
MATH3230A Numerical Analysis

Tutorial 6 with solution

1 Recall:
1. Broyden’s Method:

(a) • Scant Condition: Ak(xk − xk−1) = F (xk)− F (xk−1).
• Rank one update of A : B = A+ uvT .

• Sherman-Morrison formula: B−1 = A−1 − [A−1(u⊗v)A−1]
v·A−1u

(b) With extra condition on mimicking behavior of the true Jacobian along the the line joining xk−1 and xk,
the following ’bad’ Broyden’s method is derived:
Select x0 and A0. For k = 0, 1, 2, · · · , do the following

• Compute dk using dk = −A−1
k F (xk)

• Update xk+1 by xk+1 = xk + dk

• Update uk = A−1
k F (xk+1), ck = dT

k dk + dk · uk.
• Update A−1

k+1 = A−1
k − 1

ck
(uk ⊗ uk)

One order of computaional expense is saved compared with Newton’s Method.

(c) Convergence of Broyden’s method:
For the ’good’ Broyden’s method, if

i. F (x) is differentiable, Jacobian DF (x) is Lipschitz continuous with constant γ on a convex open set
D ⊂ Rn.

ii. x∗ satisfies F (x∗) = 0 and DF (x∗) is invertible.
iii. ||x0 − x∗|| < 󰂃 and ||A0 −DF (x∗|| < δ for some constants 󰂃, δ.

Then ||xk+1 − x∗|| ≤ 1
2 ||xk − x∗||

2. Steepest Descent Method:

• To solve the equation F (x) = 0, we first let g(x) = F (x)TF (x)/2. Select x0. For k = 0, 1, 2, · · · , do the
following

– Find αk that solves the one-dimensional minimization

min
α≥0

g(xk − α∇g(xk))

– Update xk+1 by
xk+1 = xk − αk∇g(xk)

• For a linear problem, select x0. For k = 0, 1, 2, · · · , do the following

– compute

dk = b−Axk, αk =
dk · dk

dk ·Adk

– Update xk+1 by
xk+1 = xk − αkdk
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2 Exercises:
Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

1. * Consider the following equation
F(x) = 0 (1)

where F : Rn → Rn is a non-linear function.

(a) Point out the derivation of the following relationship:

Ak = Ak−1 +
(F (xk)− F (xk−1)−Ak−1dk−1)⊗ dk−1

dT
k−1dk−1

, where dk−1 = xk − xk−1 (2)

then write down the Broyden’s method using (2) without involving A−1
k in your computaion. This is

also called ’good’ Broyden’s method.

(b) Consider the following system of equations

F(x) = F(x, y) =

󰀳

󰁅󰁅󰁃
x− y − 1

x2 + xy − 6

󰀴

󰁆󰁆󰁄 ∈ R2. (3)

Compute the first two iterations using ’good/bad’ Broyden’s method to solve (3) with initial value
x0 = (2, 2).

Solution. (a) i. Since we require Akdk−1 = F (xk)− F (xk−1) and Aky = Ak−1y for all y · dk−1 = 0. So in
(5.8), take D = Ak, C = Ak−1, g = w = dk−1, z = F (xk)− F (xk−1)), then we get (2).

ii. Select x0 and A0. For k = 0, 1, 2, · · · , do the following
• Compute dk by solving Akdk = −F (xk)

• Update xk+1 by xk+1 = xk + dk

• Update Ak+1 using Ak+1 = Ak +
(F (xk+1)−F (xk)−Akdk)⊗dT

k

dT
k dk

(b) Using good Broyden’s method, a direct computation yields

F (x0, y0) = F (2, 2) =

󰀳

󰁅󰁅󰁃
−1

2

󰀴

󰁆󰁆󰁄 ;

DF (x, y) =

󰀳

󰁅󰁅󰁃
1 −1

2x+ y x

󰀴

󰁆󰁆󰁄 ;

and so

DF (x0, y0) = DF (2, 2) =

󰀳

󰁅󰁅󰁃
1 −1

6 2

󰀴

󰁆󰁆󰁄 .

