
Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Recap lecture MATH3230A

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Numerical integration

General quadrature rule for approximating the integral of f : [a, b]→ R
with n + 1 points x0, . . . , xn ∈ [a, b]∫ b

a

f (x) dx ≈ α0f (x0) + · · ·+ αnf (xn),

such that it is exact for polynomials of certain degrees.

Newton–Cotes rules:

Equally-spaced points a = x0 < x1 < · · · < xn = b, xi = a + ih with
h = b−a

n .

Exact for polynomials of degree ≤ n.

Gaussian (Gauss–Legendre) rules:

Points are roots of certain (Legendre) polynomials (not
equally-spaced).

Exact for polynomials of degree ≤ 2n + 1.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Numerical integration

General quadrature rule for approximating the integral of f : [a, b]→ R
with n + 1 points x0, . . . , xn ∈ [a, b]∫ b

a

f (x) dx ≈ α0f (x0) + · · ·+ αnf (xn),

such that it is exact for polynomials of certain degrees.

Newton–Cotes rules:

Equally-spaced points a = x0 < x1 < · · · < xn = b, xi = a + ih with
h = b−a

n .

Exact for polynomials of degree ≤ n.

Gaussian (Gauss–Legendre) rules:

Points are roots of certain (Legendre) polynomials (not
equally-spaced).

Exact for polynomials of degree ≤ 2n + 1.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Newton–Cotes

2-point Newton–Cotes (aka Trapezoidal rule) x0 = a, x1 = b:∫ b

a

f (x) dx ≈ b − a

2
(f (a) + f (b)).

Composite Trapezoidal rule with h = xi+1 − xi = b−a
n∫ xi+1

xi

f (x) dx ≈ h

2
(f (xi) + f (xi+1)),

∫ b

a

f (x) dx ≈
n−1∑
i=0

h

2
(f (xi) + f (xi+1))

General procedure:
Set xi = a + ih, h = b−a

n as the equally-spaced partition of [a, b].
Since Newton–Cotes must be exact for all polynomials of degree
≤ n, compute for 0 ≤ k ≤ n

Ik :=

∫ b

a

xk dx =
n∑

i=0

αix
k
i .

Deduce αi by solving a linear system
1 1 · · · 1

x0 x1 · · · xn
...

...
. . .

...

xn
1 xn

2 · · · xn
n




α0

α1

...

αn

 =


I0

I1
...

In


Alternatively

αi =

∫ b

a

li (x) dx =

∫ b

a

n∏
j=0,j 6=i

x − xj
xi − xj

dx.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Newton–Cotes

3-point Newton–Cotes (aka Simpson’s rule) x0 = a, x1 = 1
2 (a + b),

x2 = b: ∫ b

a

f (x) dx ≈ b − a

6
(f (a) + 4f ((a + b)/2) + f (b)).

Composite Simpson’s rule∫ b

a

f (x) dx ≈
n−1∑
i=0

h

6
(f (xi) + 4f ((xi + xi+1)/2) + f (xi+1))

General procedure:
Set xi = a + ih, h = b−a

n as the equally-spaced partition of [a, b].
Since Newton–Cotes must be exact for all polynomials of degree
≤ n, compute for 0 ≤ k ≤ n

Ik :=

∫ b

a

xk dx =
n∑

i=0

αix
k
i .

Deduce αi by solving a linear system
1 1 · · · 1

x0 x1 · · · xn
...

...
. . .

...

xn
1 xn

2 · · · xn
n




α0

α1

...

αn

 =


I0

I1
...

In


Alternatively

αi =

∫ b

a

li (x) dx =

∫ b

a

n∏
j=0,j 6=i

x − xj
xi − xj

dx.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Newton–Cotes

General procedure:
Set xi = a + ih, h = b−a

n as the equally-spaced partition of [a, b].
Since Newton–Cotes must be exact for all polynomials of degree
≤ n, compute for 0 ≤ k ≤ n

Ik :=

∫ b

a

xk dx =
n∑

i=0

αix
k
i .

Deduce αi by solving a linear system
1 1 · · · 1

x0 x1 · · · xn
...

...
. . .

...

xn
1 xn

2 · · · xn
n




α0

α1

...

αn

 =


I0

I1
...

