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Abstract. A refinable spline is a compactly supported refinable function that is piece-
wise polynomial. Refinable splines, such as the well known B-splines, play a key role in
computer aided geometric designs. Refinable splines have been studied in several papers,
most noticably in [7] for integer dilations and [3] for real dilations. There are general
characterizations in these papers, but these characterizations are not explicit enough to
tell us the structures of refinable splines. In this paper, we give complete characterization
of the structure of refinable splines.

1. Introduction

A compactly supported real function f(x) on R with supp (f) = [a, b] is called a spline

if there exist a = x0 < x1 < · · · < xL = b and polynomials Pj(x) such that f(x) = Pj(x)

on [xj−1, xj) for 1 ≤ j ≤ L. In other words, a spline is a compactly supported piecewise

polynomial function. Notice that we do not assume a spline is continuous. The points {xj}
are called the knots of the spline, and max {deg(Pj)} is called the degree of the spline.

Splines can have diverse properties. Among the most useful ones are those that are

also refinable. A compactly supported function f(x) is refinable if it satisfies a refinement

equation

(1.1) f(x) =
∑
k∈Z

ckf(λx− k),
∑
k∈Z

ck = |λ|,

where all ck ∈ R with only finitely many ck 6= 0, and λ is real with |λ| > 1 We call λ the

dilation factor or simply the dilation for the refinable function f(x). It should be pointed

out that λ is not necessarily an integer, since there are refinable splines with non-integer

dilations, see Dai, Feng and Wang [3]. It is also possible to allow non-integer translations,

but we shall not discuss it here.
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This paper studies the structure of refinable splines. Refinable functions and splines

are among the most important functions, used extensively in applications such as numerical

solutions to differential and integral equations, digital signal processing, image compression,

and many others. Refinable functions form the foundation for the theory of compactly

supported wavelets and the theory of subdivision schemes. There is a vast literature on

both subjects. We refer the readers to Daubechies [5] and Cavaretta, Dahmen and Micchelli

[1] as well as other sources for more details. Refinable splines such as the B-splines are the

cornerstones in computer aided geometric designs. We aim to characterize the structure of

compactly supported refinable splines in this paper.

Note that any translate of a refinable function is still refinable. Suppose that f(x) satisfies

(1.1) then g(x) = f(x− b
λ−1) satisfies the refinement equation

g(x) =
n∑

j=0

cjg(λx− dj + b),

which has the same dilation but a new translation set {dj − b}.

Definition 1.1. A normalized refinement equation in R is a refinement equation having

the form

(1.2) f(x) =
n∑

k=0

ckf(λx− k),
n∑

k=0

ck = |λ|,

where c0 6= 0. In this case we say f(x) is normalized λ-refinable.

Thus every refinable function can be translated to satisfy a normalized refinement equa-

tion. We shall, without loss of generality, state our classification results for normalized

refinable splines, since the statements are often more concise.

The simplest refinable spline is the Haar function B0(x) = χ[0,1)(x), which satisfies the

refinement equation f(x) = f(2x) + f(2x − 1). In fact B0 is m-refinable for any integer

m > 1, as

B0(x) =
m−1∑
j=0

B0(mx− j).

It is easily checked that the convolution of λ-refinable functions (resp. spline) remains a

λ-refinable function (resp. spline). Thus Bk := B0 ∗B0 ∗ · · · ∗B0 where B0 convolves with

itself k times is also an m-refinable spline. The spline Bk is known as the B-spline of degree
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k, which has knots at 0, 1, · · · , k + 1 and is k − 1 times differentiable. In the case m = 2,

Bk satisfies

Bk(x) =
1
2k

k+1∑
j=0

(
k + 1

j

)
Bk(2x− j).

The following theorem lists several ways for characterizing (normalized) refinable splines.

Theorem 1.1. Let f(x) be normalized λ-refinable with λ ∈ Z, λ > 1. Then the following

are equivalent:

(A) f(x) is a spline of degree d ≥ 0.

(B) There exists a trigonometric polynomial G(ξ) such that f̂(ξ) = ξ−d−1G(ξ).

