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© Limits

@ Sequences
@ Limits of sequences
@ Squeeze theorem
@ Monotone convergence theorem

@ Limits and Continuity
@ Limits of functions
@ Exponential, logarithmic and trigonometric functions
@ Continuity of functions

e Differentiation
@ Derivatives
@ Differentiable functions
@ Rules of differentiation
@ Second and higher derivatives
@ Mean value theorem
@ Mean value theorem
@ Application of Differentiation
@ L'Hopital's rule
@ Taylor series
@ Curve sketching
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9 Integration

@ Integration
@ Indefinite integral and substitution
@ Definite integral
@ Fundamental theorem of calculus
@ Techniques of Integration
@ Trigonometric integrals
@ Integration by parts
@ Reduction formula
@ More Techniques of Integration
@ Trigonometric substitution
@ Integration of rational functions
@ t-substitution
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Limits
Sequences

Limits and Continuity

Limits of sequences

Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function from the
set of positive integers Z1t = {1,2,3,...} to the set of real numbers R.

Example (Arithmetic sequence)

An arithmetic sequence is a sequence a,, such that a,+1 —a, =dis a
constant for any n. The constant d is called the common difference.
The n-th term of the sequence can be calculated by

an =aj + (n—1)d.

Sequence a | d an

1,3,5,7,9,... 1 2 | a,=2n—-1
—4,-1,2,5,8, ... 713)| a,=3n—-"T7
19,12,5,—2,-9,... | 19 | -7 | a, = 26 — Tn
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Limits and Continuity

Example (Geometric sequence)

A geometric sequence is a sequence a, such that a,1 = ra, for
any n where r is a constant. The constant 7 is called the common
ratio. The n-th term of the sequence can be calculated by
an = arr™ L.
Sequence ay 7 an
1,2,4,8,16,... 1| 2 an, = 201
2 2 1 54
18,6,2, =, —, ... 18| = = —
) ) ) 37 97 3 an 3n
33 1 (—1)" 124
12,—6,3,—5,1,... 12| —= | ap = B
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Sequences

Limits and Continuity

Example (Fibonacci sequence)

The Fibonacci sequence is the sequence I}, which satisfies

Fn+2 = Fn+1 —|—17n7 for n > 1
F=F=1

The first few terms of F;, are
1,1,2,3,5,8,13,21,34,55,89,144, . ...

The value of F, can be calculated by

Ra= o <<1 +2¢5>"_ (1 _2ﬁ>n>
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Sequences

Limits and Continuity

Definition (Limit of sequence)

© Suppose there exists real number L such that for any € > 0, there
exists N € N such that for any n > N, we have |a,, — L| < e. Then
we say that a,, is convergent, or a,, converges to L, and write

lim a, = L.
n—oo

Otherwise we say that a,, is divergent.

@ Suppose for any M > 0, there exists N € N such that for any
n > N, we have a,, > M. Then we say that a,, tends to +oco as n
tends to infinity, and write

lim a, = +oo.
n—oo

We define a,, tends to —oo in a similar way. Note that a,, is
divergent if it tends to +oo.
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Sequences

Limits and Continuity

Example (Intuitive meaning of limits of infinite sequences)

an First few terms Limit
i AL L 0
n2 479716’
w1231 1
n+1 2°374°5"
(et |1, —1,1, -1, does not exist
2n 2,4,6,8, does not exist/ + oo
n
<1+le> ’%’%’%Z"" e~ 2.71828
Fri1 35 1++5
o2 L,2,5, 5. Y ~ 161503

8/338
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Sequences

Limits and Continuity

Definition (Monotonic sequence)

© We say that a,, is monotonic increasing (decreasing) if for
any m < n, we have a,, < a, (am > a,). We say that a, is
monotonic if a, is either monotonic increasing or monotonic
decreasing.

@ We say that a,, is strictly increasing (decreasing) if for any
m < n, we have a,, < an (am > an).

Definition (Bounded sequence)

We say that a,, is bounded if there exists real number M such
that |a,| < M for any n € N.
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Example (Bounded and monotonic sequence)

an Terms Bounded | Monotonic Con\./er'gent
(Limit)
1 111
— 1.-. 2. —
TL2 743 9’ 16’ / / / (0)
—1)" 143
1— By 1
n PXERVE v . v )
n? 1,4,9,16, X v X
1—(—1n" 2,0,2,0, v X X
(=1)"n 1,2,-3,4, X X X
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Limits
Sequences

Limits and Continuity

If a,, is convergent, then a,, is bounded.

