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Abstract. We examine the interplay between the thermodynamic formalism and the
multifractal formalism on the so-called self-affine symbolic spaces, under the specification
property assumption. We investigate the properties of a weighted variational principle to
derive a new result concerning the approximation of any invariant probability measure
µ by sequences of weighted equilibrium states whose weighted entropies converge to the
weighted entropy of µ. This is a key property in the estimation of the Hausdorff dimension
of sets of generic points, and then in the multifractal analysis of non homogeneous Birkhoff
averages.

1. Introduction

The interplay between the thermodynamic formalism and the multifractal formalism
has been rigorously examined in the literature for expanding conformal dynamical systems
(see, e.g. [15, 40, 38, 6]). In this paper, we study this relationship on the so-called self-
affine symbolic spaces defined as follows.

Let k ≥ 2. Assume that (Xi, Ti) (i = 1, . . . , k) are subshifts over finite alphabets Ai such
that Xi+1 is a factor of Xi with a one-block factor map πi : Xi → Xi+1 for i = 1, . . . , k−1
(see Section 2 for the definitions). For convenience, we use π0 to denote the identity map
on X1. Define τi : X1 → Xi+1 by τi = πi ◦ πi−1 ◦ · · · ◦ π0 for i = 0, 1, . . . , k − 1.

Let a = (a1, . . . , ak) ∈ Rk so that a1 > 0 and ai ≥ 0 for i > 1. Define an ultrametric
distance da on X1 by

(1.1) da(x, y) = max
(
e
− |τi−1(x)∧τi−1(y)|

a1+···+ai : 1 ≤ i ≤ k
)
,

where

|u ∧ v| =
{

0, if u1 6= v1,
max{n : uj = vj for 1 ≤ j ≤ n} if u1 = v1

for u = (uj)∞j=1, v = (vj)∞j=1 ∈ Xi. The metric space (X1, da) is called a self-affine symbolic
space. It is a natural model used to characterize the geometry of compact invariant sets
on the k-torus under a diagonal endomorphism [7, 35, 28].

For 1 ≤ i ≤ k, letM(Xi, Ti) denote the set of all Ti-invariant Borel probability measures
on Xi, endowed with the weak-star topology. Let E(Xi, Ti) denote the set of ergodic
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measures in M(Xi, Ti). For µ ∈M(X1, T1), define

ha
µ(T1) =

k∑
i=1

aihµ◦τ−1
i−1

(Ti),

which is called the a-weighted entropy of µ. It was proved by Kenyon and Peres [28] that

(1.2) dimH µ = ha
µ(T1)

for each µ ∈ E(X1, T1), here dimH µ denotes the Hausdorff dimension of µ in the metric
space (X1, da), that is, dimH µ = inf{dimH E : Borel E ⊂ X1 with µ(X1\E) = 0}.

For µ ∈M(X1, T1), the set of generic points of µ is defined by

(1.3) Gµ(X1, T1) =

x ∈ X1 : lim
n→∞

1
n

n−1∑
j=0

φ(T j1x) =
∫
φ dµ for all φ ∈ C(X1)

 ,

where C(X1) denotes the set of all real continuous functions on X1.

We are going to establish a connection between the thermodynamic formalism and the
multifractal formalism on (X1, da) by considering the Hausdorff dimension of Gµ(X1, T1)
and the multifractal analysis of (non-homogeneous) Birkhoff averages (which will be de-
fined a little bit later) of continuous functions in (X1, da).

A key notion introduced for the above study is the weighted topological pressure, defined
for each φ ∈ C(X1) by

P a(T1, φ) = sup
{∫

φ dµ+ ha
µ(T1) : µ ∈M(X1, T1)

}
.

Clearly the supremum is attainable, since the weighted entropy ha
(·)(T1) is upper semi-

continuous on M(X1, T1). Each measure µ which attains the supremum is called an
a-weighted equilibrium state of φ. When a = (1, 0, . . . , 0), the a-weighted topological
pressure and a-weighted equilibrium states are reduced back to the classical topological
pressure and equilibrium states (cf. [43, 44, 38]).

We say that the subshift X1 satisfies specification if there exists s ∈ N such that, for
any two words I and J that are legal in X1, there is a word K of length s such that the
word IKJ is legal in X1. For more details about this definition, see Section 2.

For n ∈ N, let Ln(X1) denote the n-th language of X1 (see Section 2.1). Furthermore,
for I ∈ Ln(X1), let [I] denote the n-th cylinder in X1 associated with I (see Section 2.1).
Define

Ωn = {(η([I]))I∈Ln(X1) : η ∈M(X1, T1)}.
Clearly Ωn is a convex set. Let ri(Ωn) denote the relative interior of Ωn. Say that f ∈
C(X1) is an n-symbol function if f(x) only depends on the first n-coordinates of x.

One of the main results of this paper is the following.

Theorem 1.1. Assume that (X1, T1) is a subshift satisfying specification.
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(i) Let n ∈ N and η ∈M(X1, T1). If (η([I]))I∈Ln(X1) ∈ ri(Ωn), then there is a unique
measure µ = µ(a, η, n) in M(X1, T1) attaining the following supremum

sup
{
ha
µ(T1) : µ([I]) = η([I]) for all I ∈ Ln(X1)

}
.

Furthermore, µ(a, η, n) is the a-weighted equilibrium state of some n-symbol func-
tion.

(ii) For any η ∈ M(X1, T1), there exists (µn)∞n=1 ⊂M(X1, T1) converging to η in the
weak-star topology such that for each n, µn is the a-weighted equilibrium state of
some n-symbol function and

ha
µn(T1) ≥ ha

µ(T1), lim
n→∞

ha
µn(T1) = ha

µ(T1).

The above result is well known in the special case that a = (1, 0, . . . , 0) and X1 is a
irreducible subshift of finite type, for which µ(a, η, n) is a (n − 1)-step Markov measure
(see, e.g. [19]). We remark that in our general setting, µ(a, η, n) is typically not a Markov
measure of any order even in the full shift case. In the following, we give a simple example
(see Section 4 for a proof).

Example 1.2. Let X1 = {a, b, c}N and X2 = {1, 2}N. Let π : X1 → X2 be a one-block
factor map induced by a, b 7→ 1 and c 7→ 2. Let a = (a1, a2) with a1, a2 > 0. Let η be a
fully supported measure in M(X1, T1). If

(1.4)
η([ac])
η([a])

=
η([bc])
η([b])

or
η([ca])
η([a])

=
η([cb])
η([b])

,

then µ(a, η, 2) is a one-step Markov measure; otherwise µ(a, η, 2) is not a Markov measure
of any order.

We point out that when X1 = AN
1 is a full shift and f is a continuous function on X1

with sufficiently regularity (Hölder continuity, for instance), the a-weighted equilibrium
state of f is quasi-Bernoulli (see Theorem 3.5), furthermore it is the classical equilibrium
state of some continuous function g on X1 (see Remark 3.7). Recall that a probability
measure µ on AN

1 is called quasi-Bernoulli if there exists C > 1 such that

(1.5)
1
C
µ([I])µ([J ]) ≤ µ([IJ ]) ≤ Cµ([I])µ([J ]), ∀ I, J ∈ A∗1 =

∞⋃
n=0

An1 .

Theorem 1.1 might have its own interest in ergodic theory. It is crucial in our study of
the Hausdorff dimension of generic points of invariant measures. Indeed, we have

Theorem 1.3. Assume that (X1, T1) is a subshift satisfying specification. Then for any
µ ∈M(X1, T1),

(1.6) dimH Gµ(X1, T1) = ha
µ(T1).
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We remark that Gµ(X1, T1) 6= ∅ for each µ ∈M(X1, T1) ([39, 20]). Theorem 1.3 is only
known in the literature for the case that a = (1, 0, . . . , 0) (cf. [9, 11, 39, 20]), which corre-
sponds to the conformal case. Our proof of the lower bound dimH Gµ(X1, T1) ≥ ha

µ(T1) in
the general case is based on a delicate concatenation of quasi-Bernoulli measures provided
by Theorem 1.1. The upper bound is not a simple adaptation of McMullen argument; we
need to overcome a difficulty coming from the fact that, in the specification case, weighted
equilibrium states of Hölder continuous functions might not be quasi-Bernoulli. It is worth
to point out that (1.6) still holds for any µ ∈ E(X1, T1) without assuming the specifica-
tion property of X1 (see Remark 1.5); this fact was proved by Bowen [9] in the case that
a = (1, 0, . . . , 0).

To formulate our result on the multifractal analysis, let d ∈ N and let Φj , j = 1, . . . , r,
be Rd-valued continuous functions on X1. Let c = (c1, . . . , cr) ∈ Rr with ci > 0 for all i.
For α = (α1, . . . , αd) ∈ Rd, define the level set

E{Φj}rj=1,c
(α) =

x ∈ X1 : lim
n→∞

r∑
j=1

SbcjncΦj(x)
bcjnc

= α

 ,

where SnΦj(x) :=
∑n−1

`=0 Φj(T `1x), and bxc denotes the largest integer not greater than

x. The limit limn→∞
∑r

j=1

SbcjncΦj(x)

bcjnc , provided it exists, is called the c-Birkhoff average
of (Φ1, . . . ,Φr) at x. When c is a multiple of (1, . . . , 1), this average reduces back to the
Birkhoff average of

∑r
j=1 Φj .

Theorem 1.4. Assume that the subshift X1 satisfies specification. Let Φ =
∑r

j=1 Φj. Set
LΦ =

{ ∫
Φ dµ : µ ∈M(X1, T1)

}
.

(1) For α ∈ Rd, E{Φj}rj=1,c
(α) 6= ∅ if and only if α ∈ LΦ.

(2) For α ∈ LΦ, we have

dimH E{Φj}rj=1,c
(α) = max

{
ha
µ(T1) : µ ∈M(X1, T1), Φ∗(µ) = α

}
= inf

{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
,

where a · b denotes the standard dot product of a,b ∈ Rd.
(3) Suppose that LΦ is not a singleton. Then the set X1 \

⋃
α∈LΦ

E{Φ(j)},c(α) has the
same Hausdorff dimension as X1.

Theorem 1.4 is concerned with the multifractal analysis of the level set of non-homogeneous
Birkoff averages, which was initially motivated by the study of the multifractal analysis
of a-weighted Gibbs measures (see Section 6). It also provides a unified way to study the
multifractal analysis of Birkhoff averages and Gibbs measures. As far as we know, this
result is new when r ≥ 2, even in the case a = (1, 0, . . . , 0). The level sets E{Φj}rj=1,c

(α)
do depend on c (see Example 6.2). In the literature, there are some works considering
the multifractal analysis of Birkhoff averages of Hölder continuous functions, and Gibbs
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measures on self-affine sponges [31, 37, 2, 3]. However no relation between the Hausdorff
spectra and any dynamical quantity like entropy was found in these papers. Moreover,
the methods employed in these papers do not provide the whole Hausdorff spectrum, and
they can not be used to study the cases of general continuous functions and weak Gibbs
measures.

Remark 1.5. Our proof of the upper bound for the Hausdorff dimension of level sets of
non homogeneous Birkhoff averages does not use the specification property; it follows that
the upper bound dimH Gµ(X1, T1) ≤ ha

µ(T1) holds for any µ ∈ M(X1, T1) without this
property. Consequently, due to (1.2), (1.6) holds for any µ ∈ E(X1, T1) without assuming
the specification property of X1. Furthermore, the upper bound

dimP Gµ(X1, T1) ≤ ha
µ(T1)

also holds for any µ ∈M(X1, T1) in the general subshift setting, where dimP denotes the
packing dimension (see Remark 5.10 for details). Hence we have dimP Gµ(X1, T1) = ha

µ(T1)
in the setting of Theorem 1.3.

The paper is organized as follows. Some definitions and known results on sub-additive
thermodynamic formalism on subshifts are given in Section 2. In Section 3, we study the
weighted topological pressure and equilibrium states for sub-additive potentials. In Sec-
tion 4, we prove Theorem 1.1 and the statement given in Example 1.2. Then, in Section 5
we prove Theorems 1.3-1.4. In Section 6, we give some extensions of the multifractal anal-
ysis to asymptotically additive potentials and weighted equilibrium states. In Appendix
A, we summarize the main notation and conventions used in this paper.

2. Sub-additive thermodynamic formalism on subshifts

In this section, we present some definitions and known results about the sub-additive
thermodynamic formalism on subshifts, which plays an important role in our study of
weighted topological pressures and weighted equilibrium states.