(C) f(x) =
∑N

k=0 pkBd(x− k) for some N ≥ 0, and {pk} ⊂ R such that the polynomial

q(z) = (
∑N

k=0 pkz
k)(z − 1)d+1 satisfies q(z)|q(zλ).

Theorem 1.1 is a combination of results in [7] and [3]. Although it is a nice general

characterization, it falls short of giving a complete classification of the structure of refinable

splines. The purpose of this paper is to complete the classification of refinable splines.

A refinable spline may have a non-integer dilation factor. However, the following theorem

proved in Dai, Feng and Wang [3] states that a complete classfication of refinable splines

with integer dilations are all we need to do.

Theorem 1.2 ([3]). Suppose that f(x) is a compactly supported spline satisfying the refin-

able equation (1.1), where λ ∈ R. Then f(x) is symmetric and d − 1 times continuously

differentiable. Furthermore,

(A) There exists an integer k > 0 such that λk ∈ Z.

(B) Let K be the smallest positive integer such that λK ∈ Z. Then the compactly sup-

ported distribution solution φ(x) to the refinement equation

(1.3) φ(x) =
∑
k∈Z

ckφ(λx− k)

is a spline.

(C) There exists a constant α such that the spline f(x) has

(1.4) f(x) = αφ(x) ∗ φ(λ−1x) ∗ · · · ∗ φ(λ−(K−1)x).

φ is the spline given in (1.4).
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Conversely, if the refinement equation (1.1) satisfies (A) and (B) then the compactly sup-

ported distribution solution is a spline given by (1.4).

With Theorem 1.2 we shall focus entirely on refinable splines with integer dilation factors

in the rest of the paper.

So far all the examples of refinable splines we have seen have rational coefficients in the

corresponding refinement equations. But in fact it does not have to be the case. In §2 we

state our classfication results for both rational and general refinable splines. The results

will then be proved in §3.

2. Complete Classification of Refinable Splines in R

We first introduce some notations. Associated to the refinement equation (1.1) is a

(Laurent) polynomial h(z) := 1
|λ|

∑
k∈Z ckz

k with h(1) = 1. We shall call h(z) the mask

polynomial of the refinement equation (1.1). For normalized refinement equations h(z) is

a polynomial with nonzero constant term. In most studies on refinement equations the

trigonometric polynomial H(ξ) := h(e−2πiξ) is used instead, and H(ξ) is called the mask

of the refinement equation. It is more convenient in this paper to work with the mask

polynomial h(z). A refinable spline is rational if it satisfies a rational refinement equation,

i.e. all coefficients are rational.

There are two ways we can classify all normalized λ-refinable splines (with λ ∈ Z): By

classifying all mask polynomials h(z) that lead to refinable splines, or by classifying all

polynomials q(z) = (z − 1)d+1
∑

n pnzn in part (C) of Theorem 1.1, which leads to the

structure of the splines f(x) =
∑

n pnBd(x− n). Depending on the situation, one might be

more elegant than the other.

Also throughout this paper we let Z+ denote the set of all positive integers. For any

integer m ∈ Z+ let Φm(z) denote the cyclotomic polynomial of order m, i.e. the monic

polynomial whose roots comprise of primitive m-th roots of unity. We note that Φ1(z) =

z−1 and if m is a prime then Φm(z) = zm−1+zm−2+ · · ·+z+1 with Φmα(z) = Φm(zmα−1
).

It is well known (see e.g. [2]) that Φm(0) = 1 for all m > 1, Φm(1) = 1 if m > 1 is not a

prime power, and Φm(1) = p if m = pα for some prime p and α > 0.

Theorem 2.1. Let λ be a prime. Then the following are equivalent:
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(a) f(x) is a normalized rational λ-refinable spline of degree d.

(b) f(x) satisfies a λ-refinement equation whose mask polynomial is

(2.1) h(z) = λ−d−1
m∏

k=1

Φbk
(z),

where λ|bk for all k and d + 1 = |{k : bk = λl for some positive interger l}|.
(c) f(x) =

∑N
n=0 pnBd(x− n) with p0 6= 0, for which

(2.2) q(z) = (z − 1)d+1
(∑

n≥0

pnzn
)

= p0

m∏
k=1

αk−1∏
j=0

Φλjak
(z)

for some ak, αk ∈ Z+ such that gcd(λ, ak) = 1 for all k and d + 1 = |{k : ak = 1}|.