Convergent = Bounded

Note that the converse of the above statement is not correct.
Bounded # Convergent

The following theorem is very important and we will discuss it in
details later.

Theorem (Monotone convergence theorem)

If a,, is bounded and monotonic, then a,, is convergent.

Bounded and Monotonic = Convergent
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Sequences

Limits and Continuity

Exercise (True or False)

Suppose lim a, = a and lim b, =b. Then
n—oo n—oo

(an £by) =a=£b.

lim
n—o0

Answer: T

12/338



Limits
Sequences

Limits and Continuity

Exercise (True or False)

Suppose lim a, = a and c is a real number. Then
n—oo

lim ca, = ca.
n—oo

Answer: T
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Limits and Continuity

Exercise (True or False)

If h_>m an = a and hm b, = b, then

lim a,b, = ab.
n—o0

Answer: T
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Sequences

Limits and Continuity

Exercise (True or False)

If lim a, = a and lim b, = b, then
n—oo n—oo

Answer: F
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Sequences

Limits and Continuity

Exercise (True or False)

If lim a, =a and lim b, = b +# 0, then
n—oo n—oo

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If lim a, =0, then
n—oo

lim a,b, = 0.
n—0o0

Answer: F

1
For a,, = — and b,, = n, we have lim a, = 0 but
n n— 00

1
lim apb, = lim —-n= lim 1 =1#0.
n—o00 n—o0o N n—o00
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If lim a, = 0 and b,, is convergent, then

n—o0o
lim a,b, = 0.
n—ro0
Answer: T
Proof.
lim a,b, = lim a, lim b,
n—oo n—oo n—oo
=0
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Sequences

Limits and Continuity

Exercise (True or False)

If li_>m a, = 0 and b,, is bounded, then

lim a,b, = 0.
n—oo

Answer: T
Caution! The previous proof does not work.
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If a% is convergent, then a,, is convergent.

Answer: F

For a, = (—1)", a2 converges to 1 but a,, is divergent.

n
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If a,, is convergent, then |a,| is convergent.

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If |ay,| is convergent, then a,, is convergent.

Answer: F
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If a,, and b, are divergent, then a,, + b, is divergent.

Answer: F

The sequences a,, = n and b, = —n are divergent but a,, + b, =0
converges to 0.
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Limits and Continuity

Exercise (True or False)

If lim b,, = +o0, then
n—oo

Answer: F

For a,, = n? and b,, = n, we have lim b,, = +00 but
n—oo

an  n? -
— = — =n is divergent.
by, n
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Limits and Continuity

Exercise (True or False)

If a,, is convergent and lim b, = +o0, then
n—oo

Answer: T
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Limits and Continuity

Exercise (True or False)

If a,, is bounded and ILm b, = oo, then

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

Suppose a,, is bounded. Suppose b, is a sequence and there exists
N such that b, = a,, for anyn > N. Then b, is bounded.

Answer: T

27/338



Limits
Sequences

Limits and Continuity

Exercise (True or False)

Suppose lim a,, = a. Suppose b,, is a sequence and there exists
n—oo
N such that b, = a,, for anyn > N. Then

lim b, =
n—oo

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

Suppose a,, and b,, are convergent sequences such that a,, < b, for
any n. Then

hm ap < lim b,.
n—oo

Answer: F

Example

|

The sequences a, = 0 and b, = — satisfy a,, < b, for any n.
n

However

lim a, £ lim b,
n—oo n—oo

because both of them are 0.
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

Suppose a,, and b,, are convergent sequences such that a,, < b, for
any n. Then

lim a, < lim b,.
n—oo n—oo

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If im a,, = a, then
n—oo

lim ag, = lim agpq1 = a.
n—o0 n—oo

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If lim a9, = lim aoni1 = a, then
n—oo n—oo

lim a, = a.
n—oo

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If a,, is convergent, then

nh_)rrolo(anﬂ —ap) =0.

