MATH3230A Numerical Analysis

Tutorial 2 with solution

Recall:

. Quasi-Newton method:

Recall the Newton’s method

Thy1 = Tp — ;,((ZZ)), k=0,1,2,... (1)

we see that at each iteration, we need to compute the derivative f’(xj). This might be a big trouble for some
cases. For instance
(a) The expression f(x) is unknown;
(b) The derivative f'(z) is very expensive to compute;
(¢) The value of function f may be the result of a long numerical calculation, so the derivative has no formula
available.

. Constant slope method: By approximating f’(zj) by a constant gx = g, the Newton’s method becomes
$k+1=$k—M, k=0,1,2,... (2)
g

This is called the constant slope method. In particular, we might take g = f/(zo).

. Fixed-point iterative methods: Both Newton’s method and the Quasi-Newton’s method can be seen as
some special case of fixed-point iterative methods. For a given function ¢(z), z* is called its fixed point if *
satisfies
p(z*) ="
The iterative method
Tpr1 = o(zk), k=0,1,2,...
is called a fixed-point iteration associated with the function ¢(z), and p(z) is called the iterative function.

Theorem 1 (Convergence of fixed-point iterative method). If the iterative function p(x) satisfies the condition
" (") < 1,

then there exists a 6 > 0 such that for any zo € [x* — §,2* + ¢], the fized-point iteration converges. If
@' (x*) # 0, the convergence is linear with convergence rate p = |¢'(x*)|. If

Pat) = ¢(a) == g V@) =0, but o 0,
then the fized-point interation converges with order p.

. Cases with multiple zeros: A point 2* is called a zero of the function f(x) with multiplicity m > 1 if it
holds

fla*) = fl(a*) = = [ V(@) =0,
but f™) (z*) # 0.
. Convergence of Newton’s method in the case of multiplicity: We have the following local convergence
of the Newton’s method when it is applied for solving a nonlinear equation with a zero of multiplicity m:

(a) It converges quadratically for m = 1, namely when z* is a single zero;

(b) It converges only linearly to the multiple zero z* with rate p = 1— % for m > 1. If m = 2, the convergence
rate is 1/2, the same as the convergence rate of the bisection algorithm. The Newton’s method converges
more slowly when m is larger.



2 Exercises:
Please do the star problem (*) in tutorial class and finish the rest after class.
1. *
(a) Show that the sequence x,, = 10~2" with initial guess z = 11—0 converges quadratically to 0.

(b) Show that the sequence x,, = 10~ with initial guess g = 1 does not converge to 0 quadratically if k
is a positive integer and k > 1.

Solution.

(a) Clearly, z,, = 1072" — 0 as n — co. Then, we have

o 2l 1077

B P T

Thus the sequence converges quadratically to 0.
(b) When k is a positive integer and k > 1,

_ k
lim |Zn 1] — M — lim 102" —(n+D"
n—00 IJ;HP nooo 10—2n* n—00 ’
Note that 2n* — (n + 1)k = 2n* —n* —qp_n*~1 — ... — 1 = n* — g4_1(n), where q;_1(n) isa k — 1
degree polynomial in n. Hence,
lim |x"+§| = lim 102" ~0+D" = Jim 10" ~ae-10) = o0,

Therefore, the sequence does not converge to 0 quadratically.

O
2. * Please read the Lecture Notes for the bisection method and answer the questions.
Consider the following nonlinear equation:
f(x) =22+ 42> ~5=0 (3)

and use I = [0,1] as the initial interval.

(a) Find the minimum number of iterations required to approximate the solution with an absolute error of
less than 1072,

(b) Let {x,}22, be the sequence generated by the bisection method. Please calculus the value of zy, 27 and
ZI9.
Solution.
(a) |z, —x*| <27+ (1 —0) < 107°. Since 2717 < 10~?, the iteration n = 16.

(b)

DN =

1
$o=§(ao+bo)=
flzo) < 0= a1 =g, b1 =by =

1
T = 5(&1 —|—b1) =

) =~ w
|
—
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f($1)<0=>(l2:1, by =
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1
To = 5((12 +b2) =



3. * Consider the following nonlinear equation
f(z) =2 -2+ 2 =0,

and the following iterative sequence

{xn+1 = (,25(1'7;),

T is given,
where ¢ : R — R is an iteration function.

(a) Consider the iterative function

_ f(z)
o(x) :=x 2f’(m)'
Determine if the fixed-point iteration has local convergence near x = 1. If so, find the order of conver-
gence.
(b) Consider the iterative function -
f(z
d(z) =z + 1Of’(m)'
Determine if the fixed-point iteration has local convergence near x = 1. If so, find the order of conver-

gence.

(c¢) Consider the iterative function
pla) =z~ oD
f(@+h) = f(z)

where h > 0 is a parameter to be chosen. Find the range of h such that the fixed-point iteration has
local convergence near x = 0, if there is any.

(d) Suggest an iterative function ¢(x) and the resulting new fixed-point method, which is different from the
methods mentioned above, to solve the equation.

Solution. Note that

(a) Consider

FE- 2
e Ty
2z(z — 1)%(62 — 4)
(x —1)%2(3z —1)2
4x(3z — 2)
Bz —1)2°

() = 1-2

Hence, we have ¢'(1) = 0.
Also consider that
&'(z) = ﬁ (2(3z — 1) — 6(3z — 1)(3z — 2)a) (@)
8
RTE (5)

Hence, ¢" (1) # 0. We conclude that the fixed-point iteration has convergence of order 2.



(b) Note that

Lf? - 1"f ff
) = 1+100———==11-10 6
@ 7P (7P ©
2x(3x — 2)
= 11 -10—/4——~. 7
(3z —1)2 (™
Because ¢/(1) =11 — 5 =6 > 1. this iteration can not ensure local convergence near x = 1.
(c) Let
hf(x) x(r —1)2
gn(x) = ~ 9.2 2
flx+h)— f(z) 322+ @Bh—4)z+ (h—1)
By setting
én(z) =322 + (3h— 4z + (h—1)?
and direct computation, we obtain
2 (0) = L00n0) —FO0},0) 1
" ¢(0) (h—1)?
Once
11— g,(0)] <1,
the iteration converges. Therefore, the feasible set for h is as follows:
2 2
{h:h>\2f+1or0<h<—\2f+1}.
The convergence order is 1 since ¢'(0) # 0.
(d) The solution is not unique. What follows is just an example: Let
f(z)
p(x) =z —7
W= )
with v € (0,2). As
(M =1—nl <1,
the iteration converges.
O