Let A0 = DF (2, 2), we have

d1 = −A−1
0 F (x0) =

1

8

󰀳

󰁅󰁅󰁃
2 1

−6 1

󰀴

󰁆󰁆󰁄

󰀳

󰁅󰁅󰁃
−1

2

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃
0

−1

󰀴

󰁆󰁆󰁄 .
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We then update x1 by x1 = x0 + d1 =

󰀳

󰁅󰁅󰁃
2

2

󰀴

󰁆󰁆󰁄+ d1 =

󰀳

󰁅󰁅󰁃
2

1

󰀴

󰁆󰁆󰁄

Now we update A1 by A1 = A0 +
(F (x1,y1)−F (x0,y0)−A0d1)⊗d1

dT
1 d1

:

A1 =

󰀳

󰁅󰁅󰁃
1 −1

6 2

󰀴

󰁆󰁆󰁄+

󰀳

󰁅󰁅󰁃

󰀳

󰁅󰁅󰁃
0

0

󰀴

󰁆󰁆󰁄−

󰀳

󰁅󰁅󰁃
−1

2

󰀴

󰁆󰁆󰁄−

󰀳

󰁅󰁅󰁃
1 −1

6 2

󰀴

󰁆󰁆󰁄

󰀳

󰁅󰁅󰁃
0

−1

󰀴

󰁆󰁆󰁄

󰀴

󰁆󰁆󰁄

󰀳

󰁅󰁅󰁃
0

−1

󰀴

󰁆󰁆󰁄

T

/1

That is,

A1 =

󰀳

󰁅󰁅󰁃
1 −1

6 2

󰀴

󰁆󰁆󰁄

Similarly, we have d2 =

󰀳

󰁅󰁅󰁃
0

0

󰀴

󰁆󰁆󰁄, x2 =

󰀳

󰁅󰁅󰁃
2

1

󰀴

󰁆󰁆󰁄.

2. * Consider the following equation
F(x) = 0 (4)

where F : Rn → Rn is a non-linear function. Instead of solving (4), we minimize the following function:

g(x) =
1

2
F(x)TF(x) (5)

(a) Show that ∇g(x) = DF(x)TF(x) by direct calculation..

(b) State the Steepest Descent Method to minimize the function (5).

(c) Consider the special case of F : R2 → R2, apply the Steepest Descent Method algorithm to solve:

F(x, y) =

󰀳

󰁅󰁅󰁃
2x+ y

x− y + 1

󰀴

󰁆󰁆󰁄 = 0.

Give all the detailed computing steps for the first iteration with initial guess (x0, y0)
T = (1, 0).

Solution.

(a) Denote
F (x) = (f1(x), f2(x), . . . , fn(x)) , and x = (x1, x2, . . . , xn)

By definition, we have

∇g(x) =
1

2

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

∂
∂x1

(
󰁓n

i=1 fi(x)fi(x))

∂
∂x2

(
󰁓n

i=1 fi(x)fi(x))

...

∂
∂xn

(
󰁓n

i=1 fi(x)fi(x))

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.
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W.L.O.G, we consider

∂
∂x1

(
󰁓n

i=1 fi(x)fi(x))

=
󰁓n

i=1
∂

∂x1
(fi(x)fi(x))

=
󰁓n

i=1
∂fi(x)
∂x1

fi(x) +
󰁓n

i=1 fi(x)
∂fi(x)
∂x1

= 2
󰀓

∂F (x)
∂x1

󰀔T

· F (x).

Therefore, we have

∇g(x) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

󰀓
∂F (x)
∂x1

󰀔T

· F (x)

󰀓
∂F (x)
∂x2

󰀔T

· F (x)

...
󰀓

∂F (x)
∂xn

󰀔T

· F (x)

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

= DF (x)TF (x).