Answer: T
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Limits
Sequences

Limits and Continuity

Exercise (True or False)

If lim (ap4+1 — an) =0, then a, is convergent.
n—oo

Answer: F

Let a, = /n. Then lim (a1 — a,) =0 and a,, is divergent.
n—oo
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Limits

Sequences
Limits and Continuity

Exercise (True or False)

If lim (ap4+1 — an) = 0 and a,, is bounded, then a,, is convergent.
n—oo

Answer: F
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Limits
Sequences

Limits and Continuity

Let a > 0 be a positive real number.

+oo, ifa>1
lim a" = {1, ifa=1
n—o0

0, ifo0<a<1
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Limits and Continuity

2n — 5 22
lim —— = lim -~
n—oo 3n + 1 n—00 3 4 =
20
340
2
= 3 1
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Limits and Continuity

3 _9n 47 1-%+ 5
n—oo 4n° + 5n® — 3 n—00 4+E_n3
1
= 7 )
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lim
n—oo

Limits

3n —vV4n? + 1
3n+vVIn2+1

Sequences
Limits and Continuity

3 VA4An24+1
lim n

n—o00 g VIn2+1
n

3—4/4+ 5
lim ——
114)003_’_ /9+#

1
6
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Limits and Continuity

lim (n —vVn? —4n+1)

n—oo

_ (n—vn?—4n+1)(n+vn?—4n+1)
n—00 n+vn?2—4n+1

n? — (n® —4n +1)

= lim
n—00 n +4/n2 —4n +1
. 4dn — 1
= lim
n—oop 4 /n? —4n + 1
4— 1
= lim L
n— o0 4 1
I+4/1—-2+ -5
= 2
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In(n(1+ 7))

In(n* + 1)

Limits

Sequences
Limits and Continuity

noe In(r3(1 + &)

Innt + ln(l + #)

im
n—oo Inn3 4+ In(1 +
4Inn+In(1+

L)

nr)

im
n—o0 3Inn + In(1 +

In(14+-;)
44+
lim Inn

1
n—00 ln(l—i-ﬁ)

3+

Inn

)
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Limits
Sequences

Limits and Continuity

Squeeze theorem

Theorem (Squeeze theorem)

Suppose an, by, ¢, are sequences such that a, < b, < ¢, for any n
and lim a, = lim ¢, = L. Then b,, is convergent and
n—oo n—0o0

lim b, = L.

n—00
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Limits and Continuity

If a,, is bounded and lim b, = 0, then lim a,b, = 0.
n—oo n—oo

Proof.

Since a,, is bounded, there exists M such that —M < a, < M for any n.

Thus
—M|by| < anbp, < M|by|

for any n. Now

lim (—M|b,|) = lim M|b,| = 0.
n—roo

n—oo

Therefore by squeeze theorem, we have

lim a,b, = 0.
n—oo

Ol
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Sequences

Limits and Continuity

Find lim M.
n—00 n—(—l)”

Solution

|

Since (—1)" is bounded and 1i_>m — =0, we have
n—o0 v/M
1 n
lim (= )

n—00 \F

= 0 and therefore

o 140
n—oo /n — (—1)" n—oo 1 __ \&=
1=

= 1
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Limits and Continuity

n

2
Show that lim — = 0.
n—oo n!

Observe that for any n > 3,

4
and lim — = 0. By squeeze theorem, we have
n—oo n

Ol

v
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Limits
Sequences

Limits and Continuity

Monotone convergence theorem

Theorem (Monotone convergence theorem)

If a,, is bounded and monotonic, then a, is convergent.

Bounded and Monotonic = Convergent

46 /338



Limits
Sequences

Limits and Continuity

Example

Let a, be the sequence defined by the recursive relation

Ant+1 = Van +1forn >1

a; =1
Find lim a,.
n—oo
an
1

1.414213562
1.553773974
1.598053182
1.611847754
10 | 1.618016542
15 | 1.618033940

GOl WIS
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Limits and Continuity

Solution

Suppose lim a, = a. Then lim a,11 = a and thus
n—oo n—oo

a = Va+1
a2 = a+1
a?>—a—-1 = 0

By solving the quadratic equation, we have

_1+vE 15
2 2

a

It is obvious that a > 0. Therefore

1+5

> ~ 1.6180339887
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Sequences

Limits and Continuity

Solution

The above solution is not complete. The solution is valid only after

we have proved that lim a,, exists and is positive. This can be
n—oo

done by using monotone convergent theorem. We are going to
show that a,, is bounded and monotonic.