In


Alternatively

αi =

∫ b

a

li (x) dx =

∫ b

a

n∏
j=0,j 6=i

x − xj
xi − xj

dx.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Gaussian/Gauss–Legendre

Procedure for f : [−1, 1]→ R:

Set x0, . . . , xn as the roots of the (n + 1)th Legendre polynomial
Pn+1(x).

Compute

αi =

∫ b

a

li (x) dx =

∫ b

a

n∏
j=0,j 6=i

x − xj
xi − xj

dx.

Procedure for f : [a, b]→ R:

Use linear transformation

L(x) =
b + a

2
+

b − a

2
x .

Transform the integrals:∫ b

a

f (y) dy =

∫ 1

−1
f (L(x))

b − a

2
dx =:

∫ 1

−1
g(x) dx ≈

n∑
i=0

αig(xi).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Gaussian/Gauss–Legendre

Procedure for f : [−1, 1]→ R:

Set x0, . . . , xn as the roots of the (n + 1)th Legendre polynomial
Pn+1(x).

Compute

αi =

∫ b

a

li (x) dx =

∫ b

a

n∏
j=0,j 6=i

x − xj
xi − xj

dx.

Procedure for f : [a, b]→ R:

Use linear transformation

L(x) =
b + a

2
+

b − a

2
x .

Transform the integrals:∫ b

a

f (y) dy =

∫ 1

−1
f (L(x))

b − a

2
dx =:

∫ 1

−1
g(x) dx ≈

n∑
i=0

αig(xi).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Interpolating data

General problem: given a data set of a function f : R→ R:

x x0 x1 · · · xn

f (x) f0 f1 · · · fn

find a polynomial p(x) of degree ≤ n such that

p(xi) = fi .

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Interpolating data

General problem: given a data set of a function f : R→ R:

x x0 x1 · · · xn

f (x) f0 f1 · · · fn

find a polynomial p(x) of degree ≤ n such that

p(xi) = fi .

Method 1: Vandermonde interpolation - Solve the matrix-vector problem
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1

...
...

...
. . .

...

1 xn x2
n · · · xn

n




α0

α1

...

αn

 =


f0

f1
...

fn


and set

V (x) = α0 + α1x + · · ·+ αnxn.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Interpolating data

General problem: given a data set of a function f : R→ R:

x x0 x1 · · · xn

f (x) f0 f1 · · · fn

find a polynomial p(x) of degree ≤ n such that

p(xi) = fi .

Method 2: Lagrange interpolation - Define

li (x) =
n∏

j=0,j 6=i

x − xj
xi − xj

,

and set

L(x) = f0l0(x) + f1l1(x) + · · ·+ fnln(x).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Interpolating data

General problem: given a data set of a function f : R→ R:

x x0 x1 · · · xn

f (x) f0 f1 · · · fn

find a polynomial p(x) of degree ≤ n such that

p(xi) = fi .

Method 3: Newton interpolation - Compute the divided difference
table and obtain

ck = f [x0, . . . , xk] for 0 ≤ k ≤ n,

and set

N(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + · · ·+ cn

n−1∏
j=0

(x − xj)

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Properties

Any two polynomials p(x) and q(x) of deg ≤ n agreeing on n + 1
points must coincide.

The Lagrange interpolation L(x) and the Newton interpolation N(x)
are the same polynomial.

The divided difference is symmetric with respect to perturbations in
the argument:

f [x0, . . . , xk] = f [z0, · · · , zk]

for any perturbation (z0, · · · , zk) of (x0, . . . , xk).

The ordering in the divided difference table does not matter.

The error of interpolating f (x) with polynomial p(x) of degree ≤ n
with n + 1 distinct points is

f (x)− p(x) =
f (n+1)(ξx)

(n + 1)!
(x − x0) · · · (x − xn).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Chebyshev polynomials

Aim: to find the best points x0 < x1 < · · · < xn in [a, b] such that the
interpolation error

f (x)− p(x) =
f (n+1)(ξx)

(n + 1)!
(x − x0) · · · (x − xn)

is minimized.