When λ > 0 is not a prime the characterization is more complex, especially for the mask

polynomial h(z). Let m,n ∈ Z+. Assume that m,n have prime factorizations m =
∏

p pαp

and n =
∏

p pβp , where p runs through all primes and αp, βp ≥ 0. We define

〈m/n〉 :=
∏
p

pγp , where γp = max{αp − βp, 0}.

Theorem 2.2. Let λ > 1 be an integer. Then the following are equivalent:

(a) f(x) is a normalized rational λ-refinable spline of degree d.

(b) f(x) =
∑N

n=0 pnBd(x− n) with p0 6= 0, for which

(2.3) q(z) := (z − 1)d+1
N∑

n=0

pnzn = p0

m∏
k=1

Φαk
bk

(z).

where bk, αk ∈ Z+, b1 = 1, α1 = d + 1, and bk’s are distinct. Furthermore, for any

k there exists some j such that bj = 〈bk/λ〉 with the property that αj ≥ αk.

Under the hypothesis of (b), f(x) satisifies the λ-refinement equation with mask polynomial

h(z) = λ−d−1q(zλ)/q(z).

When the rationality assumption is dropped we can still characterize all refinable splines.

Theorem 2.3. Let λ > 1 be an integer. Then the following are equivalent:

(a) f(x) is a normalized λ-refinable spline of degree d.

(b) f(x) =
∑N

n=0 pnBd(x− n) with p0 6= 0,
∑N

n=0 pn 6= 0, such that all roots of q1(z) =∑N
n=0 pnzn are roots of unity. Furthermore, if ω is a root of q1(z) with multiplicity
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α then either ωλ = 1 with α ≤ d + 1, or ωλ is also a root of q1(z) with multiplicity

at least α.

Under the hypothesis of (b), f(x) satisifies the λ-refinement equation with mask polynomial

h(z) = λ−d−1q(zλ)/q(z), where q(z) = (z − 1)d+1q1(z).

Theorem 2.3 allows us to easily find λ-refinable splines f(x) =
∑N

n=0 pnBd(x − n) by

constructing the roots of
∑N

n=0 pnzn. In §3 we show an example of a refinable spline that

is not rational. Another application of this theorem is to study functions functions that

are λ-refinable for more than one dilations λ. As mentioned in the introduction, the box

spline Bd(x) is λ-refinable with respect to any integer dilation. Are there other such refianble

functions? Similar questions have been asked in Sun and Zhang [8]. We answer this question

here:

Theorem 2.4. A function f(x) is normalized λ-refinable for all λ ∈ Z+, λ > 1, if and only

if there exist N0, N2, . . . , Nd ∈ Z+ such that f(x) = cχ[0,N0) ∗ χ[0,N1) ∗ · · · ∗ χ[0,Nd) where

c ∈ R, c 6= 0.

Finally, one may have noticed that so far we have assumed that λ > 0. What if λ < 0?

This is not an obstacle at all, due to the fact that a refinable spline is symmetric. If f(x)

is a λ-refinable spline then it is also a (−λ)-refinable spline. In fact, we have the following

result:

Proposition 2.5. Assume that f(x) is a refinable spline satisfying the refinement equation

f(x) =
∑

k∈Z ckf(λx − k) with
∑

k∈Z ck = |λ|. Then for some a ∈ R, g(x) = f(x − a)

satisfies the refinement equation g(x) =
∑

k∈Z ckg(−λx− k).

3. Proof of Theorems

Lemma 3.1. Let f(x) =
∑N

n=0 pnBd(x− n), p0 6= 0 and q(z) = (z − 1)d+1
∑N

n=0 pnzn. Let

λ ∈ Z, λ > 1. Assume that f(x) is λ-refinable with mask polynomial h(z). Then

(a) q(zλ) = λd+1h(z)q(z) and
∑N

n=0 pn 6= 0.

(b) All roots of h(z) and q(z) are roots of unity.

(c) If h(z) ∈ Q[z] then λd+1h(z) and p−1
0 q(z) are monic polynomials in Z[z].
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Conversely, if q(z)|q(zλ) and
∑N

n=0 pn 6= 0 then f(x) is a normalized λ-refinable spline of

degree d whose mask polynomial is h(z) = λ−d−1q(zλ)/q(z).