Boundedness

We prove that 1 < a,, < 2 for all n > 1 by induction.

(Base case) Whenn =1, we have a; =1 and 1 < a; < 2.
(Induction step) Assume that 1 < aj, < 2. Then

ape1 = VapF1>V/1+1>1
Ap+1 = \/ak—|—1<\/2+1<2

Thus 1 < a, < 2 for any n > 1 which implies that a,, is bounded.
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Limits and Continuity

Solution

Monotonicity

We prove that a,+1 > a, for any n > 1 by induction.

(Base case) Whenn =1, a; = 1, ay = \/2 and thus as > a;.
(Induction step) Assume that

ax+1 > ay (Induction hypothesis).

Then

ar+2 = +/ak+1+ 1> Vag +1 (by induction hypothesis)

= Qag+1

This completes the induction step and thus a,, is strictly increasing.
We have proved that a,, is bounded and strictly increasing. Therefore a,
is convergent by monotone convergence theorem. Since a,, > 1 for any

n, we have lim a, > 1 is positive.
n—oo

50 /338



Example

ﬁj|

+1

Let a, = ; where F, is the Fibonacci's sequence defined by

Fn+2:Fn+1+Fn
L =F=1

Find lim a,,.
n— o0

Limits

Sequences
Limits and Continuity

n an
1 1

2 2

3 1.5

4 | 1.666666666
5 1.6

10 | 1.618181818
15 | 1.618032787
20 | 1.618033999
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Sequences

Limits and Continuity

For any n > 1,
Q FuyoFn— Fr%+1 = (-t
e FnJrSFn - Fn+2Fn+1 = (71)n+1

v

@ Whenn =1, we have FsFy — FZ =2-1—12 =1 = (—1)2. Assume

Frt2oFy — Fiypp = (D)L
Then

Foy3Frp1 — Fliy = (Foy2+ Fip1)Fog1 — Fipo
= Fpro(Fra1 — Fria) + Fipy
—FyqoFy + F,?Jrl
= (=1)F*2 (by induction hypothesis)

Therefore FpyoFn — F2, | = (—1)"*! for any n > 1.

n

v
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Limits and Continuity

Proof

The proof for the second statement is basically the same. When
n=1,wehave FyF} — F3F; =3-1-2-1=1=(—1)2. Assume

Fy3F — FryoFip = (=1)F,

Then
FryaFry1 — FrysFryo = (Frgs + Fryo)Frqr — Fry3Frgo
= Fii3(Frr1 — Fig2) + FrpoFrp
= —Fpy3Fp + FrioFpq
= —(=1)* (by induction hypothesis)
_ (_1)k+2
Therefore F, 1 3F,, — FioFpy1 = (=1)"*! for any n > 1. O
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Limits and Continuity

Foni1
Let a, = — 2L
F,
© The sequence ay,as,as,ar,- -, is strictly increasing.
@ The sequence as, ay, ag,as, - - -, is strictly decreasing.

Proof.
For any £ > 1, we have

PP Forvo  For _ ForyoFop—1 — Fop1 For
For1 Fop Fop 1B, 1
_ & ! >0
PPy ForpiForoa
Therefore a1, as,as,ar,-- -, is strictly increasing. The second statement
can be proved in a similar way. O

v
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lim (a2k+1 - agk) =0
k—o0

Proof.
For any k > 1,

 Pope Fopq
A2k+1 — 2k = -

Fopr B
By — F22k+1 _ 1
F2k+1F2k ng-l,-lFQk
Therefore
kl)nolo(a2k+1 azk) el Fopy1Fop
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lim Fri1 = 1+v5

n—oo B, 2

Proof

First we prove that a,, = % is convergent.
an, is bounded. (1 < a,, < 2 for any n.)
ask+1 and agy are convergent. (They are bounded and monotonic.)

| A

lim (agk4+1 — agk) =0 = lim aggpr1 = lim agg
k—o0 k—oo k—o0

It follows that a,, is convergent and

lim a, = lim aggy1 = lim aoy.
n—00 k—o00 k—o00
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F,
To evaluate the limit, suppose lim ;,H = L. Then

n— oo n
F, F F F 1
L= lim 222 _ jjp —ett T o <1+ "):1+
n—oo Fi 11 n—o00 Tl n— 00 ol L
I2-L—-1=0

By solving the quadratic equation, we have

_1+v6 16
2 2

L

We must have L > 1 since a,, > 1 for any n. Therefore

1
L= +2\/5.

O
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Limits and Continuity

The limit can be calculate directly using the formula
F, =

at—pgr
a—ﬁ
1 1-v5\"
- = .
1+f75_1 2\/5

are the roots of the quadratic equation

where

2 —r—-1=0.
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Let
AN
n
1

1 11
b = ZE_1+1+§+§+“'+H

Then
Q a. <b, foranyn > 1.