2.1. Subshifts over finite alphabets. Let p ≥ 2 be an integer and A = {1, . . . , p}.
Denote

AN = {(xi)∞i=1 : xi ∈ A for i ≥ 1} .
Then AN is compact endowed with the product discrete topology (cf. [33]). We say that
(X,T ) is a subshift over A, if X is a compact subset of AN and T (X) ⊆ X, where T is
the left shift map on AN defined as

T ((xi)∞i=1) = (xi+1)∞i=1, ∀ (xi)∞i=1 ∈ AN.

In particular, (X,T ) is called the full shift over A if X = AN. For any n ∈ N and I ∈ An,
we write

[I] = {(xi)∞i=1 ∈ AN : x1 . . . xn = I}
5



and call it an n-th cylinder in AN.

The language L(X) of a subshift X is the set of all finite words (including the empty
word ε) that occur as consecutive strings x1 . . . xn in the sequences x = (xi)∞i=1 which
comprise X. That is,

L(X) = {I ∈ A∗ : I = x1 . . . xn for some x = (xi)∞i=1 ∈ X and n ≥ 1} ∪ {ε}.

Denote by |I| the length of a word I. For n ≥ 0, denote

Ln(X) = {I ∈ L(X) : |I| = n},

and we call Ln(X) the n-th language of X.

Let s ∈ N. A subshift X is said to satisfy s-specification if for any I, J ∈ L(X), there
exists K ∈ Ls(X) such that IKJ ∈ L(X). We say that X satisfies specification if it
satisfies s-specification for some s ∈ N.

Let (X,T ) and (Y, S) be two subshifts over finite alphabets A and D, respectively. We
say that Y is a factor of X, if there is a continuous surjective map π : X → Y such that
πT = Sπ. Here π is called a factor map. Furthermore π is called a one-block factor map
if there exists a map π : A → D such that

π ((xi)∞i=1) = (π(xi))
∞
i=1 , ∀ (xi)∞i=1 ∈ X.

It is well known (see, e.g. [33, Proposition 1.5.12]) that each factor map π : X → Y

between two subshifts X and Y , will become a one-block factor map if we enlarge the
alphabet for X and recode X appropriately.

2.2. Sub-additive thermodynamic formalism. Let (X,T ) be a subshift over a finite
alphabet A. Let Φ = (log φn)∞n=1 be a sequence of real functions on X. We say that
Φ is a sub-additive potential and write Φ ∈ Cs(X,T ) if φn is non-negative and upper
semi-continuous1 on X for each n and there exists a constant c > 0 such that

φn+m(x) ≤ cφn(x)φm(Tnx), ∀ x ∈ X, n,m ∈ N.

(we admit that φn takes the value zero). More generally, Φ = (log φn)∞n=1 is said to be
an asymptotically sub-additive potential and write Φ ∈ Cass(X,T ) if for any ε > 0, there
exists a sub-additive potential Ψ = (logψn)∞n=1 on X such that

lim sup
n→∞

1
n

sup
x∈X
| log φn(x)− logψn(x)| ≤ ε,

where we take the convention log 0− log 0 = 0. Furthermore Φ is called an asymptotically
additive potential and write Φ ∈ Casa(X,T ) if both Φ and −Φ are asymptotically sub-
additive, where −Φ denotes (log(1/φn))∞n=1. We say that Φ is almost additive if φn is

1In the previous definition in [12, 23], φn is assumed to be non-negative and continuous.
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positive and continuous on X for each n and there is a constant c > 0 such that
1
c
φn(x)φm(Tnx) ≤ φn+m(x) ≤ cφn(x)φm(Tnx), ∀ x ∈ X, n,m ∈ N.

For convenience, we denote by Caa(X,T ) the collection of almost additive potentials on
X. In particular, Φ is called additive if each φn is a continuous positive-valued function
so that φn+m(x) = φn(x)φm(Tnx) for all x ∈ X and m,n ∈ N; in this case, there is a
continuous real function g on X such that φn(x) = exp(

∑n−1
i=0 g(T ix)) for each n.

For Φ = (log φn)∞n=1 ∈ Cass(X,T ), and a compact set K ⊆ X, define

(2.1) Pn(T,Φ,K) =
∑

I∈An, [I]∩K 6=∅

sup
x∈[I]∩K

φn(x).

and

(2.2) P (T,Φ,K) = lim sup
n→∞

1
n

logPn(T,Φ,K).

For µ ∈M(X,T ), let hµ(T ) denote the measure-theoretic entropy of µ with respect to
T , and write

(2.3) Φ∗(µ) = lim
n→∞

1
n

∫
X

log φn(x) dµ(x).

The existence of the limit (which may take value −∞) in (2.3) follows from the sub-
additivity of Φ. We list below some basic properties of asymptotically sub-additive poten-
tials.

Lemma 2.1 ([23], Appendix A). Let Φ = (log φn)∞n=1 ∈ Cass(X,T ). Then we have the
following properties.

(i) Let µ ∈ M(X,T ). The limit λΦ(x) := limn→∞
1
n log φn(x) exists (which may take

value −∞) for µ-a.e. x ∈ X, and
∫
λΦ(x) dµ(x) = Φ∗(µ). When µ is ergodic,

λΦ(x) = Φ∗(µ) for µ-a.e. x ∈ X.
(ii) The map Φ∗ : M(X,T ) → R ∪ {−∞} is upper semi-continuous, and there is

C ∈ R such that for all µ ∈ M(X,T ), λΦ(x) ≤ C µ-a.e and Φ∗(µ) ≤ C. If
Φ ∈ Casa(X,T ), Φ∗ is continuous on M(X,T ).

(iii) Φ ∈ Casa(X,T ) if and only if for any ε > 0, there exists a continuous function g

on X such that

lim sup
n→∞

1
n

sup
x∈X
| log φn(x)− Sng(x)| ≤ ε,

where Sng(x) :=
∑n−1

j=0 g(T jx).

The following variational principle plays a key role in our analysis.

Proposition 2.2 ([12]). Let P (T,Φ, X) be defined as in (2.2). Then for any Φ ∈
Cass(X,T ), we have the following variational principle:

(2.4) P (T,Φ, X) = sup{Φ∗(µ) + hµ(T ) : µ ∈M(X,T )}.
7



We call P (T,Φ) := P (T,Φ, X) the topological pressure of Φ. We remark that the
variational principle for sub-additive potentials has been studied in [17, 4, 21, 27, 30, 5, 36]
under additional assumptions on the corresponding sub-additive potential and TDS. Say
that µ ∈ M(X,T ) is an equilibrium state of Φ if the supremum in (2.4) is attained at
µ. Note that Φ∗(·) is upper semi-continuous on M(X,T ) (cf. Lemma 2.1(ii)), and so is
h(·)(T ) for subshifts. Hence any Φ ∈ Cass(X,T ) has at least one equilibrium state.

Proposition 2.3 ([5, 36]). Let (X,T ) be a full shift or mixing subshift of finite type. Let
Φ = (log φn)∞n=1 ∈ Caa(X,T ). Assume that Φ has the bounded distortion property. Then
Φ has a unique equilibrium state µ. Furthermore, there exists a constant c > 0 such that
for any n ∈ N and x = (xi)∞i=1 ∈ X,

c−1 ≤ µ([x1 . . . xn])
exp(−nP (T,Φ)) φn(x)

≤ c.

Remark 2.4. (1) Lemma 2.1 was proved in [23] under a slightly stronger assumption
that φn is continuous on X. However it is easy to extend the result to the case
that φn is upper semi-continuous, by using the property that, if f is an upper
semi-continuous function on X, then so is the map µ 7→

∫
f dµ on M(X) (cf.

[16, (A8)]). Similarly, Proposition 2.2 was only stated in [12] for sub-additive
potentials under a slight stronger assumption that φn is continuous. However, the
proof given there works well for this new setting. Indeed, using the property we
mentioned above, one sees that Lemma 2.3 in [12] can be extended to the case
Φ ∈ Cass(X,T ).

(2) A special case of Proposition 2.3 was first proved in [24, 21] for the almost additive
potentials given by

φn(x) = ‖M(x)M(Tx) . . .M(Tn−1x)‖, n ∈ N,

where M is a Hölder continuous function taking values in the set of d× d positive
matrices.

(3) According to Lemma 2.1(iii), for µ ∈M(X,T ), the set Gµ(X,T1) of generic points
of µ defined as in (1.3) is just equal to{

x ∈ X : lim
n→∞

log φn(x)
n

= Φ∗(µ), ∀ Φ = (log φn)∞n=1 ∈ Casa(X,T )
}
.

2.3. Relativized sub-additive thermodynamic formalism. Let π : X → Y be a
one-block factor map between two subshifts (X,T ) and (Y, S). The following relativized
variational principle was proved in [45] for sub-additive potentials Φ = (log φn})∞n=1 with
φn being continuous, under a general random setting. It does hold for Φ ∈ Cass(X,T ) by
modifying the proof in [45] slightly. This extends the relativized variational principle of
Ledrappier and Walters [32] for additive potentials.
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Proposition 2.5. Let Φ ∈ Cass(X,T ) and ν ∈M(Y, S). Then

(2.5) sup{Φ∗(µ) + hµ(T )− hν(S)} =
∫
Y
P (T,Φ, π−1(y)) dν(y),

where the supremum is taken over the set of µ ∈ M(X,T ) such that µ ◦ π−1 = ν,
P (T,Φ, π−1(y)) is defined as in (2.2).

By the upper semi-continuity of Φ∗(·) and h(·)(T ) on M(X,T ), the supremum in (2.5)
is attainable. Any measure µ ∈ M(X,T ) for which the supremum in (2.5) is attained at
µ is called a conditional equilibrium state of Φ with respect to ν.

3. Weighted thermodynamic formalism

In this section, we define the weighted topological pressure for general asymptotically
sub-additive potentials, and we discuss the uniqueness and Gibbs properties of weighted
equilibrium states. These properties are needed in the proofs of our main results listed in
Section 1.

First we recall our basic settings. Let k ≥ 2. Assume that (Xi, Ti) (i = 1, . . . , k) are
subshifts over finite alphabets Ai such that Xi+1 is a factor of Xi with a one-block factor
map πi : Xi → Xi+1 for i = 1, . . . , k−1. For convenience, we use π0 to denote the identity
map on X1. Define τi : X1 → Xi+1 by τi = πi ◦ πi−1 ◦ · · · ◦ π0 for i = 0, 1, . . . , k − 1.

Let a = (a1, . . . , ak) ∈ Rk so that a1 > 0 and ai ≥ 0 for i > 1. For Φ ∈ Cass(X1, T1).
We define the a-weighted topological pressure of Φ as

P a(T1,Φ) = sup
{

Φ∗(µ) + ha
µ(T1) : µ ∈M(X1, T1)

}
.

By Lemma 2.1(ii), Φ∗(·) is upper semi-continuous onM(X1, T1), and so is ha
(·)(T1), whence

the above supremum is attainable. Each measure µ which attains the supremum is called
an a-weighted equilibrium state of Φ.

For i = 1, . . . , k − 1, we define θi : Cass(Xi, Ti) → Cass(Xi+1, Ti+1) by (log φn)∞n=1 7→
(logψn)∞n=1, where

ψn(y) =

 ∑
I∈Ani : [I]∩π−1

i (y) 6=∅

sup
x∈[I]∩π−1

i (y)

φn(x)1/Ai

Ai

for y ∈ Xi+1, with Ai = a1 + · · · + ai. In particular, let Sass denote the collection of
asymptotically sub-additive additive (scalar) sequences (log cn)∞n=1 (a sequence (log cn)∞n=1,
where cn ≥ 0, is called asymptotically sub-additive if, for any ε > 0, there exists a sequence
(dn)∞n=1, so that 0 ≤ dn+m ≤ dndm and lim supn→∞

1
n | log cn − log dn| < ε). Let θk :
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Cass(Xk, Tk)→ Sass be defined as (log φn)∞n=1 7→ (log cn)∞n=1, where

cn =

∑
I∈Ank

sup
x∈[I]

φn(x)1/Ak

Ak

.

Our first result in this section is the following.

Theorem 3.1. Let Φ = (log φn)∞n=1 ∈ Cass(X1, T1). Then

(i) For any 1 ≤ i ≤ k − 1, P a(T1,Φ) = P (
∑i+1
j=1 aj , ai+2,...,ak)(Ti+1, θi ◦ · · · ◦ θ1(Φ)).

(ii) P a(T1,Φ) = limn→∞(1/n) log cn, where (cn)∞n=1 = θk ◦ · · · ◦ θ1(Φ).
(iii) µ ∈ M(X1, T1) is an a-weighted equilibrium state of Φ if and only if µ ◦ τ−1

k−1 is

an equilibrium state of θk−1◦···◦θ1(Φ)
a1+···+ak and, for i = k − 2, k − 3, . . . , 0, µ ◦ τ−1

i is a

conditional equilibrium state of θi◦···◦θ1(Φ)
a1+···+ai+1

with respective to µ ◦ τ−1
i+1.