For a monic polynomial g : [−1, 1]→ R of degree n + 1, it holds that

max
x∈[−1,1]

|g(x)| ≥ 2−n,

and so for f : [−1, 1]→ R, the best error estimate is

|f (x)− p(x)| ≤
maxx∈[−1,1] |f (n+1)(x)|

2n(n + 1)!

if we choose x0, . . . , xn as roots of the Chebyshev polynomial Tn+1(x).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Chebyshev polynomials

Aim: to find the best points x0 < x1 < · · · < xn in [a, b] such that the
interpolation error

f (x)− p(x) =
f (n+1)(ξx)

(n + 1)!
(x − x0) · · · (x − xn)

is minimized.

For a monic polynomial g : [−1, 1]→ R of degree n + 1, it holds that

max
x∈[−1,1]

|g(x)| ≥ 2−n,

and so for f : [−1, 1]→ R, the best error estimate is

|f (x)− p(x)| ≤
maxx∈[−1,1] |f (n+1)(x)|

2n(n + 1)!

if we choose x0, . . . , xn as roots of the Chebyshev polynomial Tn+1(x).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Chebyshev polynomials

The Chebyshev polynomials are defined recursively:

T0(x) = 1, T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x).

Properties include:

Tn(x) = cos(n cos−1(x)) for x ∈ [−1, 1].

|Tn(x)| ≤ 1 for x ∈ [−1, 1].

Tn(cos jπ
n) = (−1)j for 0 ≤ j ≤ n.

Tn(cos 2j−1
2n π) = 0 for 0 ≤ j ≤ n.

The monic polynomial T̂n+1(x) = 2−nTn+1(x) satisfies

max
x∈[−1,1]

|T̂n+1(x)| = 2−n.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Hermite’s interpolation

General problem: given a data set of a function f : R→ R and its
derivative:

x x0 x1 · · · xn

f (x) f0 f1 · · · fn

f ′(x) f ′0 f ′1 · · · f ′n

find a polynomial p(x) of degree ≤ 2n + 1 such that

p(xi) = fi , p′(xi) = f ′i .

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Hermite’s interpolation

Method 1 - Lagrange form: Set

ui (x) = (1− 2l ′i (xi)(x − xi))l2i (x), vi (x) = (x − xi)l2i (x),

where

ui (xj) = v ′i (xj) =

{
0 if j 6= i ,

1 if j = i ,

u′i (xj) = 0, vi (xj) = 0 for 0 ≤ j ≤ n.

Then, define

H2n+1(x) =
n∑

i=0

fiui (x) +
n∑

i=0

f ′i vi (x).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Hermite’s interpolation

Method 2 - Newton form: Set

z2i = z2i+1 = xi for i = 0, . . . n,

and

f [z2i , z2i+1] = f ′i for i = 0, . . . , n,

in the table of divided difference. Then, define

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x − z0) · · · (x − zk−1).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Hermite’s interpolation

Method 2 - Newton form: Set

z2i = z2i+1 = xi for i = 0, . . . n,

and

f [z2i , z2i+1] = f ′i for i = 0, . . . , n,

in the table of divided difference. Then, define

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk](x − z0) · · · (x − zk−1).

Error estimate for f ∈ C 2n+2[a, b] and any x ∈ [a, b]:

f (x)− H2n+1(x) =
f (2n+2)(ξx)

(2n + 2)!
(x − x0)2 · · · (x − xn)2.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Vector and matrix norms

For x ∈ Rn and p ≥ 1

‖x‖p =


(∑n

i=1 |xi |p
)1/p

if p <∞,
max1≤i≤n |xi | if p =∞.

For A ∈ Rn×n, the induced p-matrix norm is

‖A‖p = max
‖x‖p=1

‖Ax‖p.

Properties:

‖A‖1 is the maximum column sum.

‖A‖∞ is the maximum row sum.

‖A‖2 =
√
λmax(ATA).

‖AB‖p ≤ ‖A‖p‖B‖p.

‖Ax‖p ≤ ‖A‖p‖x‖p.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Vector and matrix norms

For x ∈ Rn and p ≥ 1

‖x‖p =


(∑n

i=1 |xi |p
)1/p

if p <∞,
max1≤i≤n |xi | if p =∞.

For A ∈ Rn×n, the induced p-matrix norm is

‖A‖p = max
‖x‖p=1

‖Ax‖p.

