
MATH3230A Numerical Analysis

Tutorial 3

1 Recall:
1. Floating-point arithmetic:

(a) Floating-point representation of a binary number is:

a = ±q × 2m

where ±q is a a real number and denoted as significand or mantissa, m is an integer and denoted as
exponent.

(b) IEEE floating-point arithmetic standard:
Single precision floating-point representation (stored on 32 bits) is:

a = (−1)s(1.f1f2 . . . f23)2 × 2(m1m2...m8)2−127

Double precision floating-point representation (stored on 64 bits) is:

a = (−1)s(1.f1f2 . . . f52)2 × 2(m1m2...m11)2−1023

A machine number is a real number which can be represented as the normalized floating-point form as
above.
In both representation above, values of m with (00 . . . 00)2 and (11 . . . 11)2 are reserved for ±0 and ±∞.

(c) Given a real number x, let fl(x) be the floating point representation of x, which means
󰀏󰀏󰀏󰀏
fl(x)− x

x

󰀏󰀏󰀏󰀏 ≤ 2−β := 󰂃m

where 󰂃m is the machine precision/ machine unit roundoff error. Then we can write

fl(x) = x(1 + 󰂃)

with |󰂃| ≤ 󰂃m.

2. Solutions of linear systems of algebraic equations

(a) p-norm of vector is defined as:

||x||p =

󰀫
(|x1|p + |x2|p · · ·+ |xn|p)1/p for 1 ≤ p < ∞
max1≤i≤n|xi| for p = ∞

And the corresponding matrix norm is ||A||p := max
||x||p=1

||Ax||p for 1 ≤ p ≤ ∞, p ∈ N.

(b) Sensitivity of linear systems:
Consider the linear system Ax = b, b ∕= 0 and the pertubed system: Ãx̃ = b. If we write Ã = A + E,
then

󰀂x̃− x󰀂
󰀂x̃󰀂 ≤ 󰀂A−1E󰀂 = 󰀂A−1Ã− I󰀂
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In addition, if 󰀂A−1E󰀂 < 1, we have

󰀂x̃− x󰀂
󰀂x󰀂 ≤ 󰀂A−1E󰀂

1− 󰀂A−1E󰀂

The real number κ(A) given by
κ(A) = 󰀂A󰀂󰀂A−1󰀂

is called the condition number of the matrix A. For κ(A), we have:
If κ(A) = 10k, one should expect to lose at least k digits of accuracy in solving the system Ax = b.

2 Exercises:
Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

1. * Recall that most computers adopt the binary system. Numbers can be decoded as the following normalized
floating-point representation:

a = (−1)sq × 2(−1)p·m, (1)

where s, p = 0 or 1, q = (1.f1f2 · · · fh)2 and m = (m1m2 · · ·mk)2.

Remark: in this form of representation, we don’t consider reserved values of m for 0 and ∞.

(a) Let h = 9, k = 2, find the smallest and second smallest positive numbers of the form (1).

(b) Let h = 4, k = 8, find the largest and second largest numbers of the form (1).

Solution. (a) Put s = 0, p = 1, f = (00...00󰁿 󰁾󰁽 󰂀
9

)2 and m = (11)2, the smallest positive number is

2−3

. Put s = 0, p = 1, f = (00...0󰁿 󰁾󰁽 󰂀
8

1)2 and m = (11)2, the second smallest positive number is:

(1.00...0󰁿 󰁾󰁽 󰂀
8

1)2 × 2−3 = (1 + 2−9)× 2−3.

(b) Put s = 0, p = 0, f = (1111)2 and m = (11...11󰁿 󰁾󰁽 󰂀
8

)2, the largest number is:

(1.1111)2 × 22
8−1 = (2− 2−4)× 2255.

Put s = 0, p = 0, f = (1110)2 and m = (11...11󰁿 󰁾󰁽 󰂀
8

)2, the second largest number is:

(1.1110)2 × 2255 = (2− 2−3)× 2255.

2. Estimate the approximation errors for the following floating point operations. You can use 󰂃 to represent the
machine precision.