@ a. and b, are convergent and

lim a, = lim b,
n— oo n—oo
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1 n
a, = <1+>
n
1 1 1
b o= Yo =ltldg gt
k=0
n Qp, bn
1 2 2

5 2.48832 | 2.716666666666
10 2.593742 | 2.718281801146
100 2.704813 | 2.718281828459
100000 | 2.718268 | 2.718281828459

The limit of the two sequences is the important Euler's number
e ~ 2.71828 18284 59045 23536.. . . .

which is also known as the Napier's constant.
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Definition (Convergence of infinite series)

We say that an infinite series

oo
Zak =a1t+a2+az3+---
k=1

is convergent if the sequence of partial sums

n

Sn= Y, ar =a1+az+as+ -+ a, is convergent. If the infinite series is
k=1

convergent, then we define

L

n
ar = lim s, = lim E ak.

£l
Il

1
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Limits and Continuity

Limits of functions

Definition (Function)

A real valued function on a subset D C R is a real value f(z)
assigned to each of the values z € D. The set D is called the
domain of the function.

Given an expression f(z) in x, the domain D is understood to be
taken as the set of all real numbers x such that f(z) is defined.
This is called the maximum domain of definition of f(z).

Definition (Graph of function)

Let f(x) is a real valued function. The graph of f(x) is the set

{(z,y) eR*: y = f(2)}.
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Let f(z) be a real valued function and D be its domain. We say
that f(z) is
@ injective if for any x1, 29 € D with 21 # x5, we have
f@1) # f(2).

@ surjective if for any real number y € R, there exists z € D
such that f(z) = v.

© bijective if f(x) is both injective and surjective.

Definition

Let f(z) be a real valued function. We say that f(z) is
Q even if f(—z) = f(x) for any x.
Q odd if f(—x) = —f(x) for any z.
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f(x) Domain Injective | Surjective | Bijective | Even | Odd
2r — 3 R v v v X X
x® — 222 R X v X X X
1
~ x#0 v X X X v
24711 R X X X X v
x
2x | ap =% 2l X v X X v
& —
1
= = z#0 X 4 X v X
Vid—2?2 | —2<x<2 X X X v X
1
x> —4 v X X X X
vr+4
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s
. 3
s
y=2r-3 2
p
.
.
T I I S N B
) T 7 3 3 3
2
a
-
. 2
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Limits and Continuity

Sequences

®
=2

€
3

a

3
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Definition (Limit of function)

Let f(z) be a real valued function.

© We say that a real number [ is a limit of f(z) at z = a if for any € > 0,
there exists § > 0 such that

if 0 < |z —a| <4, then |f(z) -] <e

and write
lim f(z) =1.

T—ra

@ We say that a real number [ is a limit of f(z) at +oo if for any € > 0,
there exists R > 0 such that

if £ > R, then |f(z) =] <€

and write
lim f(z) =1

x—+oo

The limit of f(z) at —oo is defined similarly.
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@ Note that for the limit of f(x) at x = a to exist, f(z) may
not be defined at = a and even if f(a) is defined, the value
of f(a) does not affect the value of liin f(x).