The above result establishes the relation between weighted topological pressures and
non-weighted ones, as well as the relation between weighted equilibrium states, non-
weighted equilibrium sates and conditional equilibrium states. We remark that Theorem
3.1 was proved in [22] for a special class of sub-additive potentials (log φn)∞n=1, where φn
are assumed to be n-symbol functions. Yayama [47, 46] also considered the case Φ = 0
independently.

The following simple lemma plays a key role in the proof of Theorem 3.1.

Lemma 3.2. Let π : X → Y be a one-block factor map between two subshifs (X,T ) and
(Y, S). Let Φ = (log φn)∞n=1 ∈ Cass(X,T ) and ν ∈M(Y, S). Then we have

(3.1) sup{Φ∗(µ) + hµ(T )− hν(S) : µ ∈M(X,T ), µ ◦ π−1 = ν} = Ψ∗(ν),

where Ψ = (logψn)∞n=1 ∈ Cass(Y, S) is defined by

ψn(y) =
∑

I∈An: [I]∩π−1(y)6=∅

sup
x∈[I]∩π−1(y)

φn(x).

Proof. By Proposition 2.5, the left-hand side of (3.1) equals
∫
P (T,Φ, π−1(y)) dν(y). How-

ever by (2.2)-(2.1),

P (T,Φ, π−1(y)) = lim sup
n→∞

1
n

logPn(T,Φ, π−1(y))

and
Pn(T,Φ, π−1(y)) =

∑
I∈An: [I]∩π−1(y)

sup
x∈[I]∩π−1(y)

φn(x).

Clearly ψn(y) = Pn(T,Φ, π−1(y)). It is direct to check that Ψ = (logψn)∞n=1 ∈ Cass(Y, S).
Hence by Lemma 2.1,

Ψ∗(ν) =
∫

lim sup
n→∞

1
n

logψn(y) dν(y) =
∫
P (T,Φ, π−1(y)) dν(y).

This finishes the proof of the lemma. �
10



Remark 3.3. In Lemma 3.2, it seems that ψn might be discontinuous when φn is con-
tinuous. However when both X and Y are full shifts, if φn is continuous, then so is
ψn.

Proof of Theorem 3.1. To show (i), we only prove the case when i = 1. The general case
then just follows by a recursive argument. Write b = (a2, a3, . . . , ak) and c = (a1 +
a2, a3, . . . , ak). Then we have

sup{Φ∗(µ) + ha
µ(T1), µ ∈M(X1, T1)}

= sup{Φ∗(µ) + a1hµ(T1) + hb
ν (T2) : ν ∈M(X2, T2), µ ∈M(X1, T1), µ ◦ π−1

1 = ν}

= sup{A(ν) + hc
ν(T2) : ν ∈M(X2, T2)},

(3.2)

where

A(ν) := a1 sup
{

1
a1

Φ∗(µ) + hµ(T1)− hν(T2) : µ ∈M(X1, T1), µ ◦ π−1
1 = ν

}
.

By Lemma 3.2, we have A(ν) = Ψ∗(ν), where Ψ = (logψn)∞n=1 ∈ Cass(Y, S) is defined as

ψn(y) =

 ∑
I∈An: [I]∩π−1(y) 6=∅

sup
x∈[I]∩π−1(y)

φn(x)1/a1

a1

.

That is, Ψ = θ1(Φ). Hence by (3.2), we have P a(T1,Φ) = P c(T2, θ1(Φ)), as desired. To
see (ii), note that by (i) we have

P a(T1,Φ) = P (a1+···+ak)(Tk,Γ) = sup{Γ∗(η) + (a1 + · · ·+ ak)hη(Tk), η ∈M(Xk, Tk)},

where Γ := θk−1 ◦ · · · ◦ θ1(Φ). Then (ii) follows from Proposition 2.2.

By (3.2), µ is an a-weighted equilibrium state of Φ if and only if µ ◦π−1
1 is a c-weighted

equilibrium state of θ1(Φ) and µ is a conditional equilibrium state of 1
a1
θ1(Φ) with respect

to µ ◦ π−1
1 . A recursive argument then yields (iii). �

In the remaining part of this section, we assume that X1 satisfies specification. Let
Φ = (log φn)∞n=1 ∈ Casa(X1, T1). Define φ(0) : L(X1)→ (0,∞) by φ(0)(I) = supx∈[I] φn(x)
for I ∈ Ln(X1). Furthermore, define φ(i) : L(Xi+1)→ [0,∞) (i = 1, . . . , k−1) recursively
by

(3.3) φ(i)(J) =
( ∑
I∈Ln(Xi): πiI=J

φ(i−1)(I)
1

a1+···+ai

)a1+···+ai

for n ∈ N, J ∈ Ln(Xi+1). Furthermore, define φ(k) : N→ [0,∞) by

φ(k)(n) =
∑

I∈Ln(Xk)

φ(k−1)(I)
1

a1+···+ak .

Then we define the a-weighted potential associated with Φ by

(3.4) Φa = (log φa
n)∞n=1, where φa

n(x) = φ(0)(x|n)1/A1

k−1∏
i=1

φ(i)(τi(x|n))1/Ai+1−1/Ai ,

11



where Ai = a1 + · · · + ai, and x|n := x1 . . . xn for x = (xi)∞i=1 ∈ X1. Since there exists a
sequence (g(p))p≥1 of Hölder potentials such that limp→0 lim supn→∞ ‖Φn−Sng(p)‖∞/n = 0
(see Lemma 2.1(iii)), it is easily seen that all the potentials (log φ(i)(τi−1(·|n))∞n=1 and
(log φa

n)∞n=1 belong to Casa(X,T ).

We say that Φ = (log φn)∞n=1 ∈ Caa(X1, T1) has the bounded distortion property if there
exists a constant c > 0 such that

1
c
φn(y) ≤ φn(x) ≤ cφn(y) whenever x, y ∈ X are in the same n-th cylinder.

For two families of real numbers {ai}i∈I and {bi}i∈I , we write

ai ≈ bi if there is c > 0 such that 1
c bi ≤ ai ≤ cbi for i ∈ I;

ai < bi if there is c > 0 such that ai ≥ cbi for i ∈ I.

The following result was proved in [22].

Theorem 3.4 (Theorem 7.3 in [22]). Assume that X1 satisfies specification. Suppose
that Φ = (log φn)∞n=1 ∈ Caa(X1, σX1) has the bounded distortion property. Then Φ has a
unique a-weighted equilibrium state µ. Furthermore, µ is ergodic and has the following
properties: µ([I]) ≈ φ̃∗(I) < φ̃(I) for I ∈ L(X1), where φ̃, φ̃∗ : L(X1) → [0,∞) are
defined respectively by

φ̃(I) =

k−2∏
i=0

φ(i)(τiI)
1

a1+···+ai+1

φ(i+1)(τi+1I)
1

a1+···+ai+1

 · φ(k−1)(τk−1I)
1

a1+···+ak

φ(k)(n)

for I ∈ Ln(X1), n ∈ N, and

φ̃∗(I) = sup
m,n≥0

∑
I1∈Lm(X1), I2∈Ln(X1): I1II2∈L(X1)

φ̃(I1II2), I ∈ L(X1).

Applying Theorem 3.1(ii) and Theorem 3.4 to the full shift case, we obtain

Theorem 3.5. Assume that X1 is a full shift.

(i) Let Φ = (log φn)∞n=1 ∈ Casa(X1, T1). Then

P a(T1,Φ) = Ak lim
n→∞

(1/n) log φ(k)(n).

(ii) Suppose that Φ = (log φn)∞n=1 ∈ Caa(X1, T1) has the bounded distortion property.
Then Φ has a unique a-weighted equilibrium state µ. Furthermore, µ is fully sup-
ported and quasi-Bernoulli, and it satisfies the following Gibbs property

(3.5) µ([I]) ≈ exp
(−nP
Ak

)
φa
n(I), I ∈ An1 ,

where P = P a(T1,Φ), and φa
n is defined as in (3.4). Consequently, for i = 2, . . . , k,

(3.6) µi([τi−1I]) ≈ exp
(−nP
Ak

)
φ(i−1)(τi−1I)1/Ai

k−1∏
j=i

φ(j)(τjI)1/Aj+1−1/Aj , I ∈ An1 ,

12



where µi := µ ◦ τ−1
i−1. Furthermore,

φn(x) exp(−nP ) ≈
k∏
i=1

µi([τi−1x|n])ai for x ∈ X1, n ≥ 1.

Definition 3.6. A Borel probability measure µ (not necessarily to be invariant) on X1

satisfying (3.5) is called an a-weighted Gibbs measure for Φ.

Remark 3.7. In the setting of Theorem 3.4, if Φ = (Snf)∞n=1 for f ∈ C(X1) with
sufficiently regularity (for instance, the Hölder continuity), then the a-weighted Gibbs
measure of Φ is the classical equilibrium state of a continuous function g ∈ C(X1) with
weaker regularity. To see this, we need to use an invariance of the recent result of Chazottes
and Ugalde [14, Theorem 4.1], which claims that if φ(i−1) is a function on A∗i such that

φ(i−1)(x|n) ≈ exp(Snu(x)), x ∈ Xi

for some function u(x) ∈ C(Xi) satisfying varn(u) ≤ D1 exp(−c1n
γ1), where varn(u) =

maxx|n=y|n |u(x)− u(y)|, and let φ(i) be defined as in (3.3), then there exist v ∈ C(Xi+1)
and D2 > D1, 0 < γ2 < γ1, 0 < c2 < c1 so that

φ(i)(x|n) ≈ exp(Snv(x)), x ∈ Xi+1

and varn(v) ≤ D2 exp(−c2n
γ2). Using this claim repeatedly, we see that if f ∈ C(X1)

satisfies varn(f) ≤ D̃ exp(−c̃nγ̃) for some constants D̃, c̃, γ̃ > 0, then the potential φa

defined as in (3.4) will satisfy

φa(x|n) ≈ exp(Sng(x)), x ∈ X1

for some g ∈ C(X1) satisfying varn(g) ≤ D exp(−cnγ) with some constants D, c, γ > 0.
Then according to (3.5), the a-weighted equilibrium state µ of Φ is just the equilibrium
state of g.

In the reminder of this section, we consider the question when Φ,Ψ ∈ Caa(X1, T1) have
the same a-weighted equilibrium state.

Definition 3.8. We say that two almost additive potentials Φ = (log φn)∞n=1 and Ψ =
(logψn)∞n=1 are cohomologous if supn ‖ log φn−logψn‖∞ <∞, where ‖f‖∞ = supx∈X1

|f(x)|
for f ∈ C(X1. If there exists C ∈ R such that logψn = Cn, we say that Φ is cohomologous
to a constant.

The following proposition is a direct consequence of Theorem 3.5.

Proposition 3.9. Suppose Φ, Ψ ∈ Caa(X1, T1) satisfy the bounded distortion property.
Then, Φ and Ψ share the same a-weighted equilibrium state if and only if Φ−Ψ is coho-
mologous to a constant.

13



4. The proof of Theorem 1.1

In this section, we always assume that (X1, T1) is a subshift satisfying specification. To
prove Theorem 1.1, we need the following result.

Proposition 4.1. Let Φ1, . . . ,Φd ∈ Caa(X1, T1) satisfy the bounded distortion property.
Then the map Q : Rd → R defined as

(q1, . . . , qd) 7→ P a

(
T1,

d∑
i=1

qiΦi

)
,

is C1 over Rd with

∇Q(q1, . . . , qd) = ((Φ1)∗(µq), . . . , (Φd)∗(µq)),

where ∇Q denotes the gradient of Q, µq is the unique a-weighted equilibrium state of∑d
i=1 qiΦi.

To prove Proposition 4.1, we need the following result coming from convex analysis.

Proposition 4.2 ([23], Proposition 2.3). Let Z be a compact convex subset of a topological
vector space which satisfies the first axiom of countability (i.e., there is a countable base
at each point) and U ⊆ Rd a non-empty open set. Suppose f : U × Z → R ∪ {−∞} is a
map satisfying the following conditions:

(i) f(q, z) is convex in q;
(ii) f(q, z) is affine in z;
(iii) f is upper semi-continuous over U × Z;
(iv) g(q) := supz∈Z f(q, z) > −∞ for any q ∈ U .