(b) To solve F (x) = 0, let g(x) = 1
2F (x)TF (x) and select x0. For k = 0, 1, 2, . . . , do the following:

i. Find αk that solve the one-dimensional minimization

min
α≥0

g (xk − α∇g(xk))) (6)

ii. Update xk+1 by
xk+1 = xk − αk∇g(xk) (7)

(c) Since F (x, y) =

󰀳

󰁅󰁅󰁃
2x+ y

x− y + 1

󰀴

󰁆󰁆󰁄, we have

g(x, y) = ((2x+ y)2 + (x− y + 1)2)/2

and

DF (x, y) =

󰀳

󰁅󰁅󰁃
2 1

1 −1

󰀴

󰁆󰁆󰁄

as ∇g(x, y) = DF (x, y)TF (x, y), we get

∇g(x, y) = [DF (x, y)]TF (x, y) =

󰀳

󰁅󰁅󰁃
5x+ y + 1

x+ 2y − 1

󰀴

󰁆󰁆󰁄

Therefore ∇g(x0, y0) =

󰀳

󰁅󰁅󰁃
6

0

󰀴

󰁆󰁆󰁄

Now we need to solve (6) with (x0, y0)
T = (1, 0). We have

g((x0, y0)− α∇(g(x0, y0)))

= g (1− 6α, 0)

= 1
2 (4(1− 6α)2 + (2− 6α)2)

= 1
2 (5(6α)

2 − 12(6α) + 8)
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Therefore g((x0, y0)− α∇(g(x0, y0))) attends its minimum(α > 0) when

6α =
6

5
.

that is α = 1
5 Now, by (7), we obtain

(x1, y1)
T = (x0, y0)

T − α∇g(x0, y0) =

󰀳

󰁅󰁅󰁃
1

0

󰀴

󰁆󰁆󰁄− 1
5

󰀳

󰁅󰁅󰁃
6

0

󰀴

󰁆󰁆󰁄

=

󰀳

󰁅󰁅󰁃
−0.2

0

󰀴

󰁆󰁆󰁄

3. Consider a linear problem of finding solution x to Ax = b, where A is symmetric and positive definite.
Defining the minimizing function g(x) = 1

2x
TAx− bTx

(a) * Suppose x∗ solves Ax∗ = b, showing that x∗ minimizes g(x).

(b) * Show that the function g(x) is a convex function.
A function g is called convex if, for any two points x1 and x2 in Rn, and t ∈ [0, 1], we have

g(tx1 + (1− t)x2) ≤ tg(x1) + (1− t)g(x2)

(c) Show that the descent direction in the k− th step is perpendicular to the (k+1)− th step. Try to draw
a simple diagram to explain the geometric meaning of this phenomenon.

Solution. (a) Note for any point z = y + x∗, we have:

g(z) = (y + x∗)TA(y + x∗)/2− bT (y + x∗)

= x∗TAx∗/2− bTx∗ + x∗TAy/2 + yTAx∗/2 + yTAy/2− bT y

= g(x∗) + yTAy/2 + yTAx∗ − bT y

= g(x∗) + yTAy/2

≥ g(x∗)

The last inequality uses A is symmetric positive definite.

(b)

tg(x1) + (1− t)g(x2) = txT
1 Ax1/2 + (1− t)xT

2 Ax2/2− txT
1 b− (1− t)xT

2 b

g(tx1 + (1− t)x2) = t2xT
1 Ax1/2 + (1− t)2xT

2 Ax2/2 + t(1− t)xT
1 Ax2 − txT

1 b− (1− t)xT
2 b

Note
0 < (xT

1 − xT
2 )A(x1 − x2) = xT

1 Ax1 + xT
2 Ax2 − 2xT

1 Ax2 (8)

We have

g(tx1 + (1− t)x2) ≤ t2xT
1 Ax1/2 + (1− t)2xT

2 Ax2/2 + t(1− t)(xT
1 Ax1 + xT

2 Ax2)/2− txT
1 b− (1− t)xT

2 b

≤ txT
1 Ax1/2 + (1− t)xT

2 Ax2/2− txT
1 b− (1− t)xT

2 b

≤ tg(x1) + (1− t)g(x2)
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(c) Let dk be the k-th descent direction respectively. Then we have

dk = −∇g(xk) = b−Axk.

Since g(x) is convex function, g(xk − α∇g(xk)) is also convex function for variable α.
To find αk that solves the one-dimensional minimization

min
α≥0

g(xk − α∇f(xk)),

we only need to find αk satisfying
∂g(xk − α∇f(xk))

∂α
= 0

Then we have
∇g(xk − αk∇g(xk))

T (−∇g(xk)) = 0

Since xk+1 = xk − αk∇g(xk),
∇g(xk+1)

T (−∇g(xk)) = 0

Hence,
dTk+1dk = 0.
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