@ The limit of f(x) at = a may not exist. However the limit is
unique if it exists.
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lim f(x)

r—a
does not exist
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Theorem (Sequential criterion for limits of functions)

Let f(x) be a real valued function. Then

lim f(z) =1

r—a

if and only if for any sequence x.,, of real numbers with lim x, = a, we
n—oo

have

lim f(z,)=1.

n— oo

71/338
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Let f(x), g(x) be functions such that lim f(x), lim g(x) exist and

T—a T—ra

¢ be a real number. Then
Q lim((z) + g(x)) = lim f(z) + lim g(x)
@ lim cf(z) = clim f(x)
© lim f(2)g(z) = lim f(z) lim g(z)

(@) lim f(z)

= if li 0.
r—a g(x) il_rgg(m) 4 xgr}lg(w) ?é
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Let g(u) be a function of u and u = f(x) be a function of x.
Suppose

(1) ;gréf(x) =b € [—00,+0]

2] lig})g(u) =1
© f(x) #bwhenx+#aorgd) =1l

Then
lim (g o f)(z) = L.

r—ra
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62° +22° — 5 B2 =
1. lim i el lim ?,)57”;
z—+oo 223 — 3z + 1 z—+00 2 — 5 %
x x
. 642y —5y°
= lim ——
y—=0 2 — 3y + 13
= 3
1\" 1\"
2. lim (1—}-2) = lim <1+)
n—00 n m—r00 m
= e
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Theorem (Squeeze theorem)
Let f(x),g(x), h(x) be real valued functions. Suppose

Q f(z) < g(x) < h(z) for any x # a on a neighborhood of a, and
@ lim f(z) = lim h(x) = 1.

Then the limit of g(x) at x = a exists and lim g(z) = .

r—a

Theorem

| A

Suppose
Q f(x) is bounded, and

Q lim g(z) =0
r—ra

Then lim f(z)g(z) = 0.

r—a
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Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The exponential function is defined for real number z € R by
n
e = lim (1 + f)
n—oo n
z2 3 ozt
= l+a++5+ g+

@ It can be proved that the two limits in the definition exist and
converge to the same value for any real number z.

@ €% is just a notation for the exponential function. One should
not interpret it as ‘e to the power x'.
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For any z,y € R, we have

TV = e%el,

Caution! One cannot use law of indices to prove the above identity.
It is because e” is just a notation for the exponential function and
it does not mean ‘e to the power z'. In fact we have not defined
what a® means when z is a real number which is not rational.
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@ c” > 0 for any real number x.

@ ¢° is strictly increasing.

@ Foranyz >0, wehavee® >1+x > 1. If z <0, then

e = ea:+(7z) _ 60 -1
1
e’ = >0
e—=

since e~ ® > 1. Therefore ¢” > 0 for any z € R.

@ Let 2,y be real numbers with z < y. Then y — x > 0 which implies
€Y% > 1. Therefore
V= ot — e s 7,

(& (&

\
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Definition (Logarithmic function)

The logarithmic function is the function In : RT — R defined for
z > 0 by
y=Inzif e¥ = x.

In other words, In z is the inverse function of e*.

It can be proved that for any x > 0, there exists unique real
number y such that e¥ = z.
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QO nhzy=Inz+1Iny

(2] nZ =Ilnz—Iny
Yy
© Inz" = nlnx for any integer n € 7.

Proof.

Q Letu=Inz and v=1Iny. Then z =%, y = e” and we have

Ty = ele?l — eu—i-v _ elnr—i-lny

which means Inzy = Inx + Iny.

Other parts can be proved similarly. O
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7
7
T 7/
y=e /
4 7
7/
7
7
/7
7/
P y=Inx
2
-2 o
4
4
7/
4
7
7/
7 -2
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Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number z € R
by the infinite series

-1 $2 l’4 $6
COSxr = —g—i‘m g‘i‘
. . l‘3 $5 337
R

@ When the sine and cosine are interpreted as trigonometric
ratios, the angles are measured in radian. (180° = 7)

@ The series for cosine and sine are convergent for any real
number z € R.
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Yy =sinw
Y =CoST |
'
m T 3 21
2 2
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There are four more trigonometric functions namely tangent, cotangent,
secant and cosecant functions. All of them are defined in terms of sine
and cosine.

Definition (Trigonometric functions)

i 2k +1

tanz = Smx,form;«é i m, keZ
cos T

cotx = C,OS$7 forx £ km, keZ
sin x
1 2k +1

secx = , for x # + m, keZ
cos T
1

cscx = —, forx£km, kEZ
sin
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o
Q
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Limits and Continuity

cos?x +sin? z = 1; sec?2z — tan?z = 1; csc?2z —cot?z =1
cos(x £+ y) = cosx cosy F sin z sin y;
sin(z £+ y) = sinx cosy £ cos z siny;
tanz + tan
tan(z £ y) = A
1 Ftanxtany