For each q ∈ U , denote I(q) := {z ∈ Z : f(q, z) = g(q)}. Then

∂g(q) =
⋃

z∈I(q)

∂f(q, z),

where ∂f(q, z) denotes the subdifferential of f(·, z) at q.

Proof of Proposition 4.1. In Proposition 4.2, we let U = Rd, Z = M(X1, T1), and define
f : U × Z → R by

f(q, µ) =
d∑
i=1

qi(Φi)∗(µ) + ha
µ(T1), q = (q1, . . . , qd), µ ∈M(X1, T1).

Set g(q) = supz∈Z f(q, z) = P a(T1,
∑d

i=1 qiΦi). Since Φi ∈ Caa(X1, T1), µ 7→ (Φi)∗(µ)
is continuous on M(X1, T1) (see Lemma 2.1(ii)). Thus, f and g satisfy the assumptions
(i)-(iv) in Proposition 4.2. Note that I(q) just corresponds to the set of all a-weighted
equilibrium states of

∑d
i=1 qiΦi. By Theorem 3.5, I(q) = {µq} is a singleton for each

q ∈ Rd. By Proposition 4.2, ∇g(q) = ((Φ1)∗(µq), . . . , (Φd)∗(µq)). Since g is convex and
14



differentiable on Rd, it is C1 on Rd (see, e.g. [42, Corollary 25.5.1]). This finishes the
proof of Proposition 4.1. �

Before proving Theorem 1.1, we still need some notation and basic facts in convex
analysis. Let g : Rd → R ∪ {+∞} be convex and not identically equal to +∞. Then the
function g∗ : Rd → R ∪ {+∞} defined by

s 7→ g∗(s) := sup{s · x− g(x) : x ∈ Rd}

is called the conjugate function of g, where s · x denotes the standard dot product of s
and x in Rd. It is known that g∗ is also convex and not identically equal to +∞ (cf. [26,
p. 211]). Let g∗∗ denote the conjugate of g∗. The following result is well known in convex
analysis (cf. [42, Theorem 12.2, Corollary 26.4.1]).

Proposition 4.3. (i) Let g : Rd → R ∪ {+∞} be convex and not identically equal to
+∞. Let x ∈ Rd. Assume that g is lower semi-continuous at x, i.e., lim infy→x g(y) ≥
g(x). Then g∗∗(x) = g(x).

(ii) Let g be real convex and differentiable on Rd. Let D = {∇g(x) : x ∈ Rd}. Then
ri(dom g∗) ⊆ D, where dom g∗ := {x ∈ Rd : g∗(x) 6= +∞}, and ri(A) denotes the
relative interior of a convex set A.

Proof of Theorem 1.1. We first prove part (i) of the theorem. Fix n ∈ N and define a
function f : Ωn → R by

f(p) = sup
{
ha
µ(T1) : µ ∈M(X1, T1) : (µ([I]))I∈Ln(X1) = p

}
.

Define g : RLn(X1) → R ∪ {+∞} by

g(p) =
{
−f(p) if p ∈ Ωn,
+∞ otherwise.

It is easily checked that g is convex and lower semi-continuous on RLn(X1). Let g∗ denote
the conjugate of g, and g∗∗ the conjugate of g∗. By Proposition 4.3(i), g∗∗ = g on RLn(X1).

However, by the definition of f , we have for q = (q(I))I∈Ln(X1),

g∗(q) = sup
{
f(p) + p · q : p ∈ RLn(X1)

}
= sup {f(p) + p · q : p ∈ Ωn}

= sup


 ∑
I∈Ln(X1)

q(I)
∫
χ[I] dµ

+ ha
µ(T1) : µ ∈M(X1, T1)


= P a

T1,
∑

I∈Ln(X1)

q(I)ΦI

 ,

where χ[I] denotes the indicator function of [I], and ΦI denotes the additive potential(∑m−1
i=0 χ[I](T i1x)

)∞
m=1

. By Proposition 4.1, g∗ is differentiable over RLn(X1) and
15



(4.1) ∇g∗(q) = ((ΦI)∗(µq))I∈An = (µq([I]))I∈Ln(X1),

where µq denotes the unique a-weighted equilibrium state of
∑

I∈Ln(X1) q(I)ΦI . Applying
Proposition 4.3(ii) to g∗, we have

(4.2)
{
∇g∗(q) : q ∈ RLn(X1)

}
⊇ ri(dom g∗∗) = ri(dom g) = ri(Ωn).

Now let η ∈M(X1, T1) so that (η([I]))I∈Ln(X1) ∈ ri(Ωn). Therefore by (4.2), there exists
q ∈ RLn(X1) so that ∇g∗(q) = (η([I]))I∈Ln(X1); and thus by (4.1), (µq([I]))I∈Ln(X1) =
(η([I]))I∈Ln(X1). Now assume that µ̃ is a T1-invariant measure different from µq such that
(µ̃(I))I∈Ln(X1) = (η(I))I∈Ln(X1). Since µq is the unique a-weighted equilibrium state of∑

I∈Ln(X1) q(I)ΦI , we have

P a

T1,
∑

I∈Ln(X1)

q(I)ΦI

 =
∑

I∈Ln(X1)

q(I)
∫
χ[I] dµq + ha

µq
(T1)

>
∑

I∈Ln(X1)

q(I)
∫
χ[I] dµ̃+ ha

µ̃(T1).

It follows that ha
µq

(T1) > ha
µ̃(T1). This proves (i).

To prove (ii), let η0 ∈ M(X1, T1) be the measure having the maximal a-weighted
entropy. Clearly, η0 is the a-weighted equilibrium state of f ≡ 0. If η = η0, then we just
take µn = η0 for n ≥ 1 and we are done. In the following we assume that η 6= η0. For each
n ∈ N, we pick ξn ∈M(X1, T1) such that (ξn([I]))I∈Ln(X1) ∈ ri(Ωn). Then choose a small
pn > 0 such that pnha

ξn
(T1)+(1−pn)ha

η0
(T1) > ha

η(T1). Define ξ̃n = pnξn+(1−pn)η0. Let

ηn = (1−1/n)η+(1/n)ξ̃n. Then it is readily checked that ηn ∈ ri(Ωn). Let µn = µ(a, ηn, n).
Then the sequence (µn) has the desired properties. �

Remark 4.4. Let X1 be a full shift and µ ∈ M(X1, T1). Taking a = (1, . . . , 1) in
Theorem 1.1 and using the upper semi-continuity of the entropy, we see that there is
a sequence of quasi-Bernoulli measures (µn)∞n=1 which converges to µ in the weak-star
topology, such that we have limn→∞ hµn◦τ−1

i−1
(Ti) = hµ◦τ−1

i−1
(Ti) for all 1 ≤ i ≤ k. Moreover,

one can deduce from Theorem 3.5 that for any a = (a1, . . . , ak) with a1 > 0 and ai ≥ 0 for
i ≥ 2, each invariant quasi-Bernoulli measure is the a-weighted equilibrium state of some
almost additive potential satisfying the bounded distortion property.

In the remainder of this section, we prove our statement in Example 1.2. Let X1 =
{a, b, c}N and X2 = {1, 2}N. Let π : X1 → X2 be a one-block factor map induced by
a, b 7→ 1 and c 7→ 2. We first prove the following lemma.

Lemma 4.5. Let η be a fully supported one-step Markov measure on X1. If

(4.3)
η([ac])
η([a])

=
η([bc])
η([b])

or
η([ca])
η([a])

=
η([cb])
η([b])

,
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then η ◦ π−1 is a one-step Markov measure on X2; otherwise η ◦ π−1 is not a Markov
measure of any order.

Proof. Our argument is inspired by the work of Chazottes and Ugalde [13]. Denote pi,j =
η([ij])/η([i]) for i, j ∈ {a, b, c}. Clearly

(4.4) η([x1x2 . . . xn]) = η([x1])px1,x2 . . . pxn−1,xn , ∀ x1 . . . xn ∈ {a, b, c}n.

According to (4.4), it is direct to check that

η ◦ π−1([y1y2 . . . yn]) = vy1My1y2 . . .Myn−1ynuTyn , ∀ y1 . . . yn ∈ {1, 2}n,

where
v1 = (η([a]), η([b])), v2 = η([c]), u1 = (1, 1), u2 = 1.

M11 =
(
pa,a pa,b
pb,a pb,b

)
, M12 =

(
pac
pbc

)
, M21 = (pca, pcb), M22 = pcc.

Note that η ◦ π−1 is a (k − 1)-step Markov measure if and only if

(4.5)
η ◦ π−1([y1y2 . . . yn])
η ◦ π−1([y2 . . . yn])

depends only on y1 . . . yk when n ≥ k.

However, it is easy to check

η ◦ π−1([y1y2 . . . yn])
η ◦ π−1([y2 . . . yn])

=
η ◦ π−1([y1y2 . . . yi])
η ◦ π−1([y2 . . . yi])

,

provided that yi = 2 for some 2 ≤ i ≤ n. Thus to check whether (4.5) holds for all
y1y2 . . . yn, it suffices to check the property for the words 1n, 1n2, 21n, 21n2. However,
it is direct to check that (4.5) holds for the words 1n, 1n2, 21n, 21n2 for some k ≥ 2 if
and only if v1 and M21 are the left eigenvectors of M11, or, M21 and u1 are the right
eigenvectors of M11; and this holds if and only if (4.3) holds. In the end, if (4.3) holds
then, (4.5) holds for k = 2. This finishes the proof of the lemma. �

Proof of Example 1.2. Let η ∈ M(X1, T1) be fully supported. Write µ = µ(a, η, 2). By
Theorem 1.1, µ is the a-weighted equilibrium state of some 2-symbol function f on X1.
Define φ(0) : {a, b, c}∗ → (0,∞) and φ(1) : {1, 2}∗ → (0,∞) respectively by

φ(0)(I) = sup
x∈[I]

exp(Snf(x)) for I ∈ {a, b, c}n and

φ(1)(J) =

 ∑
I∈π−1(J)

φ(0)(I)1/a1

a1

for J ∈ {1, 2}n,

here and afterwards, Snf(x) denotes the sum
∑n−1

i=0 f(T i1x). Then by Theorem 3.5,

(4.6) µ([I]) ≈ exp
(
− nP

a1 + a2

)
φ(0)(I)

1
a1 φ(1)(πI)

1
a1+a2

− 1
a1 , I ∈ {a, b, c}∗,

and

(4.7) µ ◦ π−1([J ]) ≈ exp
(
− nP

a1 + a2

)
φ(1)(J)

1
a1+a2 , J ∈ {1, 2}∗,
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where P = P a(T1, f). Let m be the equilibrium state of 1
a1
f . Since 1

a1
f is a 2-symbol

function, m is a one-step Markov measure on X1. Clearly

m([I]) ≈ exp(−nQ)φ(0)(I)1/a1 , m ◦ π−1([I]) ≈ exp(−nQ)φ(1)(πI)1/a1

for I ∈ {a, b, c}∗, where Q := P (T1, (1/a1)f). By Lemma 4.5, m ◦ π−1 is either a one-step
Markov measure, or not a Markov measure of any order. Hence, either there exists a
2-symbol function h on X2 such that

(4.8) φ(1)(J) ≈ sup
y∈[J ]

exp(Snh(y)), J ∈ {1, 2}n,

or (4.8) does not hold for any finite-symbol function h on X2.

Assume that µ is a Markov measure of finite order. Then there exists a finite-symbol
function g on X1 such that µ([I]) ≈ supx∈[I] exp(Sng(x)) for I ∈ {a, b, c}n. Combining this
with (4.6) yields that there exists k ≥ 2 such that (4.8) holds for some k-symbol function
h on X2. Therefore (4.8) holds for some 2-symbol function h̃ on X2. Applying this to
(4.6) and (4.7), we see that both µ and µ◦π−1 are one-step Markov measures. By Lemma
4.5, (1.4) must hold (noting that µ([I]) and η([I]) coincide for all 2-nd cylinders [I]).