Properties:

‖A‖1 is the maximum column sum.

‖A‖∞ is the maximum row sum.

‖A‖2 =
√
λmax(ATA).

‖AB‖p ≤ ‖A‖p‖B‖p.

‖Ax‖p ≤ ‖A‖p‖x‖p.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Sensitivity of linear systems

Given invertible matrices A and Ã with vector b, and solutions x and x̃ :

Ax = b, Ãx̃ = b,

we seek an upper bound on the relative error ‖x−x̃‖‖x‖ .

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Sensitivity of linear systems

Given invertible matrices A and Ã with vector b, and solutions x and x̃ :

Ax = b, Ãx̃ = b,

we seek an upper bound on the relative error ‖x−x̃‖‖x‖ .

First result:

If
‖x − x̃‖
‖x‖

≤ θ < 1, then
‖x − x̃‖
‖x̃‖

≤ θ

1− θ
.

Second result: Set E = A− Ã and use Ax = b = Ãx̃ = Ax̃ + E x̃ to get

x − x̃ = A−1E x̃ .

Then,

‖x − x̃‖
‖x̃‖

≤ ‖A−1E‖ = ‖A−1Ã− I‖ ⇒ ‖x − x̃‖
‖x‖

≤ ‖A−1E‖
1− ‖A−1E‖

.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Sensitivity of linear systems

Given invertible matrices A and Ã with vector b, and solutions x and x̃ :

Ax = b, Ãx̃ = b,

we seek an upper bound on the relative error ‖x−x̃‖‖x‖ .

Use

‖A−1E‖ ≤ ‖A−1‖‖A‖‖E‖
‖A‖

= κ(A)
‖A− Ã‖
‖A‖

,

where the condition number is κ(A) := ‖A−1‖‖A‖ ≥ 1, we have

‖x − x̃‖
‖x‖

≤
κ(A)‖A−Ã‖‖A‖

1− κ(A)‖E‖‖A‖
=: c(E)κ(A)

‖A− Ã‖
‖A‖

.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Solving systems of equations

To solve

Ax = b, where A ∈ Rn×n, b ∈ Rn,

we have

Forward substitution if A is lower triangular.
Backward substitution if A is upper triangular.
Cholesky factorization A = UTU into upper triangular U if A is
symmetric and positive definite (SPD). Then solve

Ux = y , UT y = b.

LU factorization A = LU into lower tri. L and upper tri. U if A is
not SPD. Then solve

Ux = y , Ly = b.

LU with partial pivot in case the pivot at some stage is zero! This
leads to the factorization

PA = LU

for some permutation matrix P.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Solving systems of equations

To solve

Ax = b, where A ∈ Rn×n, b ∈ Rn,

we have

Forward substitution if A is lower triangular.
Backward substitution if A is upper triangular.
Cholesky factorization A = UTU into upper triangular U if A is
symmetric and positive definite (SPD). Then solve

Ux = y , UT y = b.

LU factorization A = LU into lower tri. L and upper tri. U if A is
not SPD. Then solve

Ux = y , Ly = b.

LU with partial pivot in case the pivot at some stage is zero! This
leads to the factorization

PA = LU

for some permutation matrix P.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Non-square systems

If A ∈ Rm×n, m 6= n, then there may not be a solution/infinitely many
solutions to

Ax = b for b ∈ Rm, x ∈ Rn.

Overdetermined case m > n. Choose the solution x∗ with smallest
error ‖Ax − b‖2. The solution x∗ is given by the normal equation:

x∗ = (ATA)−1ATb,

obtained by differentiating

d

dt
f (x∗ + ty)|t=0 = 0, where f (x) = ‖Ax − b‖2.

Undetermined case m < n. Choose the solution x∗ with the smallest
2-norm amongst all other solutions. Obtained by differentiating the
Lagrangian:

L(x , µ) = ‖x‖22 − µT (Ax − b)

and set all partial derivatives to zero. The solution is

x∗ = AT (AAT)−1b.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Scalar nonlinear equations

To solve

f (x) = 0

for some nonlinear function f : R→ R, we have

Bisection method

Only needs f (a)f (b) < 0 for some interval [a, b] where f is
continuous.
Always converges if x0 ∈ (a, b).
R-linear convergence.