2 2

cos2x = cos?x —sin?x = 2cos?x — 1 =1 — 2sin? x;
sin 2x = 2sinx cos x;

2tanx
tan2rx = ————
1—tan?z
2cosx cosy = cos(z + y) + cos(z — y)
2coszsiny = sin(z + y) — sin(z — y)
2sinzsiny = cos(z — y) — cos(z + y)

= TTY z—y
costrcosy—ZCos( z )cos( 5 )
cosT — cosy = —2sin (%) sin (%)
sinz + siny = 2sin (%ﬂ) cos ( 52

. R _ Tty 2 T—y
sinx — siny = 2 cos ( > ) sin (=
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Definition (Hyperbolic function)

The hyperbolic functions are defined for z € R by

e _|_6—$ .5(52 $4 $6
= =444
cosh x 5 + o1 + 1 a4 ol 4
et — efx 33‘3 1,5 $7
inh _ e —e " v o T
sinh z 5 T+ 3] + + 7 + -
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3
y = coshx
2
e’ .
y="73 y = sinhz
3 2 1 1 2 3
1
2
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Theorem (Hyperbolic identities)

©® cosh’z—sinh?z=1

@ cosh(z + y) = coshx coshy + sinh z sinh y
sinh(z + y) = sinh  cosh y + cosh 2 sinh y

@ cosh2z = cosh? z + sinh? 2 = 2cosh®? 2z — 1 = 1 + 2sinh? x;
sinh 22 = 2 sinh x cosh
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r_1
0 lms - —1
x—0 e
In(1
© lim 2Ut3) _

x—0 X
sin x

© lim =1

z—0 X V.
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Forany —-1<z <1

IA

Y

" 2
and lim (14 = +
z—0 2

with z # 0, we have

2 xs 4
S
T4 +(m2+x—2+w—2+ >:1+§+x—2
8 716 2" 2
1‘2 1‘3
I et e
1+——($2+w—2+w—2+ ): o
2 \4 "8 16 2 2
Ly =lm@+2- “’:) L e e ©
2 z—0 2 2 z—=0 T
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Figure: lim —— =1
z—0
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In(1+x)

Proof. lim
x—0 av

Let y =In(1 4+ z). Then

and z — 0 as y — 0. We have

g 2A+2) Y
z—0 x y—0e¥ — 1
= 1

Note that the first part implies lim (e — 1) = 0.
y—0
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Proof. lim -
z—0 €T
Note that
sne | o ot a0 at o
z 31 5 79 11! ’

For any —1 < z < 1 with = # 0, we have

: 2 4 6 8
S 1 (2 _Z )\ _ (£ _ % —...<1
T 3! 5! 7! 9!

R I 2 R N
r 6 517! 9! 11! - 6
22
and lim 1 = lim (1 — =) = 1. Therefore
z—0 z—0 6
lim 228 — g,
z—0 X
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y=1
sinx
y:
X
4 3 2 1 o0 1 2 3 4
-1
o
y=1-—=
. 6
. . sinz
Figure: lim =1
z—0 I
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Let k be a positive integer.

k
Q@ lim = =0
z——+o00 er
(In x)k

Q@ lim

T—+00 €T

=0
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@ For any = > 0,

22 23 Lh+1
T =1 — i NPT e —
cEltrogtyt (k + 1)!
and thus .
k+1)!
0 < i < g
&® i
k+1)!
Moreover lim u = 0. Therefore
T—r+00 T
L at
lim — =0.

x——+oo eT
@ Let z=¢Y. Then z — +00 as y — +co and Inz = y. We have

Inz)* %
im 8Oy ¥
—+00 xT y——+oo e¥Y
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2 _ —
L lim & 16 — R (x —4)(z+4)(vVz +2)
z—4 [z — 2 z—=4  (Vz—2)(Vz+2)
—4 4 2
o G D@ 9(E )
x—4 rx—4
= lim(z+4)(vVZ+2) =32
r—4
2x_|_e —Zl‘4 3+e—x_m4e—2:c 3
2. lm ———— = lim = —
z—+o0 4e2% — e + 2z4 otoo 4 —be~® 4 2zxde—22 4
In(2e4® + 23) " 4z +In(2 + 23e4®)
.o lim ————— = im
z—+o00 In(3e2® + 4x°) z—+00 2z + In(3 + 4xde—2%)
44+ ln(2+x36741)
= lim — = _9