Conversely, assume that (1.4) holds. Define a measure µ̃ on X1 by

µ̃([x1x2 . . . xn]) = η([x1])px1,x2 . . . pxn−1,xn , ∀ x1 . . . xn ∈ {a, b, c}n,

where pi,j = η([ij])/η([i]) for i, j ∈ {a, b, c}. Then µ̃ is a one-step Markov measure so
that µ̃([I]) and η([I]) coincide for all 2-nd cylinders [I]. By Lemma 4.5, µ̃ ◦ π−1 is also
a one-step Markov measure. Hence hµ̃(T1) ≥ hη̃(T1) and hµ̃◦π−1(T2) ≥ hη̃◦π−1(T2) for
any η̃ ∈ M(X1, T1) so that η̃([I]) and η([I]) coincide for all 2-nd cylinders [I] (cf. [19,
Propositions 1-2]). Therefore µ̃ = µ(a, η, 2). �

5. Proofs of Theorems 1.3 and 1.4

5.1. Preliminary lemmas. Let us introduce some more notation and give useful prelim-
inary facts.

For 1 ≤ i ≤ k and n ∈ N, let

`i(n) = min{p ∈ N : p ≥ (a1 + · · ·+ ai)n/a1},

and by convention set `0(n) = 0. It is easy to check that

Lemma 5.1. In (X1, da), the closed ball centered at x of radius e−n/a1 is given by

B(x, e−n/a1) =
{
y ∈ X1 : τi−1(y|`i(n)) = τi−1(x|`i(n)) for all 1 ≤ i ≤ k

}
.

For convenience, sometimes for a measure µ on Xi (i = 1, . . . , k), we write µ(I) = µ([I])
for I ∈ L(Xi). The following result estimates the value of an a-weighted Gibbs measure
on a ball in (X1, da).
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Lemma 5.2. Suppose that (X1, T1) is a full shift. Let Φ = (log φn)∞n=1 ∈ Caa(X1, T1)
satisfy the bounded distortion property. Let µ denote the a-weighted Gibbs measure of Φ.
Then, uniformly in x = (xi)∞i=1 ∈ X1 and n ≥ 1, we have

µ(B(x, e−n/a1)) ≈
k∏
i=1

µi
(
τi−1(x`i−1(n)+1 · · ·x`i(n))

)
(5.1)

≈ exp
(−nP a(T,Φ)

a1

)
φn(x)1/a1

k−1∏
j=1

φ(j)(τj(x|`j+1(n)))1/Aj+1

φ(j)(τj(x|`j(n)))1/Aj
,(5.2)

where µi = µ ◦ τ−1
i−1 for 1 ≤ i ≤ k, and φ(j), j = 0, . . . , k − 1, are defined as in (3.3),

Aj = a1 + · · ·+ aj for 1 ≤ j ≤ k.

Proof. We first prove (5.1). Let x = (xi)∞i=1 ∈ X1 and n ≥ 1. For i = 1, . . . , k, write
Ui = x`i−1(n)+1 · · ·x`k(n). Let B denote B(x, e−n/a1). By Lemma 5.1, B = {y : ∀ 1 ≤ i ≤
k, τi−1(y) ∈ τi−1([U1 . . . Ui])}, so

µ(B) =
∑

(J1,...,Jk)∈Θ

µ(J1 · · · Jk),

where

Θ :=

{
(J1, . . . , Jk) ∈

k∏
i=1

A`i(n)−`i−1(n)
1 : ∀ 1 ≤ i ≤ k, τi−1(Ji) = τi−1(Ui)

}
.

Applying k− 1 times the quasi Bernoulli property of µ to each term of the above sum, we
get

µ(B) ≈
∑

(J1,...,Jk)∈Θ

µ(J1) · · ·µ(Jk),

and (5.1) follows by summing over Jk, . . . , J2 successively.

Now we prove (5.2). Let us transform (5.1) by using (3.6). Since each word Ui is of
length `i(n)− `i−1(n) and by construction `k(n)/Ak − n/a1 = O(1/n), (3.6) yields

µ(B) ≈ exp
(−`k(n)P a(T1,Φ)

Ak

) k∏
i=1

φ(i−1)(τi−1Ui)1/Ai

k−1∏
j=i

φ(j)(τjUi)1/Aj+1−1/Aj

≈ exp
(−nP a(T1,Φ)

a1

)( k−1∏
i=0

φ(i)(τiUi+1)1/Ai
) k−1∏
j=1

j∏
i=1

φ(j)(τjUi)1/Aj+1−1/Aj

≈ exp
(−nP a(T1,Φ)

a1

)
φ(0)(U1)1/a1

k−1∏
j=1

φ(j)(τj(U1 · · ·Uj+1))1/Aj+1

φ(j)(τj(U1 · · ·Uj))1/Aj

≈ exp
(−nP a(T1,Φ)

a1

)
φn(x)1/a1

k−1∏
j=1

φ(j)(τjx|`j+1(n))1/Aj+1

φ(j)(τjx|`j(n))1/Aj
.

This finishes the proof of the lemma. �
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5.2. Proof of Theorem 1.3. The main result of this section is the following.

Theorem 5.3. Suppose that X1 satisfies the specification property. Let µ ∈ M(X1, T1).
Then dimH Gµ(X1, T1) ≥ ha

µ(T1).

Proof of Theorem 1.3. By Theorem 5.3, to complete the proof of Theorem 1.3 it remains
to control dimH Gµ(X1, T1) from above.

For any ϕ ∈ C(X1), denote µ(ϕ) =
∫
ϕdµ. Furthermore for α ∈ R, denote

Eϕ(α) =
{
x ∈ X1 : lim

n→∞

1
n
Snϕ(x) = α

}
.

Then by (1.3), Gµ(X1, T1) =
⋂
ϕ∈C(X1)Eϕ(µ(ϕ)). Thus, by using Lemma 5.6 whose proof

is independent of the present one, we obtain

dimH Gµ(X1, T1) ≤ inf
ϕ∈C(X1)

dimH Eϕ(µ(ϕ))

≤ inf
ϕ∈C(X1)

inf
q∈R

(P a(T1, qϕ)− qµ(ϕ))

= inf
q∈R

inf
ϕ∈C(X1)

(P a(T1, qϕ)− qµ(ϕ))

= inf
ϕ∈C(X1)

(P a(T1, ϕ)− µ(ϕ)).

Now we note that, on the one hand, the a-weighted topological pressure is the Legendre-
Fenchel transform of the a-weighted entropy defined on the compact convex setM(X1, T1)
of C(X)∗ endowed with the weak-star topology, and on the other hand, the a-weighted
entropy is upper semi-continuous. Hence we have infϕ∈C(X1)(P a(T1, ϕ)− µ(ϕ)) = ha

µ(T1)
by mimicking the proof of Theorem 3.12 in [43]. This yields the conclusion. �

Let (AN
1 , T1) denote the full shift over the alphabet A1. Then X1 can be viewed as an

T1-invariant subset of AN
1 . For p ∈ N, write Lp := Lp(X1) for short, where Lp(X1) denotes

the p-th language of X1 (cf. Section 2.1). We use (LN
p , T

p
1 ) to denote the full shift over

the alphabet Lp. Again LN
p can be viewed as a subset AN

1 , and X1 ⊂ LN
p .

Proof of Theorem 5.3. Let us outline the main steps in our approach. Fix µ ∈M(X1, T1).
We first construct a set Gµ ⊂ AN

1 such that

(5.3) Gµ ⊂ Gµ(AN
1 , T1) and dimH Gµ ≥ ha

µ(T1),

where µ is considered as an element of M(AN
1 , T1). Once this is done, we will define an

injective map conc : G → X1 such that conc(Gµ) ⊂ Gµ(X1, T1) and dimH conc(Gµ) =
dimH Gµ. Hence Gµ(X1, T1) ≥ dimH Gµ ≥ ha

µ(T1).

Now we start the rigorous construction of Gµ. Pick a countable family of Hölder con-
tinuous functions

C̃ = {ϕm : m = 1, 2, . . .} ⊂ C(AN
1 )
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so that it is dense in C(AN
1 ). Next we construct a sequence (µp) of measures on AN

1 as
below.

Let p ∈ N. Since X1 ⊂ LN
p , the measure µ has a trivial extension to the Borel subsets of

LN
p defined by A 7→ µ(A∩X1). We still denote this extension by µ; it is T p1 invariant. As LN

p

is a full shift, by Remark 4.4, µ is the limit in the weak-star topology of a sequence of quasi-
Bernoulli measures (ηj)j≥1 on (LN

p , T
p
1 ) such that hηj◦τ−1

i−1
(T pi ) converges to hµ◦τ−1

i−1
(T pi ) =

phµ◦τ−1
i−1

(Ti) for all 1 ≤ i ≤ k, and ηj(Spϕm) converges to µ(Spϕm) = pµ(ϕm) for all
1 ≤ m ≤ p, as j →∞. Hence we may pick a large enough j, by setting µp = ηj , we have∣∣∣hµp◦τ−1

i−1
(T pi )− phµ◦τ−1

i−1
(Ti)

∣∣∣ ≤ 1
2p
, ∀ 1 ≤ i ≤ k,

|µp(Spϕm)− pµ(ϕm)| ≤ 1
2p
, 1 ≤ m ≤ p.

(5.4)

As above, we can obtain a sequence (µp)∞p=1 so that (5.4) holds for each p ∈ N; moreover
µp is quasi-Bernoulli and ergodic on (LN

p , T
p
1 ), and it can be viewed as a T p1 -invariant and

ergodic measure on AN
1 . Let (κp) be an increasing sequence of positive numbers such that

(5.5) κ−1
p µp([I])µp([J ]) ≤ µp([IJ ]) ≤ κpµp([I])µp([J ]), ∀ I, J ∈

∞⋃
i=0

Lip.

For p,N ∈ N, let G(p,N) denote the set of points x ∈ LN
p ⊂ AN

1 such that∣∣∣ logµp ◦ τ−1
i−1(τi−1x|pn)
−n

− phµ◦τ−1
i−1

(Ti)
∣∣∣ ≤ 1

p
for n ≥ N and 1 ≤ i ≤ k, and∣∣∣Snpϕm(x)

n
− pµ(ϕm)

∣∣∣ ≤ 1
p

for n ≥ N and 1 ≤ m ≤ p.
(5.6)

By using the Shannon-McMillian-Brieman theorem (cf. [44, p. 93]) and the Birkhoff
ergodic theorem to the ergodic measure dynamic systems (AN

i , T
p
i , µp ◦ τi−1) (1 ≤ i ≤ k),

we have for µp-a.e. x,

lim
n→∞

1
n

logµp ◦ τ−1
i−1(τi−1x|pn) = −hµp(T

p
i ), i = 1, . . . , k, and

lim
n→∞

1
n
Snpϕm(x) = lim

n→∞

1
n

n−1∑
i=0

(Spϕm)(T pi1 x) = µp(Spϕm), 1 ≤ m ≤ p.

Combining them with (5.4) yields

lim
N→∞

µp(G(p,N)) = 1.

Hence we can choose a sequence (Np) of increasing positive integers such that

µp(G(p,Np)) ≥ 1− 2−p, p = 1, 2, . . . .

Next construct a sequence (Mp) of positive integers such that

(5.7) Mp ≥ max
{

2Mp−1 , κp, 2Np+1
}
, p = 2, 3, . . . .
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and set
N ′p = Np ×Mp, , p = 1, 2, . . . .

Then, for p ≥ 1 let µ̃p be the discrete measure on ApN
′
p

1 defined by

µ̃p(I) = µp([I]).

Clearly, µ̃p is supported on LN
′
p

p . Now we define

G =
∞∏
p=1

LN
′
p

p , ν = ⊗∞p=1µ̃p,

Gp =
{
I ∈ LN

′
p

p : [I] ∩G(p,Np) 6= ∅
}
, p = 1, 2, . . . .

(5.8)

Finally, we define

Gµ = ⊗p≥1Gp =
{
I1I2 · · · Ip · · · ∈ AN

1 : ∀ p ≥ 1, Ip ∈ Gp
}
.

By construction, the measure ν is supported on G and we have

ν(Gµ) =
∏
p≥1

µ̃p(Gp) ≥
∏
p≥1

µp(G(p,Np)) ≥
∏
p≥1

(1− 2−p) > 0.

Now we prove that (5.3) holds for Gµ. It is enough to show that

Gµ ⊂ Gµ(AN
1 , T1) and(5.9)

lim inf
n→∞

log ν(B(x, e−n/a1))
−n/a1

≥ ha
µ(T1) for all x ∈ Gµ(5.10)

since (5.10) implies dimH Gµ ≥ ha
µ(T1) (see [18] for instance).

Proof of (5.9). Note that the sequence (ϕm) is dense in C(AN
1 ), it suffices to show that

for each x ∈ Gµ and m ∈ N,

lim
n→∞

1
n
Snϕm(x) = µ(ϕm).

Now we fix such a pair x,m, and write ϕ = ϕm. Write x in the concatenated form:

x = I1I2 . . . Ip . . . , Ij ∈ Gj ⊂ L
N ′j
j for j ≥ 1.

For a large number n, let p be the unique integer so that
∑p−1

j=1 jN
′
j < n ≤

∑p
j=1 jN

′
j .