Newton’s method

Need f to be differentiable and f ′(x∗) 6= 0.
Converges if x0 is close to x∗.
Q-Quadratic convergence.

Quasi-Newton methods

Replace f ′(xk) in Newton’s method with simpler approximations.
Converges if x0 is close to x∗.

Q-linear convergence (Constant slope) or Order p = 1+
√
5

2
(Secant

method)

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Scalar nonlinear equations

To solve

f (x) = 0

for some nonlinear function f : R→ R, we have

Bisection method

Only needs f (a)f (b) < 0 for some interval [a, b] where f is
continuous.
Always converges if x0 ∈ (a, b).
R-linear convergence.

Newton’s method

Need f to be differentiable and f ′(x∗) 6= 0.
Converges if x0 is close to x∗.
Q-Quadratic convergence.

Quasi-Newton methods

Replace f ′(xk) in Newton’s method with simpler approximations.
Converges if x0 is close to x∗.

Q-linear convergence (Constant slope) or Order p = 1+
√
5

2
(Secant

method)

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Fixed-point iterative methods

Newton’s method, constant slope method and Secant method are special
cases of fixed point iterative methods:

xk+1 = ϕ(xk) k = 0, 1, 2,

Main result for fixed-point iterative methods:

If |ϕ′(x∗)| < 1, then there exists δ = δ(x∗) such that if
x0 ∈ [x∗ − δ, x∗ + δ], the fixed-point iterative method converges.

If ϕ′(x∗) 6= 0, the convergence is Q-linear.

If ϕ′(x∗) = ϕ′′(x∗) = · · · = ϕ(p−1)(x∗) = 0 but ϕ(p)(x∗) 6= 0, then
the convergence is of order p.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Fixed-point iterative methods

Newton’s method, constant slope method and Secant method are special
cases of fixed point iterative methods:

xk+1 = ϕ(xk) k = 0, 1, 2,

Main result for fixed-point iterative methods:

If |ϕ′(x∗)| < 1, then there exists δ = δ(x∗) such that if
x0 ∈ [x∗ − δ, x∗ + δ], the fixed-point iterative method converges.

If ϕ′(x∗) 6= 0, the convergence is Q-linear.

If ϕ′(x∗) = ϕ′′(x∗) = · · · = ϕ(p−1)(x∗) = 0 but ϕ(p)(x∗) 6= 0, then
the convergence is of order p.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Systems of nonlinear equations

To solve the nonlinear system of equations

F (x) =


f1(x1, . . . , xn)

...

fn(x1, . . . , xn)

 = 0

we have

Newton’s method: (Quadratic local convergence)

xk+1 = xk − (DF (xk))−1F (xk).

Broyden’s method: (Linear local convergence)

xk+1 = xk − A−1k F (xk).

Steepest descent: (Linear global convergence)

xk+1 = xk − αk∇g(xk), g(x) =
1

2
‖F (x)‖22,

αk = arg min
s≥0

g(xk − s∇g(xk)).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Systems of nonlinear equations

To solve the nonlinear system of equations

F (x) =


f1(x1, . . . , xn)

...

fn(x1, . . . , xn)

 = 0

we have

Newton’s method: (Quadratic local convergence)

xk+1 = xk − (DF (xk))−1F (xk).

Broyden’s method: (Linear local convergence)

xk+1 = xk − A−1k F (xk).

Steepest descent: (Linear global convergence)

xk+1 = xk − αk∇g(xk), g(x) =
1

2
‖F (x)‖22,

αk = arg min
s≥0

g(xk − s∇g(xk)).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Broyden’s method

xk+1 = xk − A−1k F (xk).

Key properties of matrix Ak :

(Secant condition) Ak(xk − xk−1) = F (xk)− F (xk−1).
(Rank-one update) Ak = Ak−1 + pk ⊗ dk−1, dk−1 = A−1k−1F (xk−1).
(Orthogonal property) Aky = Ak−1y for all y · (xk − xk−1) = 0.

The “good” Broyden method: Given x0 and invertible A0,

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ Ak+1 = Ak +
F (xk)− F (xk−1)− Akdk

dk · dk
⊗ dk .