Proof. Assume that f(x) is λ-refinable with . By (B) of Theorem 1.1 we have f̂(ξ) =

ξ−d−1G(ξ) for some trigonometic polynomial G(ξ). It follows from f̂(λξ) = H(ξ)f̂(ξ) where

H(ξ) := h(e(−ξ)), e(t) := e2πit), that G(λξ) = λd + 1H(ξ)G(ξ). Part (a) of the theorem

now follows from q(e(−ξ)) = (−2πi)d+1G(ξ).

Assume that q(ω) = 0. It follow from (a) that q(ωλ) = 0. This process yields roots

{ωλk}k≥0 for q(z). But q(z) has only finitely many roots so that ωλk
= ωλl

for some k > l.

Hence ω is a root of unity since q(0) 6= 0. Now h(z) = λ−d−1q(zλ)/q(z), and thus all its

roots are roots of unity as well.

We now prove (c). Without loss of generality we assume that p0 = 1. So we need to

prove that q(z) ∈ Z[z] and it is monic. Write q(z) = a0 + a1z + · · · + amzm. Clearly

a0 = ±1 ∈ Q. Suppose that ak is irrational and aj ∈ Q for j < k. The coefficient of

the term zk for λd+1h(z)q(z) is
∑k

j=0 λd+1hjak−j , which is irrational since h0 6= 0. But

the first irrational coefficient in q(zλ) is of the term zλk. This is a contradiction. Hence

q(z) ∈ Q[z]. Now all roots of q(z) are roots of unity, which means q(z) = cq1(z) where q1(z)

is a product of cyclotomic polynomials, and q1(z) ∈ Z[z] is monic. Note that q(0) = (−1)d+1

and q1(0) = ±1. Hence c = ±1, and q(z) ∈ Z[z]. But notice that by the symmetry of

refinable splines pN = p0 = 1. It follows that q(z) = (z − 1)d+1
∑N

n=0 pnzn is monic. Also,

λd+1h(z) = q(zλ)/q(z). So λd+1h(z) ∈ Z[z] and it is monic.

Conversely, suppose that q(z)|q(zλ) and
∑N

n=0 pn 6= 0. We note that

B̂d(ξ) = (−2πi)−d−1ξ−d−1(e(−ξ)− 1)d+1.

Again, observe that f̂(ξ) = (−2πi)−d−1ξ−d−1q(e(−ξ)), which yields f̂(λξ) = H(ξ)f̂(ξ)

where H(ξ) = λ−d−1q(e(−λξ))/q(e(−ξ)). Since q(z)|q(zλ), H(ξ) is a trigonometric polyno-

mial. Furthermore, write q(z) = (z − 1)d+1q1(z). q1(z) 6= 0 by the hypothesis. So

H(0) = lim
z→1

λ−d−1q(zλ)
q(z)

= lim
z→1

λ−d−1(zλ − 1)
z − 1

= 1.

Therefore f(x) is λ-refinable. Furthermore the mask polynomial is h(z) = λ−d−1q(zλ)/q(z) ∈
R[x], and h(0) = λ−d−1q(0)/q(0) = λ−d−1 6= 0. So f(x) is normalized.

Lemma 3.2. Let s, λ be positive integers.
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(a) Suppose that gcd(λ, s) = 1. Then Φs(zλ) =
∏

d|λ Φds(z).

(b) Suppose that every prime factor of λ is also a prime factor of s. Then Φs(zλ) =

Φλs(z).

(c) Let λ = λ1λ2 where gcd(λ2, s) = 1 and every prime factor of λ1 is also a prime

factor of s. Then Φs(zλ) =
∏

d|λ2
Φdλ1s(z).

Proof. These are all well known results. We give a quick proof here for self-containment.

For (a), assume that gcd(λ, s) = 1. It is clear that any root of Φds(z) is also a root of

Φs(zλ). So
∏

d|λ Φds(z) is a factor of Φs(zλ). On the other hand, the degree of
∏

d|λ Φds(z)

is ∑
d|λ

φ(ds) =
∑
d|λ

φ(d)φ(s) = λφ(s),

which is the degree of Φs(zλ), where φ(.) is the Euler’s function. Both polynomials are

monic, so they must equal. This proves (a).