That is, p is the integer such that the n-th digit of x is located in the word Ip. Furthermore
let q be the unique integer q ∈ [1,Mp] such that

p−1∑
j=1

jN ′j + (q − 1)pNp < n ≤
p−1∑
j=1

jN ′j + qpNp.

That is, if we write Ip = W1W2 . . .WMp with Wi ∈ L
Np
p , then the n-th digit of x is located

in the word Wq. The condition (5.7) guarantees that
p−2∑
j=1

jN ′j = o
(
(p− 1)N ′p−1

)
= o(n), pNp = o(n).
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Hence

(5.11) Snϕ(x) = S(p−1)N ′p−1
ϕ(T u1 x) + SqpNpϕ

(
T
u+(p−1)N ′p−1

1 x
)

+ o(n),

where u :=
∑p−2

j=1 jN
′
j . Keep in mind that T u1 x ∈ [Ip−1] and T

u+(p−1)N ′p−1

1 x ∈ [Ip]. Since
Ij ∈ Gj , by the construction (5.8), [Ij ] ∩ G(j,Nj) 6= ∅ for j = p − 1, p. Hence, by (5.6),
there exist y ∈ [Ip−1] and z ∈ [Ip] such that

(5.12) S(p−1)N ′p−1
ϕ(y) = (p− 1)N ′p−1µ(ϕ) + o(n), SqpNpϕ(z) = qpNpµ(ϕ) + o(n).

Since ϕ is Hölder continuous, it has the following bounded distortion property

S(p−1)N ′p−1
ϕ(T u1 x) = S(p−1)N ′p−1

ϕ(y) +O(1),

SqpNpϕ
(
T
u+(p−1)N ′p−1

1 x
)

= SqpNpϕ(z) +O(1).
(5.13)

Combining (5.11)-(5.13) yields

Snϕ(x) = ((p− 1)N ′p−1 + qpNp)µ(ϕ) + o(n) = nµ(ϕ) + o(n).

That is, limn→∞
1
nSnϕ(x) = µ(ϕ). This finishes the proof of (5.9). �

Proof of (5.10). Fix x ∈ Gµ. Write x in the concatenated form:

x = I1I2 . . . Ip . . . , Ij ∈ Gj ⊂ L
N ′j
j for j ≥ 1.

Let n be a large integer. To estimate ν(B(x, e−n/a1)), recall that (cf. Lemma 5.1)

(5.14) B(x, e−n/a1) =
{
y ∈ X1 : τi−1(y|`i(n)) = τi−1(x|`i(n)) for all 1 ≤ i ≤ k

}
.

where

`i(n) = min{p ∈ N : p ≥ (a1 + · · ·+ ai)n/a1},

in particular, `1(n) = n. For convention write `0(n) = 0.

For i = 1, . . . , k, let pi denote the unique integer such that the `i(n)-th digit of x is
located in the word Ipi . Note that pi depends only on n and i, and is independent of x.
Due to (5.7), |I1I2 . . . Ip−1| = o(|Ip|), where |I| denotes the length of the word I. Hence
there are only two possibilities when n is large enough:

(C1) p1 = p2 = . . . = pk (=: p);
(C2) there exists 2 ≤ ι ≤ k so that p1 = . . . = pι−1 (=: p), pι = . . . = pk = p+ 1;

Without loss of generality we assume that ai > 0 for all 1 ≤ i ≤ k.

First we consider the case (C1). Write the word Ip in the following form

Ip = U1W1U2W2 . . . UkWkUk+1

in a way such that |Wi| = pNp for i = 1, . . . , k and |Uj | are multiples of pNp (maybe 0)
for j = 1, . . . k + 1, and in particular, the `i(n)-th digit of x is located in the word Wi
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for i = 1, . . . , k. Clearly, the above decomposition of Ip is unique (i.e., |Uj |’s are uniquely
determined). Now we consider the following concatenation

x = I1I2 . . . Ip−1U1W1U2W2 . . . UkWkUk+1Ip+1 . . .

Due to (5.7), we have

|I1I2 . . . Ip−2| = o(|Ip−1|) = o(n), |Wi| = o(n),

|Ip−1|+ |U1| = `1(n) + o(n), |Uj | = `j(n)− `j−1(n) + o(n)

for i = 1, . . . , k and 2 ≤ j ≤ k.

By the construction of ν (cf. (5.8)), and the quasi-Bernoulli property of µp (cf. (5.5)),
we have the following estimation

ν([x|`k(n)]) ≤ κkpν([I1 . . . Ip−2])µp−1([Ip−1])
k∏
i=1

µp([Ui]).

Similarly for any y ∈ G =
∏∞
j=1 L

N ′j
j , if we write y in the same form

y = Ĩ1Ĩ2 . . . Ĩp−1Ũ1W̃1Ũ2W̃2 . . . ŨkW̃kŨk+1Ĩp+1 . . . ,

we have

ν([y|`k(n)]) ≤ κkpν([Ĩ1 . . . Ĩp−2])µp−1([Ĩp−1])
k∏
i=1

µp([Ũi]).

Then by (5.14), we obtain

ν(B(x, e−n/a1)) ≤ κkp(#L
Np
p )kν([I1 . . . Ip−2])µp−1([Ip−1])

k∏
i=1

µp ◦ τ−1
i−1([τi−1Ui])

≤ κkp(#A1)pNpkµp−1([Ip−1])
k∏
i=1

µp ◦ τ−1
i−1([τi−1Ui]).

(5.15)

Since [Ij ] ∩G(j,Nj) 6= ∅ for j = p− 1, p, and |Wi| = o(n), by (5.6), we have

(5.16) logµp−1([Ip−1]) = −(p− 1)N ′p−1hµ(T1) + o(n),

and for i = 1, . . . , k,

logµp ◦ τ−1
i−1([τi−1(U1W1 . . . UiWi)]) = −(|U1|+ . . .+ |Ui|)hµ◦τ−1

i−1
(Ti) + o(n).

logµp ◦ τ−1
i−1([τi−1(U1W1 . . . Ui−1Wi−1)]) = −(|U1|+ . . .+ |Ui−1|)hµ◦τ−1

i−1
(Ti) + o(n).

which implies that

logµp ◦ τ−1
i−1([τi−1Ui]) = logµp ◦ τ−1

i−1([τi−1(UiWi)]) + o(n)

= −|Ui| hµ◦τ−1
i−1

(Ti) + o(n),
(5.17)

by using the quasi-Bernoulli property of µp and log κp = o(n). Combining (5.15)-(5.17)
yields

log ν(B(x, e−n/a1)) ≤ −(|Ip−1|+ |U1|)hµ(T1) +
k∑
i=2

|Ui|hµ◦τ−1
i−1

(Ti) + o(n).
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Hence

(5.18) log ν(B(x, e−n/a1)) ≤ (−n/a1)ha
µ(T1) + o(n),

because |Ip−1| + |U1| = `1(n) + o(n) = n + o(n) and |Ui| = `i(n) − `i−1(n) + o(n) =
ain/a1 + o(n) for 2 ≤ i ≤ k.

Next we consider the case (C2). Write the words Ip, Ip+1 as

Ip = U1W1U2W2 . . . Uι−1Wι−1Vι, Ip+1 = UιWι . . . UkWkUk+1,

so that |Wi| = pNp for i = 1, . . . , ι − 1, and (p + 1)Np+1 for i = ι, . . . , k; furthermore,
|U1|, . . . , |Uι−1|, |Vι−1| are multiples of pNp, whilst |Uj |’s are multiples of (p+ 1)Np+1 for
j = ι, . . . , k + 1; in particular, the `i(n)-th digit of x is located in Wi for i = 1, . . . , k. In
this way, we have the following concatenation

x = I1I2 . . . Ip−1U1W1U2W2 . . . Uι−1Wι−1Vι UιWι . . . UkWkUk+1Ip+2 . . . ,

for which we have
|I1I2 . . . Ip−1| = o(|Ip|) = o(n), |Ui| = `i(n)− `i−1(n) + o(n) for 1 ≤ i ≤ ι− 1 and

|Vι|+ |Uι| = `ι(n)− `ι−1(n), |Ui| = `i(n)− `i−1(n) + o(n) for ι+ 1 ≤ i ≤ k,

|Wi| = o(n) for 1 ≤ i ≤ k.

Similar to the case (C1), we can show that

ν(B(x, e−n/a1)) ≤ κkp(#A1)pNpk
(
ι−1∏
i=1

µp ◦ τ−1
i−1([τi−1Ui])

)
µp ◦ τ−1

ι−1([τι−1Vι])

·
k∏
j=ι

µp+1 ◦ τ−1
j−1([τj−1Uj ]).

Then by a similar discussion as in case (C1), we obtain the estimation (5.18). This finishes
the proof of (5.10). �

To end the proof of Theorem 5.3, we need to define an injective map conc : G → X1

such that conc(Gµ) ⊂ Gµ(X1, T1) and dimH conc(Gµ) = dimH Gµ. For this purpose,
assume that X1 satisfies s-specification for some integer s ≥ 1. Then there exists a map
θ : L(X1)× L(X1)→ Ls such that

Iθ(I, J)J ∈ L|I|+|J |+s, ∀ I, J ∈ L(X1).

For x ∈ G =
∏∞
j=1 L

N ′j
j , write x in the following concatenated form

x = W1,1W1,2 · · ·W1,N ′1
W2,1W2,2 · · ·W2,N ′2

· · ·Wp,1Wp,2 · · ·Wp,N ′p · · · ,

where Wi,j ∈ Li for i ≥ 1 and 1 ≤ j ≤ N ′i . Relabel the words Wi,j to get

x = W1W2W3 · · · .
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Then we define

conc(x) = W1θ1W2θ2W3θ3 · · · ,

where the sequence (θn) is defined inductively by θ1 = θ(W1,W2), θ2 = θ(W1θ1W2,W3),
and once θ1, . . . , θp−1 have been defined, then define θp = θ(W1θ1W2 . . . θp−1Wp,Wp+1).

Clearly, conc(x) ∈ X1, and the map conc : G → X1 is injective. Since |Wj | → ∞
as j → ∞, conc is almost Lipschitz, thus it preserves the Hausdorff dimension (i.e.,
dimH conc(E) = dimH E for any E ⊆ G). Furthermore, conc(Gµ) ⊂ Gµ(X1, T1). To see
this, it is enough to show that if lim 1

nSnϕ(x) = α, then lim 1
nSnϕ(conc(x)) = α. This can

be done in a way similar to the proof of Proposition 6 in [19]. Thus we finish the proof of
Theorem 5.3.

Remark 5.4. The specification property used in this paper can be weakened to cover a
wider class of systems. For instance, one can ask that there exists s ∈ N such that for all
I, J ∈ L := L(X1), one can find a word K in

⋃s
p=0 Lp such that IKJ ∈ L (this covers

transitive subshifts of finite type). A more general situation is that for all I, J ∈ L, one
can find a word K ∈ L such that IKJ ∈ L and |K| = o(min(|I|, |J |) as min(|I|, |J |) tends
to ∞ [39]. Alternatively, one can ask that for all I, J ∈ L, one can write I = Ĩ Î and
J = Ĵ J̃ so that Ĩ J̃ ∈ L and |Î|+ |Ĵ | = o(min(|I|, |J |) as min(|I|, |J |) tends to ∞ [39]. In
all these cases our approach can be used to obtain the same conclusion as in Theorem 5.3.
The only difference is that in these cases the mapping conc introduced in the end of the
proof of Theorem 5.3 may take a slightly different form, and it has no reason to be one to
one. However, this mapping naturally satisfies the property conc(Gµ) ⊂ Gµ(X1, T1), and
a (tedious, that we omit here) combinatoric argument shows that on the one hand, conc
is α-Hölder continuous for all α ∈ (0, 1), and on the other hand there exists a N-valued
function N (r) (r > 0) such that limr→0+ logN (r)/| log r| = 0 and for any open ball B of
radius r > 0 in conc(Gµ), conc−1(B) can be covered by at most N (r) balls of radius r.
Thus conc preserves the Hausdorff dimension.

5.3. Proof of Theorem 1.4. (1) We prove that the following assertions are equivalent:

(i) α ∈ LΦ;
(ii) E{Φ(j)},c(α) 6= ∅;

(iii) inf
{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
≥ 0;

(iv) inf
{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
> −∞;

For α ∈ LΦ let fΦ(α) = max{ha
µ(T1) : µ ∈ M(X1, T1), Φ∗(µ) = α}. Since the mapping

µ ∈ M(X1, T1) 7→ ha
µ(T1) is upper semi-continuous and affine, the equality fΦ(α) =

inf
{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
for α ∈ LΦ is obtained by exactly the same arguments

as those used to prove Theorem 5.2(iii) in [23]; one just replaces the usual entropy by the
a-weighted one. Similarly, the proof of the equivalence between (i), (iii) and (iv) follow
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the same lines as that of Theorem 5.2 (ii) in [23]. The equivalence of (ii) and the other
assertions will follow from the proof of Theorem 1.4(2) below.