The “bad” Broyden method employs the Sherman–Morrison formula to
get A−1k+1 directly without inverting a matrix:

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ A−1k+1 = A−1k +
A−1k (F (xk)⊗ dk)A−1k

dk · dk + dk · A−1k F (xk)
.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Broyden’s method

xk+1 = xk − A−1k F (xk).

Key properties of matrix Ak :

(Secant condition) Ak(xk − xk−1) = F (xk)− F (xk−1).
(Rank-one update) Ak = Ak−1 + pk ⊗ dk−1, dk−1 = A−1k−1F (xk−1).
(Orthogonal property) Aky = Ak−1y for all y · (xk − xk−1) = 0.

The “good” Broyden method: Given x0 and invertible A0,

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ Ak+1 = Ak +
F (xk)− F (xk−1)− Akdk

dk · dk
⊗ dk .

The “bad” Broyden method employs the Sherman–Morrison formula to
get A−1k+1 directly without inverting a matrix:

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ A−1k+1 = A−1k +
A−1k (F (xk)⊗ dk)A−1k

dk · dk + dk · A−1k F (xk)
.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Broyden’s method

xk+1 = xk − A−1k F (xk).

Key properties of matrix Ak :

(Secant condition) Ak(xk − xk−1) = F (xk)− F (xk−1).
(Rank-one update) Ak = Ak−1 + pk ⊗ dk−1, dk−1 = A−1k−1F (xk−1).
(Orthogonal property) Aky = Ak−1y for all y · (xk − xk−1) = 0.

The “good” Broyden method: Given x0 and invertible A0,

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ Ak+1 = Ak +
F (xk)− F (xk−1)− Akdk

dk · dk
⊗ dk .

The “bad” Broyden method employs the Sherman–Morrison formula to
get A−1k+1 directly without inverting a matrix:

dk = A−1k F (xk) 7→ xk+1 = xk + dk

7→ A−1k+1 = A−1k +
A−1k (F (xk)⊗ dk)A−1k

dk · dk + dk · A−1k F (xk)
.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Steepest descent

Instead of solving F (x) = 0, the Steepest descent method finds the
minimum of g(x) = 1

2‖F (x)‖22.

Procedure: Starting from x0,

Obtain search direction dk and search step αk .

Update xk+1 = xk + αkdk such that g(xk+1) < g(xk).

Example

One choice of search direction is the negative gradient
dk = −∇g(xk).

One choice of search step is such that

g(xk + αkdk) ≤ g(xk + sdk) for any s ∈ R.

If αk is chosen as above, then dk · dk+1 = 0 (Zig-zag motion).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Steepest descent

Instead of solving F (x) = 0, the Steepest descent method finds the
minimum of g(x) = 1

2‖F (x)‖22.

Procedure: Starting from x0,

Obtain search direction dk and search step αk .

Update xk+1 = xk + αkdk such that g(xk+1) < g(xk).

Example

One choice of search direction is the negative gradient
dk = −∇g(xk).

One choice of search step is such that

g(xk + αkdk) ≤ g(xk + sdk) for any s ∈ R.

If αk is chosen as above, then dk · dk+1 = 0 (Zig-zag motion).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Steepest descent

Instead of solving F (x) = 0, the Steepest descent method finds the
minimum of g(x) = 1

2‖F (x)‖22.

Procedure: Starting from x0,

Obtain search direction dk and search step αk .

Update xk+1 = xk + αkdk such that g(xk+1) < g(xk).

Example

One choice of search direction is the negative gradient
dk = −∇g(xk).

One choice of search step is such that

g(xk + αkdk) ≤ g(xk + sdk) for any s ∈ R.

If αk is chosen as above, then dk · dk+1 = 0 (Zig-zag motion).

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Outline

Numerical integration

Polynomial interpolation

Linear systems of equations

Nonlinear equations/systems

Floating point arithmetic

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Scientific notation

A decimal can be represented as

a = ±r × 10n,

where

r ∈ [0.1, 1) is the mantissa.

n ∈ Z is the exponent.

A binary number can be represented as

a = ±(q)2 × 2m̃,

where

q is the mantissa.

m̃ is the exponent.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Scientific notation

A decimal can be represented as

a = ±r × 10n,

where

r ∈ [0.1, 1) is the mantissa.

n ∈ Z is the exponent.

