Napier’s Constant
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for any n. Next we show that a, and b, are bounded and monotonic.



Boundedness: For any n > 1, we have
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Thus a,, and b,, are bounded.
Monotonicity: The monotonicity of b, is obvious. We prove that a, is
strictly increasing. For any n > 1, we have
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Thus a,, are b, are strictly increasing.

Alternative proof for monotonicity of a,: Recall that the arithmetic-
geometric mean inequality says that for any positive real numbers x1, zo, . . . , 2%,
not all equal, we have
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We have proved that both a,, and b,, are bounded and monotonic. There-
fore a,, are b, are convergent by monotone convergence theorem.

Next we prove that a,, and b, have the same limit. Since a,, < b, for any
n > 1, we have
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On the other hand, for a fixed m > 1, define a sequence ¢, (which depends
on m) by
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Then for any n > m, we have a,, > ¢, which implies that
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Observe that m is arbitrary and thus
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