(2) We only need to show

E{Φj},c(α) 6= ∅ and dimH E{Φj},c(α) ≥ fΦ(α) if α ∈ LΦ;(5.19)

dimH E{Φj},c(α) ≤ inf
{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
if E{Φj},c(α) 6= ∅,(5.20)

This yields the equivalence of (i) and (ii) above, as well as the value of dimH E{Φj},c(α).

Assertion (5.19) is an immediate consequence of Theorem 1.3 and the following lemma.

Lemma 5.5. Let α = (α1, . . . , αd) ∈ LΦ and µ ∈ M(X1, T1) such that
∫

Φ dµ = α. We
have Gµ(X1, T1) ⊂ E{Φj},c(α).

Proof of Lemma 5.5. Write each Φj as (ϕj,1, . . . , ϕj,d). By definition of Φ, we have αi =∑r
j=1

∫
ϕj,i dµ for each 1 ≤ i ≤ d. Moreover, by the definition of Gµ(X1, T1), we have

Gµ(X1, T1) ⊂ Eϕj,i(
∫
ϕj,i dµ) for each 1 ≤ j ≤ r and 1 ≤ i ≤ d, hence for each x ∈

Gµ(X1, T1) we have limn→∞
∑r

j=1

Sbcjncϕj,i(x)

bcjnc = αi for each 1 ≤ i ≤ d. This yields
Gµ(X1, T1) ⊂ E{Φj},c(α). �

Now we establish (5.20). We define the following sequence of functions

Φc,n = n
r∑
j=1

SbcjncΦj

bcjnc
.

We first treat the case where (X1, T1) is a full shift .

The upper bound in the full shift case. In this case we have the following lemma, which
yields (5.20).

Lemma 5.6. Assume that (X1, T1) is a full shift. Fix α ∈ Rd and suppose that E{Φj},c(α) 6=
∅. For every ε > 0 and q ∈ Rd, we have

dimH E{Φj},c(α, ε) ≤ P a(T1,q ·Φ)− α · q + (4|q|+ a1)ε,

where E{Φj},c(α, ε) = {x ∈ X1 : lim supn→∞ |Φc,n(x)/n − α| ≤ ε}. Consequently, if
E{Φj},c(α) 6= ∅, then dimH E{Φj},c(α) ≤ infq∈Rd P

a(T1,q ·Φ)− α · q, i.e., (5.20) holds.

Proof of Lemma 5.6. Fix ε > 0 and q ∈ Rd. For each 1 ≤ j ≤ r, choose a continuous
function Φ̃j = (ϕ̃j,1, . . . , ϕ̃j,d) in C(X1)d such that each ϕ̃j,d is Hölder continuous and

sup
1≤i≤d

‖ϕ̃j,d − ϕj,d‖∞ ≤ ε/r.

Then we define Φ̃ =
∑r

j=1 Φ̃j , and the sequence of functions

(5.21) Φ̃c,n = n
r∑
j=1

SbcjncΦ̃j

bcjnc
(n ≥ 1).
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Endow the space Rd with the norm |(z1, . . . , zd)| = max1≤i≤d |zi|. By construction we have
lim supn→∞ ‖Φ̃c,n −Φc,n‖∞/n ≤ ε so

E{Φj},c(α, ε) ⊂ E{Φ̃j},c(α, 2ε) =
{
x ∈ X1 : lim sup

n→∞
|Φ̃c,n(x)/n− α| ≤ 2ε

}
.

The definition of the a-weighted topological pressure implies

(5.22) |P a(T1,q · Φ̃)− P a(T1,q ·Φ)| ≤ |q|ε.

Let us denote by µq the unique a-weighted equilibrium state of q · Φ̃ (see Theorem 3.5).
The following key property holds.

Lemma 5.7. Let q ∈ Rd. For all x ∈ X1, we have lim supn→∞ fn(x)1/n ≥ 1, where

fn(x) =
µq(B(x, e−n/a1))

exp
(
(q · Φ̃c,n(x)− nP a(T1,q · Φ̃))/a1

) .
It is worth mentioning that the idea of considering the asymptotic behavior of such a

function fn at each point of X1 goes back to [35] for the upper bound estimate of dimH X1

when k = 2. The proof of Lemma 5.7 will be given later. To finish the proof of Lemma
5.6, we need the following classical lemma.

Lemma 5.8 ([8], Ch. 14). Let E be a non-empty subset of a compact metric space (Y, d)
endowed with an ultrametric distance. Let ν be a positive Borel measure on Y . Then

dimH E ≤ supx∈E lim inf
r→0+

log ν(B(x, r))
log r

.

Now, if x ∈ E{Φ̃j},c(α, 2ε) then, due to Lemma 5.7, for infinitely many n we have simul-

taneously fn(x) ≥ exp(−nε), and exp(q · Φ̃c,n(x)) ≥ exp(nα · q)− 3|q|εn. Consequently,

lim inf
n→∞

logµq(B(x, e−n/a1))
−n/a1

≤ P a(T1,q · Φ̃)− α · q + (3|q|+ a1)ε.

Now, Lemma 5.8 and (5.22) yield

dimH E{Φj},c(α, ε) ≤ dimH E{Φ̃j},c(α, 2ε) ≤ P a(T1,q · Φ̃)− α · q + (3|q|+ a1)ε

≤ P a(T1,q ·Φ)− α · q + (4|q|+ a1)ε.

Letting ε → 0, we obtain dimH E{Φj},c(α) ≤ P a(T1,q · Φ) − α · q. Since q ∈ Rd is
arbitrarily given, we have

dimH E{Φj},c(α) ≤ inf
q∈Rd

P a(T1,q ·Φ)− α · q.

This finishes the proof of Lemma 5.6. �

Before we prove Lemma 5.7, we give some auxiliary lemmas.
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Lemma 5.9 ([28], Lemma 4.1). Let m ≥ 1 be an integer. For 1 ≤ j ≤ m let fj : N→ R,
βj > 0 and λj > 0. If supn≥1 |fj(n+ 1)− fj(n)| <∞ for each j, then

lim sup
t→∞

1
t

m∑
j=1

(
βjfj

(⌊ t
λj

⌋)
− fj

(⌊βjt
λj

⌋))
≥ 0.

Proof of Lemma 5.7. Fix q ∈ Rd and x ∈ X1. By Lemma 5.2, we have

µq(B(x, e−n/a1)) ≈ exp
(−nP a(T1,q · Φ̃) + Sn(q · Φ̃)(x)

a1

) k−1∏
i=1

φ̃(i)(τi(x|`i+1(n)))1/Ai+1

φ̃(i)(τi(x|`i(n)))1/Ai

for certain functions φ̃(i) on A∗i (1 ≤ i ≤ k). Combining this with the definition of fn(x)
yields

(5.23) fn(x) ≈ exp

(
Sn(q · Φ̃)(x)− Φ̃c,n(x)

a1

)
k−1∏
i=1

φ̃(i)(τi(x|`i+1(n)))1/Ai+1

φ̃(i)(τi(x|`i(n)))1/Ai
.

Notice that Φ̃c,n has the following form (cf. (5.21)):

Φ̃c,n = Sn(q · Φ̃) +
r∑
j=1

(
nSbcjnc(q · Φ̃j)

bcjnc
− Sn(q · Φ̃j)

)
.

Now, for n ≥ 1, let us define{
u(j)(n) = a−1

1 SnΦ̃j(x) for 1 ≤ j ≤ r,
ũ(i)(n) = a−1

1 log φ̃(i)(τi(x|n)) for 1 ≤ i ≤ k − 1.

Since the potentials Φ̃ and Φ̃j are Hölder continuous, for any v ∈ {u(j), ũ(i) : 1 ≤ j ≤
r, 1 ≤ i ≤ k− 1} the sequence (v(n))n≥1 satisfies v(n+ 1)− v(n) = O(1). Then, by using
(5.23) we can get

log fn(x)
n

=
1
n

 r∑
j=1

(
u(j)(n)− 1

cj
u(j)(bcjnc)

)
+
k−1∑
i=1

( ũ(i)(bc̃i+1nc)
c̃i+1

− ũ(i)(bc̃inc)
c̃i

)
+O(1)

 ,

where c̃i := Ai/a1 for i = 1, . . . , k. Then, the fact that lim supn→∞
log fn(x)

n ≥ 0 comes
from Lemma 5.9. This finishes the proof of Lemma 5.7. �

The upper bound in the general case. We show that the upper bound for dimH E{Φj},c(α)
is valid without any assumption like specification on (X1, T1).

For each p ≥ 1, let Γp be the natural injection of (X1, da) into (LN
p , da/p). The map Γp

is easily seen to be a bi-Lipschitz map from X1 onto its image, so it preserves Hausdorff
dimension.

For each 1 ≤ j ≤ r, the Rd valued continuous potentials Φj can be extended to an Rd

valued continuous potentials Φ̂j defined on (AN
1 , da). By construction, for each α ∈ LΦ,
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we have Γp(E{Φj},c(α)) ⊂ E{SpΦ̂j/p},c
(α) so the above study applied to the full shift

(LN
p , T

p
1 , da/p) yields

dimH E{Φj},c(α) ≤ max
{
ha/p
µ (T p1 ) : µ ∈M(LN

p , T
p
1 ),

∫
SpΦ̂/p dµ = α

}
.

Let νp be one measure realizing the above maximum and extend it as an invariant measure
on (AN

1 , T
p
1 ) (notice that νp is supported by LN

p ). Then define on AN
1 the T1-invariant

measure µp = 1
p

∑p−1
j=0 νp ◦ T

−j
1 . By the affinity of ha/p

(·) (T p1 ) we have ha/p
µp (T p1 ) = h

a/p
νp (T p1 )

since all the measures νp ◦ T−j1 have the same a/p-weighted entropy with respect to T p1 .
Consequently, ha/p

νp (T p1 ) = h
a/p
µp (T p1 ) = ph

a/p
µp (T1) = ha

µp(T1). Finally, by construction,

(5.24) dimH E{Φj},c(α) ≤ ha
µp(T1) and

∫
Φ̂ dµp = α.

Now, without loss of generality we can suppose that µp converges to an element µ ∈
M(AN

1 , T1) in the weak-star topology. We have both ha
µ(T1) ≥ lim supp→∞ ha

µp(T1) and∫
Φ dµ = α. Assume that µ is supported onX1. Then by (5.24) we have dimH E{Φj},c(α) ≤

max
{
ha
µ(T1) : µ ∈M(X1, T1),

∫
Φ dµ = α

}
as desired. Now, the fact that µ is supported

on X1 follows from the same argument as that used in the proof of [28, Theorem 1.1] to
build an invariant measure of full Hausdorff dimension on X1.

(3) We will use a modification of the Moran construction achieved in the proof of Theo-
rem 5.3. To do so we need some preparation.

Let ν1 be an invariant measure onX1 such that ha
ν1

(T1) = dimH X1 (the existence of such
a measure was first proved in [28]; this fact is also a consequence of Theorem 1.4 applied to
the null potential). Fix ε > 0, and for each 1 ≤ i ≤ k let hi = hν1◦τ−1

i−1
(Ti)−ε/(a1+· · ·+ak).

By our assumption, LΦ is not a singleton. Let ν ∈ M(X1, T1) such that ν(Φ) 6= ν1(Φ).
Then take a large positive integer n so that

hν2◦τ−1
i−1

(Ti) ≥ hν1◦τ−1
i−1

(Ti)− ε/(a1 + · · ·+ ak), (1 ≤ i ≤ k)

where ν2 = (1− 1/n)ν1 + (1/n)ν. Note that δ = |ν2(Φ)− ν1(Φ)| > 0.

By Remark 4.4, for each l ∈ {1, 2} there exists a sequence (µl,p)∞p=1 of quasi Bernoulli
measures such that µp ∈M(LN

p , T
p
1 ) and

hµl,p◦τ−1
i−1

(T pi ) ≥ p(hνl◦τ−1
i−1

(Ti)− ε/(a1 + · · ·+ ak))− 1/(2p) = phi − 1/(2p)

for each 1 ≤ i ≤ k and for p ≥ 1.