A binary number can be represented as

a = ±(q)2 × 2m̃,

where

q is the mantissa.

m̃ is the exponent.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Single/double precision format

The single precision floating point format with 32-bits for normalized
binary numbers is

s|m1m2 · · ·m8|f1f2 · · · f23 7→ a = (−1)s(1.f1 . . . f23)2 × 2(m1...m8)2−127

Biased exponent (m1 . . .m8)2 − 127 is used to represent an equal
number of non-negative and negative exponents.

The cases (m1 . . .m8)2 = (0 . . . 0)2 or (1 . . . 1)2 are reserved for
special values such as 0, ∞ and NaN.

Smallest positive normalized number amin and largest finite
normalized number amax are

amin 7→ 0|0 · · · 01|0 · · · 0 7→ 2−126,

amax 7→ 0|1 · · · 10|1 · · · 1 7→ (2− 2−23)× 2127.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Single/double precision format

The double precision floating point format with 64-bits for normalized
binary numbers is

s|m1m2 · · ·m11|f1f2 · · · f52 7→ a = (−1)s(1.f1 . . . f52)2 × 2(m1...m11)2−1023

Double precision is used if we need to have twice as much accuracy
than single precision.

Smallest positive normalized number amin and largest finite
normalized number amax are

amin 7→ 0|0 · · · 01|0 · · · 0 7→ 2−1022,

amax 7→ 0|1 · · · 10|1 · · · 1 7→ (2− 2−52)× 21023.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Rounding/Chopping

Two ways to obtain from a decimal number x = x0.x1 . . . xm with m
digits to a decimal number with n < m digits:

Rounding:

xr =

{
x0.x1 . . . xn if xn+1 ∈ {0, 1, 2, 3, 4},
x0.x1 . . . xn + 10−n if xn+1 ∈ {5, 6, 7, 8, 9}.

Chopping:

xc = x0.x1 . . . xn.

Estimates on relative errors:

|x − xr |
|x |

≤ 1

2
× 10−n,

|x − xc |
|x |

≤ 10−n.

Similar when rounding/chopping binary numbers.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Rounding/Chopping

Two ways to obtain from a decimal number x = x0.x1 . . . xm with m
digits to a decimal number with n < m digits:

Rounding:

xr =

{
x0.x1 . . . xn if xn+1 ∈ {0, 1, 2, 3, 4},
x0.x1 . . . xn + 10−n if xn+1 ∈ {5, 6, 7, 8, 9}.

Chopping:

xc = x0.x1 . . . xn.

Estimates on relative errors:

|x − xr |
|x |

≤ 1

2
× 10−n,

|x − xc |
|x |

≤ 10−n.

Similar when rounding/chopping binary numbers.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Machine precision

The machine precision/machine epsilon εM can be defined in two ways:

The upper bound on the relative error of rounding a number a in
between amin and amin,2 (or amax,2 and amax):

|amin − a|
|a|

≤ εM .

The upper bound on the relative error of approximating a given real
number x by a nearby machine number x̂ :

|x − x̂ |
|x |

≤ εM .

Easier way: The machine epsilon is εM = 2−y where y is the number of
bits reserved for the manitssa.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Machine precision

The machine precision/machine epsilon εM can be defined in two ways:

The upper bound on the relative error of rounding a number a in
between amin and amin,2 (or amax,2 and amax):

|amin − a|
|a|

≤ εM .

The upper bound on the relative error of approximating a given real
number x by a nearby machine number x̂ :

|x − x̂ |
|x |

≤ εM .

Easier way: The machine epsilon is εM = 2−y where y is the number of
bits reserved for the manitssa.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Machine precision

The machine precision/machine epsilon εM can be defined in two ways:

The upper bound on the relative error of rounding a number a in
between amin and amin,2 (or amax,2 and amax):

|amin − a|
|a|

≤ εM .

The upper bound on the relative error of approximating a given real
number x by a nearby machine number x̂ :

|x − x̂ |
|x |

≤ εM .

Easier way: The machine epsilon is εM = 2−y where y is the number of
bits reserved for the manitssa.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Loss of significance

Any instance of creating a number x where

x < amin leads to underflow, and x is set to zero.

x > amax leads to overflow, and the computation is halted.