For (b), it is clear that Φλs(z)|Φs(zλ). The degree of Φλs(z) is φ(λs). Let s =
∏m

j=1 p
αj

j

be the prime factorization of s. By the hypothesis, λ =
∏m

j=1 p
βj

j where βj ≥ 0 (but may

be 0). The degree of Φs(zλ) is

λφ(s) = λs
m∏

j=1

(1− p−1
j ) = φ(λs).

This proves (b).

Finally, (c) is a straightforward combination of (a) and (b).

Lemma 3.3. Let λ be a positive integer and q(z) =
∏m

k=1 Φαk
bk

(z) where αk > 0 and all

bk’s are distinct. Then q(z)|q(zλ) if and only if for any k there exists a j = j(k) such that

αj ≥ αk and 〈bk/λ〉 = bj.

Proof. Observe that all Φbk
(z) are pairwise coprime because all bk’s are distinct. Hence all

Φbk
(zλ) are pairwise coprime.

We first prove the “if” part. To prove q(z)|q(zλ) we only need to prove Φαk
bk

(z)|q(zλ) for

each k. By the hypothesis there exists a j such that 〈bk/λ〉 = bj and αj ≥ αk. Thus it suffices

to prove that Φbk
(z)|Φbj

(zλ). Note that λ
bk

= c
bj

for some c coprime to bj by bj = 〈bk/λ〉.
Furthermore, all prime factors of bj are prime factors of bk. Now let ω be a root of Φbk

(z),
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ω = e( a
bk

) for some a coprime to bk, where e(t) := e2πit. Then ωλ = e(ac
bj

). But a is coprime

to bj also, so ωλ is a primitive bj-th root of unity. It follows that Φbk
(z)|Φbj

(zλ).

Next we prove the “only if” part. Since q(z)|q(zλ) we have Φαk
bk

(z)|q(zλ) for each k. Thus

there exists a j = j(k) such that Φαk
bk

(z)|Φαj

bj
(zλ). Since Φbj

(zλ) has no multiple roots,

αj ≥ αk. Furthermore, Φbk
(z)|Φbj

(zλ). We now prove bj = 〈bk/λ〉. Let a = 〈bk/λ〉. We

have already shown in the previous part that Φbk
(z)|Φa(zλ). Assume that a 6= bj . Then

Φa(zλ) and Φbj
(zλ) are coprime, as stated in the beginning of the proof. Hence we cannot

have Φbk
(z)|Φbj

(zλ), a contradiction. Thus bj = a = 〈bk/λ〉.

Proof of Theorem 2.2. (b) ⇒ (a). Clearly f(x) is a spline of degree d. Note that∑N
n=0 pnzn = p0

∏m
k=2 Φbk

(z). Hence
∑N

n=0 pn = p0
∏m

k=2 Φbk
(1) 6= 0. It follows from

Lemma 3.1 that f(x) is normalized λ-refinable, since q(z)|q(zλ). Clearly h(z) = λ−d−1q(zλ)/q(z) ∈
Q[z].

(a) ⇒ (b). By Theorem 1.1 f(x) =
∑N

n=0 pnBd(x−n), and q(z) := (z−1)d+1
(∑N

n=0 pnzn
)

satisfies q(z)|q(zλ). It follows from Lemma 3.1 and Lemma 3.3 that q(z) = p0
∏m

k=1 Φαk
bk

(z)

where αk > 0 and all bk’s are distinct, and for any k there exists a j = j(k) such that

αj ≥ αk and 〈bk/λ〉 = bj . Because Φd+1
1 (z) = (z − 1)d+1 is a factor of q(z) we may without

loss of generality assume that b1 = 1, so α1 ≥ d + 1. Now by Lemma 3.1(a)
∑N

n=0 pn 6= 0,

so z − 1 is not a factor of
∑N

n=0 pnzn. It follows that α1 = d + 1, proving (a) ⇒ (b).

Proof of Theorem 2.1. For any a, α > 0 we denote

Ψa,α(z) =
α−1∏
j=0

Φλja(z).