For each 1 ≤ j ≤ r and 1 ≤ i ≤ d, take ϕ̃j,i ∈ C(AN
1 ) such that ϕ̃j,i is Hölder continuous

and ‖ϕ̃j,i − ϕj,i‖∞ ≤ δ/8r. Moreover, for each l ∈ {1, 2} the sequence (µl,p)∞p=1 can be
chosen so that |µl,p(ϕ̃j,i)− νl(ϕ̃j,i)| ≤ δ/8r.
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We are going to construct a sequence (N ′p)
∞
p=1 such that the set

D =
2⋂
l=1

x ∈ G =
∞∏
p=1

LN
′
p

p : lim inf
n→∞

|Φc,n(x)− nνl(Φ)|/n ≤ δ/4

 ,

which is a subset of AN
1 \
⋃
α∈LΦ

E{Φj},c(α), contains a Moran subset Gµ with dimH Gµ ≥
dimH X1 − 2ε. Then, by using the same imbedding conc as in the proof of Theorem 5.3,
we will get conc(Gµ) ⊂ X1 \

⋃
α∈LΦ

E{Φj},c(α) and dimH conc(Gµ) ≥ dimH X1 − ε.

Now we briefly explain how to modify the Moran construction done in the proof of
Theorem 5.3 to build G and Gµ. At first, without loss of generality, we suppose that the
cj ’s are greater than 1. Also, we include the potentials ϕ̃j,i in the family C̃. Then, the
only changes are that for each p ≥ 1, one takes µ2p−1 = ν1,p and µ2p = ν2,p. Then, for
p ≥ 1, let np =

∑p−1
i=1 iN

′
i +

√
pN ′p. For p large enough, for each 1 ≤ j ≤ r we have

bcjnpc ∈

[
p−1∑
i=1

iN ′i +
√
pN ′p,

p∑
i=1

iN ′i

]
,

so that for each x ∈ Gµ, 1 ≤ j ≤ r and 1 ≤ i ≤ d we have

lim sup
p→∞

|Sbcjn2p−1cϕ̃j,i(x)/bcjn2p−1c − ν1(ϕ̃j,i)| ≤ δ/8r

and
lim sup
p→∞

|Sbcjn2pcϕ̃j,i(x)/bcjn2pc − ν2(ϕ̃j,i)| ≤ δ/8r.

Consequently, by construction for each x ∈ Gµ, we have

lim sup
p→∞

|Φc,n2p−1(x)/n2p−1 − ν1(Φ)| ≤ δ/4 and lim
p→∞

|Φc,n2p(x)/n2p − ν2(Φ)| ≤ δ/4,

so Gµ ⊂ D. Moreover, the simultaneous controls from below of the entropies hνl,p◦τ−1
i−1

(T pi )
by the phi − 1/(2p) yield, for every x ∈ Gµ,

lim inf
n→∞

log ν(B(x, e−n/a1))
−n/a1

≥
k∑
i=1

aihi ≥ dimH X1 − ε.

�

Remark 5.10. Without assuming the specification property, for any µ ∈M(X1, T1), we
have dimP Gµ(X1, T1) ≤ ha

µ(T1), where dimP denotes the packing dimension (cf. [34]).
This is done by using a recent result of Reeves [41]. To see it, let (φn)∞n=1 be a family of
continuous functions on X1 which is dense in C(X1). For m ≥ 1, define Φm = (φ1, . . . , φm)
and

Em =
{
x ∈ X1 : lim

n→∞

1
n
SnΦm(x) =

(∫
φ1dµ, . . . ,

∫
φmdµ

)}
.

By Reeves’ result [41],

dimP Em ≤
k∑
i=1

sup
{
aihη◦π−1(Ti) :

∫
φjdη =

∫
φjdµ for 1 ≤ j ≤ m

}
.
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(Indeed, Reeves only proved the above result in the case k = 2 and m = 1 in the full shift
case with the equality rather that ≤; however, it can be extended to the above general
form without additional difficulty.) Since (φn)∞n=1 is dense in C(X1), by using the upper
semi-continuity of the entropy function, we obtain

lim sup
n→∞

dimP Em ≤
k∑
i=1

aihµ◦π−1(Ti) = ha
µ(T1).

Since Gµ(X1, T1) ⊆ Em for each m, we obtain the upper bound dimP Gµ(X1, T1) ≤ ha
µ(T1).

6. Multifractal analysis of asymptotically additive potentials and

application to weighted equilibrium states

For Φ = (Φ1, . . . ,Φd) ∈ Casa(X1, T1)d, where Φi = (log φn,i)∞n=1 =: (Φn,i)∞n=1, and
µ ∈ M(X1, T1), write Φ∗(µ) = ((Φ1)∗(µ), . . . , (Φd)∗(µ)) and define LΦ =

{
Φ∗(µ) : µ ∈

M(X1, T1)
}

.

Let {Φ(j)}1≤j≤r be a family of elements of Casa(X1, T1)d. Let c = (c1, . . . , cr) be a real
vector with positive entries. For α ∈ Rd, define

E{Φ(j)},c(α) =
{
x ∈ X1 : lim

n→∞

r∑
j=1

Φ(j)
bcjnc

bcjnc
(x) = α

}
.

Theorem 1.4 has the following easy extension, which is obtained thanks to the density of
continuous additive potentials in Casa(X1, T1)d. This extension is useful to get results on
the multifractal analysis of weighted equilibrium states.

Theorem 6.1. Let Φ =
∑r

j=1 Φ(j).

(1) For α ∈ Rd, E{Φ(j)},c(α) 6= ∅ if and only if α ∈ LΦ.
(2) For α ∈ LΦ, we have

dimH E{Φ(j)},c(α) = max
{
ha
µ(T1) : µ ∈M(X1, T1), Φ∗(µ) = α

}
= inf

{
P a(T1,q ·Φ)− α · q : q ∈ Rd

}
.

(3) Suppose that LΦ is not a singleton. Then the set X \
⋃
α∈LΦ

E{Φ(j)},c(α) is of full
Hausdorff dimension.

Example 6.2. Generally, the level sets E{Φ(j)},c(α) depend on c. For example, let X =
{0, 1}N, and let g ∈ C(X) be given by g(x) = x1 for x = (xi)∞i=1 ∈ X. Set Φ(1) = (Sng)∞n=1

and Φ(2) = (−Sng)∞n=1. Then E{Φ(j)}2j=1,(1,1)(0) = X, however E{Φ(j)}2j=1,(1,2)(0) 6= X (it is

easy to check that x = 01120418 · · · 022n
122n+1 · · · 6∈ E{Φ(j)}2j=1,(1,2)(0)).
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Application to the multifractal analysis of a-weighted Gibbs measures. In this
section we suppose that (X1, T1) is the full shift (AN

1 , T1).

Let Φ = (log φn)∞n=1 ∈ Caa(X1, T1) and suppose that Φ satisfies the bounded distortion
property. Let µ be the a-weighted Gibbs measure µ associated with Φ.

Due to the quasi-Bernoulli property of µ, for each 1 ≤ i ≤ k, the potential Ψ(i)
µ :=(

logµ ◦ τ−1
i−1(τi−1(x|n))

)∞
n=1

belongs to Caa(X1, T1).

We have the following result about the multifractal analysis of µ.

Theorem 6.3. For α ∈ R+ let

Eµ(α) =
{
x ∈ X1 : lim

r→0+

logµ(B(x, r))
log r

= α
}
.

Let Ψµ =
∑k

i=1 aiΨ
(i)
µ . Let Lµ = L−Ψµ = {−(Ψµ)∗(λ) : λ ∈ M(X1, T1)}. Then, for all

α ≥ 0, Eµ(α) 6= ∅ if and only if α ∈ Lµ. Moreover, for α ∈ Lµ we have

dimH Eµ(α) = max {ha
λ(T1) : λ ∈M(X1, T1), (Ψµ)∗(λ) = −α}

= inf {P a(T1, qΨµ) + αq : q ∈ R} .

Proof. This result is just a corollary of Theorem 6.1. Indeed, thanks to (5.1) we can write

logµ(B(x, e−n/a1))
−n/a1

= −a1
Ψ(1)
µ,n(x)
n

− a1

k∑
i=2

Ψ(i)
µ,`i(n)(x)

n
−

Ψ(i)
µ,`i−1(n)(x)

n
+O(1/n)

= −a1
Ψ(1)
µ,n(x)
n

− a1

k∑
i=2

biΨ
(i)
µ,bbinc(x)

bbinc
−
bi−1Ψ

(i)
µ,bbi−1nc(x)

bbi−1nc
+O(1/n),

with bi = (a1 + · · · + ai)/a1. Thus, any set Eµ(α) takes the form E{Φ(j)},c(α), with∑r
j=1 Φ(j) = −Ψµ. �

More geometric applications. A parallelepiped is a subset of X1 of the form

R(I1, . . . , Ik) =
k⋂
i=1

τ−1
i−1(Ii), with Ii ∈

⋃
n≥0

Ani .

If we fix 0 ≤ λ1 ≤ · · · ≤ λk and set

Rn(λ1, . . . , λk, x) = R
(
x|bλ1nc, . . . , τi−1(x|bλinc), · · · , τk−1(x|bλknc)

)
,

then

logµ(Rn(λ1, . . . , λk, x)) =
k∑
i=1

Ψ(i)
µ,bλinc(x)−Ψ(i)

µ,bλi−1nc(x) +O(1),

with the convention λ0 = 0. Consequently, Theorem 6.1 makes it also possible to compute
the Hausdorff dimension of the sets

M⋂
m=1

{
x ∈ X1 : lim

n→∞

logµ
(
Rn(λ(m)

1 , . . . , λ
(m)
k , x))

−n
= βm

}
,
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Table 1. Main notation and conventions

Φ = (log φn)∞n=1 (Asymptotically sub-additive) potential (Section 1)
M(X,T ) Set of T -invariant Borel probability measures on X
hµ(T ) Measure-theoretic entropy of T with respect to µ (Section 1)
Φ∗(µ) limn→∞

1
n

∫
log φn(x) dµ(x).

P (T,Φ,K) (cf. (2.2))
P (T,Φ) Topological pressure of Φ (Section 2.2)
ha
µ(T1) a-weighted measure-theoretic entropy of T1 with respect to µ (Section 1)
P a(T1,Φ) a-weighted topological pressure of Φ (Section 1)
Cs(X,T ) Collection of sub-additive potentials on X (Section 1)
Cass(X,T ) Collection of asymptotically sub-additive potentials on X (Section 1)
Casa(X,T ) Collection of asymptotically additive potentials on X (Section 1)
Caa(X,T ) Collection of almost additive potentials on X (Section 1)
C(X) Collection of real continuous functions on X
Gµ(X,T ) Set of generic points of µ ∈M(X,T ) (cf. (1.3))
Φ = (Φ1, . . . ,Φd) A family of asymptotically sub-additive potentials
Φ∗(µ) ((Φ1)∗(µ), . . . , (Φk)∗(µ))
LΦ {Φ∗(µ) : µ ∈M(X1, T1)}
λΦ(x) Lyapunov exponent of Φ at x (Section 2.2)
E{Φj}rj=1,c

(α) non-homogeneous α-level set of {Φj}rj=1 (cf. Section 1)

an ≈ bn (1/c)bn ≤ an ≤ cbn for a constant c > 0
an ≈n bn (1/κn)bn ≤ an ≤ κnbn for a sequence of positive numbers (κn) with

limn→∞(1/n) log κn = 0
Φa (cf. (3.4))
da “self-affine” metric (cf. (1.1)).

where β ∈ RM
+ and each (λ(m)

i )1≤i≤m satisfies 0 ≤ λ(m)
1 ≤ · · · ≤ λ(m)

k .

Remark 6.4. Let Φ ∈ Casa(X1, T1). We say that a fully supported Borel probability
measure µ (not necessarily to be shift invariant) on X1 is an a-weighted weak Gibbs measure
associated with Φ if

µ(I) ≈n exp
(−nP
Ak

)
φa
n(I), I ∈ An,

where P = P a(T1,Φ), Ak = a1 + · · · + ak, Φa = (log φa
n) ∈ Casa(X1, T1) is defined as

in (3.4), and ≈n means that there exists a sequence of positive numbers (κn)∞n=1 with
limn→∞(1/n) log κn = 0, such that the ratio between the left and right hand sides of ≈n
lies in (κ−1

n , κn).

This notion reduces back to classical weak Gibbs measures when a = (1, 0 . . . , 0) and Φ
is the sequence of Birkhoff sums associated with a continuous potential over X1 [48, 29].
It turns out that such a measure always exists for each Φ ∈ Casa(X1, T1), and Theorem 6.3
can be extended to weak a-weighted equilibrium states (for details, see an earlier version
[1] of this paper).

Appendix A. Main notation and conventions

For the reader’s convenience, we summarize in Table 1 the main notation and typo-
graphical conventions used in this paper.
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