X, however Erga | (1.9)(0) # X (it is
casy to check that z = 01120418... 02" 12" ... ¢ E{Q(j)}izl’(m) (0)).

22n
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Application to the multifractal analysis of a-weighted Gibbs measures. In this
section we suppose that (X1, 7}) is the full shift (A}, T}).

Let @ = (log ¢n)02 1 € Caa(X1,T1) and suppose that @ satisfies the bounded distortion
property. Let p be the a-weighted Gibbs measure p associated with .

Due to the quasi-Bernoulli property of pu, for each 1 < ¢ < k, the potential \Il/(f) =
(logu oT 1(71 1(x|n)))zo:1 belongs to Coq (X1, T1).

We have the following result about the multifractal analysis of u.

Theorem 6.3. For o € Ry let
i 08HB@.1) _ o).
r—0+ logr
Let W, = % 0. Let L, = L_w, = {—(¥,).(\) : A € M(X1,T1)}. Then, for all
a>0, E,(a) # 0 if and only if o € L,,. Moreover, for o € L,, we have
dimpg E,(a) = max {h}(T1) : A € M(X1,T1), (¥u)«(N) = —a}
=inf {P*(T1,q¥,) + ag: ¢ € R}.

E,(a)= {:1: € X1

Proof. This result is just a corollary of Theorem 6.1. Indeed, thanks to (5.1) we can write

k@ (@)

log i(B(x,e~"/1)) ‘I'S% v, () (@) T (@)

- _ — : 1

— Z; L+ 0(1/n)
()
- _a , — = +O(1/n),
1= 22 Lbz—an (1/n)

with b; = (a1 + -+ 4+ a;)/a;. Thus, any set Eu(a) takes the form Eyg() o(a), with
Zg 1‘1’ i) = ‘I'u O

More geometric applications. A parallelepiped is a subset of X7 of the form

R(Iy,..., I ﬂ L), with I, € | J Ap.

n>0
Ifwefix 0 < A\ <--- <)\, and set

Ro(A1, o A, ) = R(ﬂfmm,--.,Ti—l(l’mml), E 7Tk—1(37ll>\knj)>7

then
k

log (Rn(M, - Ay 2) = Y @0 (@)= (@) +0(),
i=1
with the convention A\g = 0. Consequently, Theorem 6.1 makes it also possible to compute
the Hausdorff dimension of the sets

M (m) (m)
log (R (W™, A,
ﬂ{f”eXl i 280 e m))zﬁm},

n—00 —-n

m=1
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TABLE 1. Main notation and conventions

D = (log ¢n )y (Asymptotically sub-additive) potential (Section 1)
M(X,T) Set of T-invariant Borel probability measures on X
h, (T) Measure-theoretic entropy of 7' with respect to p (Section 1)
D, (1) limp oo £ [ log ¢n(x) du(z).
P(T,®,K) (ct. (2.2))
P(T,®) Topological pressure of ® (Section 2.2)
hi(Ty) a-weighted measure-theoretic entropy of T with respect to p (Section 1)
P3(T1,®) a-weighted topological pressure of ® (Section 1)
Cs(X,T) Collection of sub-additive potentials on X (Section 1)
Cass(X,T) Collection of asymptotically sub-additive potentials on X (Section 1)
Casa(X,T) Collection of asymptotically additive potentials on X (Section 1)
Caa(X,T) Collection of almost additive potentials on X (Section 1)
C(X) Collection of real continuous functions on X
Gu(X,T) Set of generic points of p € M(X,T) (cf. (1.3))
P = (Dq,...,Dy) A family of asymptotically sub-additive potentials
®. (1) (®2)- (1), -, (1) (1))
La {@a(p) : pe M(X1,Th)}
Ao () Lyapunov exponent of ® at = (Section 2.2)
Eis, };:l’c(a) non-homogeneous a-level set of {®;}7_; (cf. Section 1)
an ~ by, (1/¢)brn < an < cby, for a constant ¢ > 0
Ay, Ry, b, (1/kn)brn < an < Knb, for a sequence of positive numbers (k) with
limy, oo (1/n)logk, =0
o2 (cf. (3.4))
da “self-affine” metric (cf. (1.1)).

where 3 € Rf and each ()\(m))lgigm satisfies 0 < )\gm) << )\,(Cm).

(2

Remark 6.4. Let ® € Cuyq(X71,T1). We say that a fully supported Borel probability
measure 4 (not necessarily to be shift invariant) on X is an a-weighted weak Gibbs measure

associated with ® if P
pu(I) =, exp (%)(ﬁ%([), IeA",
k
where P = P2(T1,®), Ay = a1 + -+ + ag, ®* = (log¢2) € Cusa(X1,T1) is defined as
in (3.4), and =, means that there exists a sequence of positive numbers (k) ; with

lim,, .o (1/n)log k,, = 0, such that the ratio between the left and right hand sides of ~,,

lies in (k,, %, kn)-

This notion reduces back to classical weak Gibbs measures when a = (1,0...,0) and ®
is the sequence of Birkhoff sums associated with a continuous potential over X; [48, 29].
It turns out that such a measure always exists for each ® € Cys4(X1,71), and Theorem 6.3
can be extended to weak a-weighted equilibrium states (for details, see an earlier version
[1] of this paper).

APPENDIX A. MAIN NOTATION AND CONVENTIONS

For the reader’s convenience, we summarize in Table 1 the main notation and typo-

graphical conventions used in this paper.
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