(a) * an, where a is a positive machine number and n is a positive integer

(b) (a+ b)(a− b)

(c) * (a2 + b2 − c)d

(d) a2b2c

Solution. (a) Note fl(a2) ≈ a2(1 + 󰂃), then an → fl((a)fl((a) · · · ))) ≈ a(1 + (n− 1)󰂃)
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(b) Note fl(fl(a)+ fl(b)) ≈ (a+ b)(1+ 2󰂃), then (a+ b)(a− b) → fl(fl(fl(a)+ fl(b))× fl(fl(a)− fl(b))) ≈
(a+ b)(a− b)(1 + 5󰂃)

(c) Note fl(fl(a)×fl(a)) ≈ a2(1+3󰂃), then (a2+b2−c)d → fl(fl(fl(fl(fl(a)2)+fl(fl(b)2))−fl(c))fl(d)) ≈
(a2 + b2)d(1 + 7󰂃)− cd(1 + 4󰂃)

(d) a2b2c → fl(fl(fl(fl(a)fl(a))fl(fl(b)fl(b)))fl(c)) ≈ a2b2c(1 + 9󰂃)

3. * Given an invertible n×n matrix A. Let b, bδ, x, xδ ∈ Rn\{0} be four non-zero vectors such that Ax = b and
Axδ = bδ.

(a) Show that there exists κ(A) > 0 such that

1

κ(A)

󰀂b− bδ󰀂
󰀂bδ󰀂 ≤ 󰀂x− xδ󰀂

󰀂xδ󰀂 ≤ κ(A)
󰀂b− bδ󰀂
󰀂bδ󰀂 ,

where 󰀂 · 󰀂 is a given norm.

(b) Let

A =

󰀕
2 3
1 2

󰀖
.

Find κ(A) where the norm is
i. 1-norm.
ii. sup-norm

Solution. (a) Let us first recall that
󰀂Ax󰀂 ≤ 󰀂A󰀂󰀂x󰀂 ∀x ∈ Rn.

Using this inquality and the fact that
b = Ax bδ = Axδ,

we have
i. 󰀂b− bδ󰀂 ≤ 󰀂A󰀂󰀂󰀂x− xδ󰀂
ii. 󰀂xδ󰀂 ≤ 󰀂A−1󰀂󰀂bδ󰀂
iii. 󰀂x− xδ󰀂 ≤ 󰀂A−1󰀂󰀂b− bδ󰀂
iv. 󰀂bδ󰀂 ≤ 󰀂A󰀂󰀂xδ󰀂
Using (i) and (ii), we have

󰀂b− bδ󰀂 · 1

󰀂bδ󰀂
1

󰀂A󰀂󰀂A−1󰀂 ≤ 󰀂x− xδ󰀂 · 1

󰀂xδ󰀂

which is the first inequality required.
Using (iii) and (iv), we have

󰀂x− xδ󰀂 · 1

󰀂xδ󰀂 ≤ 󰀂b− bδ󰀂 · 1

󰀂bδ󰀂󰀂A󰀂󰀂A−1󰀂

which is the second inequality required.
(b) i. κ(A) = 󰀂A󰀂1󰀂A−1󰀂1 = 5× 5 = 25.

ii. κ(A) = 󰀂A󰀂∞󰀂A−1󰀂∞ = 5× 5 = 25.

4. * Consider a matrix C ∈ Rn×n such that 󰀂C󰀂 < 1.

(a) Show that
lim
n→∞

Cn = 0,

where 0 is a zero matrix.
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(b) Show that I − C is invertible and

(I − C)−1 = I + C + C2 + · · ·

Solution.

(a) We have:
󰀂Cn󰀂 = 󰀂C(Cn−1)󰀂 ≤ 󰀂C󰀂󰀂Cn−1󰀂 ≤ 󰀂C󰀂2󰀂Cn−2󰀂 ≤ 󰀂C󰀂n

.
Thus,

lim
n→∞

󰀂Cn󰀂 = 0.

Therefore,
lim
n→∞

Cn = 0.

(b) A direct computation yields

(I − C)(I + C + C2 + · · ·Cn) = (I + C + C2 + · · ·Cn)− (C + C2 · · ·+ Cn+1) = I − Cn+1

In view of the results above,

I = I − lim
n→∞

Cn = lim
n→∞

(I − Cn) = lim
n→∞

(I − C)(1 + C + C2 + · · ·Cn−1) = (I − C)(I + C + C2 + · · · )
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