Loss of significance occurs during the subtraction of two nearly equal
numbers and the effects of finite precision arithmetic used in the
calculation: E.g. Evaluating f (x) =

√
x + 1−

√
x at x = 100 to 6

significant digits:

√
101−

√
100 = 0.0499000 (computed from rounding

√
101 to 6 sign. digits),

√
101−

√
100 = 0.0498756 (true value to 6 sign. digits)

leading to a loss of 4 digits of accuracy.

Remedy? Rewrite expression that does not involve subtraction/use
double precision.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Loss of significance

Any instance of creating a number x where

x < amin leads to underflow, and x is set to zero.

x > amax leads to overflow, and the computation is halted.

Loss of significance occurs during the subtraction of two nearly equal
numbers and the effects of finite precision arithmetic used in the
calculation:

E.g. Evaluating f (x) =
√

x + 1−
√

x at x = 100 to 6
significant digits:

√
101−

√
100 = 0.0499000 (computed from rounding

√
101 to 6 sign. digits),

√
101−

√
100 = 0.0498756 (true value to 6 sign. digits)

leading to a loss of 4 digits of accuracy.

Remedy? Rewrite expression that does not involve subtraction/use
double precision.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Loss of significance

Any instance of creating a number x where

x < amin leads to underflow, and x is set to zero.

x > amax leads to overflow, and the computation is halted.

Loss of significance occurs during the subtraction of two nearly equal
numbers and the effects of finite precision arithmetic used in the
calculation: E.g. Evaluating f (x) =

√
x + 1−

√
x at x = 100 to 6

significant digits:

√
101−

√
100 = 0.0499000 (computed from rounding

√
101 to 6 sign. digits),

√
101−

√
100 = 0.0498756 (true value to 6 sign. digits)

leading to a loss of 4 digits of accuracy.

Remedy? Rewrite expression that does not involve subtraction/use
double precision.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Loss of significance

Any instance of creating a number x where

x < amin leads to underflow, and x is set to zero.

x > amax leads to overflow, and the computation is halted.

Loss of significance occurs during the subtraction of two nearly equal
numbers and the effects of finite precision arithmetic used in the
calculation: E.g. Evaluating f (x) =

√
x + 1−

√
x at x = 100 to 6

significant digits:

√
101−

√
100 = 0.0499000 (computed from rounding

√
101 to 6 sign. digits),

√
101−

√
100 = 0.0498756 (true value to 6 sign. digits)

leading to a loss of 4 digits of accuracy.

Remedy? Rewrite expression that does not involve subtraction/use
double precision.

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Error analysis

For a non-machine number x , its closest machine number fl(x) satisfies

fl(x) = x(1 + ε) for |ε| ≤ εM .

This relation is used to analyse the relative errors we make when
performing computer arithmetic that do not obey the usual rules of
arithmetic due to rounding.

Forward error analysis measures the relative error between x � y and
fl(fl(x)� fl(y)):

|x � y − fl(fl(x)� fl(y))|
|x � y |

≤ CεM .

Backward error analysis is concerned with showing the computed
value ẑ of x � y is an exact calculation with perturbed data:

ẑ = (x + δx)� (y + δy) with |δx |, |δy | ≤ εM

Numerical integration Polynomial interpolation Linear systems of equations Nonlinear equations/systems Floating point arithmetic

Error analysis

For a non-machine number x , its closest machine number fl(x) satisfies

fl(x) = x(1 + ε) for |ε| ≤ εM .

This relation is used to analyse the relative errors we make when
performing computer arithmetic that do not obey the usual rules of
arithmetic due to rounding.

Forward error analysis measures the relative error between x � y and
fl(fl(x)� fl(y)):

|x � y − fl(fl(x)� fl(y))|
|x � y |

≤ CεM .

Backward error analysis is concerned with showing the computed
value ẑ of x � y is an exact calculation with perturbed data:

ẑ = (x + δx)� (y + δy) with |δx |, |δy | ≤ εM

	Numerical integration
	Polynomial interpolation
	Linear systems of equations
	Nonlinear equations/systems
	Floating point arithmetic