(Technically Ψa,α also depends on λ, but we omit λ for conciseness.) If gcd(λ, a) = 1 then

by Lemma 3.2,

Ψa,α(zλ) =
α∏

j=0

Φλja(z) = Ψa,α+1(z),

and Ψa,α(zλ)/Ψa,α(z) = Φλαa(z). Furthermore if a 6= b are coprime to λ then λja 6= λkb.

Thus Ψa,α and Ψb,β are coprime.

(c) ⇒ (a). Observe that q(z) = p0
∏m

k=1 Ψak,αk
(z). Hence q(z)|q(zλ). Furthermore,

the multiplicity of the factor z − 1 in q(z) is precisely d + 1 = |{k : ak = 1}|. Hence
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n=0 pn 6= 0. It follows that f(x) is a normalized λ-refinable spline of degree d. Since

h(z) = λ−d−1q(zλ)/q(z) ∈ Q[z], it is also rational.

(a) ⇒ (c). We prove it directly rather than using Theorem 2.2. By Lemma 3.1 f(x) =∑N
n=0 pnBd(x − n) with p0 6= 0,

∑N
n=0 p0 6= 0 and q(z) := (z − 1)d+1

∑N
n=0 pnzn satisfying

q(z)|q(zλ). This part of the theorem clearly follows from the following claim:

Claim: Let g(z) ∈ Z[z] be monic with g(0) 6= 0. If g(z)|g(zλ) then g(z) can be expressed

as a product of polynomials of the form Ψa,α(z) where gcd(a, λ) = 1 and α > 0. We recall

that here λ > 1 is a prime.

We prove the claim by induction. If deg g = 1, then g(z) = z − 1 = Ψ1,1. Assume that

the claim is true if deg g < L, we prove it is also true if deg g = L. The proof of Lemma 3.1

shows that all roots of g(z) are roots of unity, and hence g(z) =
∏K

j=1 Φβj
cj (z) where cj ’s are

distinct and βj > 0. If all cj ’s are coprime to λ then Φcj (z) = Ψcj ,1(z), and we are done.

Otherwise, without loss of generality we assume that c1 = λra with r > 0 being the largest

exponent of λ in all cj ’s, gcd(a, λ) = 1. By Lemma 3.3, Φc1(z
λ) = Φλc1(z) = Φλr+1a(z).

But g(z)|g(zλ), so the factor Φc1(z) in g(z) must be cancelled out by a factor of Φc1(z) in

g(zλ). Thus there exists a j such that Φc1(z)|Φcj (z
λ), yielding cj = c1/λ = λr−1a. This

argument continues to show that a, λa, . . . , λra are all among {cj}. Thus Ψa,r+1(z)|g(z).

Set g1(z) = g(z)/Ψa,r+1(z). Now deg g1 < L. Additionally,

g(zλ)
g(z)

=
g1(zλ)Ψa,r+1(zλ)
g1(z)Ψa,r+1(z)

=
g1(zλ)Φλr+1a(z)

g1(z)
.

But Φλr+1a(z) is not a factor of g1(z) because we have assumed that r is the largest exponent

of λ in all cj . Hence g1(z)|g1(zλ). The induction hypothesis now applies to prove the claim.

(c) ⇒ (b). This follows directly from the fact that

h(z) = λ−d−1q(zλ)/q(z) = h(z) = λ−d−1
m∏

k=1

Φλαk (z).

(b) ⇒ (c). Write bk = λαkak where gcd(λ, ak) = 1. Let q(z) be given by (2.2) with p0 6= 0,

and f(x) ==
∑N

n=0 pnBd(x−n). Then f(x) is normalized λ-refinable with mask polynomial

h(z) = λ−d−1q(zλ)/q(z) = h(z) = λ−d−1
m∏

k=1

Φλαk (z).

The proof is now complete following the uniqueness of the solution to a refinement equation.
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Proof of Theorem 2.3. (b) ⇒ (a). By Lemma 3.1 it suffices to prove that q(z) =

(z − 1)d+1q1(z) satisfies q(z)|q(zλ). To do so we prove that if ω is a root of q(z) with

multiplicity α then ω is also a root of q(zλ) with multiplicity at least α, which is to say

that ωλ is a root of q(z) with multiplicity at least α. If ω = 1 this is clearly true, so we

assume that ω 6= 1. It follows that ω is a root of q1(z). The hypothesis of (b) on q1(z) now

implies that ωλ is a root of q(z) with multiplicity at least α. Hence q(z)|q(zλ). So f(x) is

normalized λ-refinable, with mask polynomial h(z) = λ−d−1q(zλ)/q(z).

(a) ⇒ (b). By Lemma 3.1, f(x) =
∑N

n=0 pnBd(x − n) with p0 6= 0,
∑N

n=0 p0 6= 0 and

q(z) := (z − 1)d+1
∑N

n=0 pnzn satisfying q(z)|q(zλ). All roots of q(z) are roots of unity, and

hence so are those of q1(z). Finally, the proof for (b) ⇒ (a) clearly can be reversed, which

establishes the properties for q1(z).

Example 3.1. With Theorem 2.3 it is rather easy to construct refinable splines that are

irrational. Here is a simple example. Let λ = 2. Let ω = 1√
2

+ 1√
2
i be the primitive 8-th

root of unity. Let f(x) =
∑

n≥0 pnB1(x− n) with

q(z) = (z − 1)2
∑
n≥0

pnzn = (z − 1)2(z − ω)(z − ω)(z − i)(z + i)(z + 1).

Then q(z) satisfies q(z)|q(z2) by Theorem 2.3, which can also be checked directly. The

spline f(x) is given by

f(x) = B1(x) + (1−
√

2)B1(x− 1) + (2−
√

2)B1(x− 2) +

(2−
√

2)B1(x− 3) + (1−
√

2)B1(x− 4) + B1(x− 5),

and the mask polynomial for f(x) is

h(z) =
q(z2)
4q(z)

=
1
4
(z + 1)(z2 +

√
2z + 1)(z4 −

√
2z2 + 1).

Proof of Theorem 2.4. Observe that χ[0,Nj)(x) is normalized λ-refinable for all integer

λ > 1, hence so is their convolution. Thus f(x) is λ-refinable for all λ > 1.

Conversely, let f(x) be normalized λ-refinable for all λ > 1. It was shown in [8] that

f(x) must be a spline. Thus f(x) =
∑N

n=0 pnBd(x− n) where d is the degree of the spline

with p0 6= 0 and
∑

n pn 6= 0. Furthermore, q(z) = (z − 1)d+1
∑

n pnzn has q(z)|q(zλ) for

all λ ∈ Z+. Denote Fm(z) = zm − 1. Clearly, F (z)|Fm(zλ) for all λ ∈ Z+. We prove the

following claim:
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Claim: Let g(z) ∈ Z[z] be monic and g(0) 6= 0. Suppose that g(z)|g(zλ) for all λ ∈ Z+.

Then there exist m0,m1, . . . ,ms such that g(z) = Fm0(z)Fm1(z) · · ·Fms(z).

We prove the claim by induction on deg g. If deg g = 1 the claim is clearly true. Assume

the claim holds for deg g < L. Now let deg g = L. By the previous results we know that all

roots of g are roots of unity. Let ω be a root of g(z) which is an m0-th root of unity, and

assume further that no m-th root of unity is a root of g(z) for all m > m0. By the proof of

Theorem 2.3, ωλ is also a root of g(z) for all λ ∈ Z+. By taking λ to be 1, 2, . . . ,m0 it follows

that all m0-th root of unity are roots of g(z). Hence Fm0(z)|g(z). Write g(z) = Fm0(z)g1(z).

We have for any λ > 1

g(zλ)
g(z)

=
zλm0 − 1
zm0 − 1

· g1(zλ)
g1(z)

.

Observe that each root of zλm0−1
zm0−1 is some k-th root of unity with k > m0. Hence zλm0−1

zm0−1

is coprime to g1(z). Thus g1(z)|g1(zλ). Since deg g1 < L, the induction hypothesis now

applies to prove the claim.

The theorem follows readily from the claim: There exist Nj ∈ Z+, j = 0, 1, . . . , s such

that q(z) =
∏s

j=0 FNj (z), and s = d because the multiplicity of the factor z − 1 in q(z) is

exactly d + 1.
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