T—+o00 2+ 1n(3+4z e—2x)
i

. . (z + V22 — 2z)(z — V22 — 21)
2 _ =
4. . lim (z+va® —22) . lim PRy =

. 2x
= lim ——————
T——00 g — — 2z

= lim

r—r— 001_"_\/7

o’
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. sin 6 — sinx
5. lim

z—0 sin4x — sin 3z

. 1l—cosx
6. lim ———

z—0 ztanz

2
7. lim el
z—0 In(1 + 3x)
8. lim zIn(1l + sinz)

z—0 1 —/cosx

Limits
Sequences

Limits and Continuity

6sin6x _ sinx 6—1
lim 52 L= =5
z-—0 4sindz _ 3sin3z 4-3
4x 3x
1 —cosz)(1l+ cosx
Toora cos T
1— 2
i ( : cos® x) cos T
z—0 zsinz(1 + cos x)
) sin x cos T 1
lim — ==
z—0 aw 1+ cosz 2
.2 e -1 3z 2
lim — - . — =
z—0 3 23 In(1+3z) 3
I z(1+ y/cosz)(1 + cosz) In(1 + sin z)
im
z—0 1—cos?zx
In(1 i
lim — - w(l + y/cosz)(1 + cosz)
z—0 sin x sin x
4
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Continuity of functions

Definition (Continuity)

Let f(x) be a real valued function. We say that f(z) is continuous at
x =a if

lim f(x) = f(a).

T—ra

In other words, f(x) is continuous at « = a if for any € > 0, there exists
6 > 0 such that

if |z —al <4, then |f(z) — f(a)| <e.

We say that f(x) is continuous on an interval in R if f(z) is continuous
at every point on the interval.
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Let g(u) be a function in v and u = f(x) be a function in .
Suppose g(u) is continuous and the limit of f(z) at x = a exists.
Then

lim (g o f)(x) = lim g(f(z)) = g (1im f(2)).

r—a T—ra r—a

r L u=fa) L (g0 @) = g(u) = g(f(x)
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@ For any non-negative integer n, f(x) = z™ is continuous on R.

@ The functions e*,cosx,sinx are continuous on R.

© The logarithmic function Inx is continuous on R™.
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Suppose f(x), g(x) are continuous functions and c is a real
number. Then the following functions are continuous.

Q f(z)+g(z)

Q cf(x)

Q f(z)g(x)
f(z)

° g9(z)

Q (fog)(x)

at the points where g(x) # 0.
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The absolute value of = € R is defined by
-z, ifz<0
=] = )
x, ifx>0
i y = |zl
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Example (Piecewise defined function)

22+2, ifz<1
| vesa] YR cxcs
T—z, ifz>5

~

a 1 5
lim f(z) 3 2
T—a
lim f(z) 0 2
z—at
lim f(z) | does not exist | 2
T—a
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—r—1,ifr<—1
r+1, if —1<x<0
—r+1,if0<z<1
rz—1, ifz>1

y=|lel — 1 =

3 2 1 i 1 2 3 ) 5 6
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A function f(x) is continuous at x = a if

lim f(z)= lim f(z)= f(a).

z—a™t T—a~

The theorem is usually used to check whether a piecewise defined
function is continuous.
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The following functions are not continuous at x = a.

y=fx)
\ a
Y a
lim f(x) does not exist 1i_rp f(z) does not exist
.—/
y=f(z) y = f(z)
T o ‘ a
lim f(@) £ lim f(2) lim f(2) # f(a)
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Given that the function

20— 1 ifz <2
f(®)=<a ifz=2
2240 ifz>2

is continuous at x = 2. Find the value of a and b.

| N

Solution
Note that
lim f(z) = lim 2z—-1)=3
rz—2— r—2—
lim f(z) = lim (z®+b)=4+0b
z—2+ z—2+
f2) = a

Since f(x) is continuous at x = 2, we have 3 = 4 + b = a which implies a = 3
and b= —1.
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Prove that the function

is not continuous at z = 0.

Proof.

|

m form=1,2,3,.... Then nll—g;lomnzoand

F(zn) = sin ((Qn ; 1)7r>

Let z,, =

— (1™

Thus lim f(z,) does not exist. Therefore f(z) is not continuous at
n—oo
z=0. O
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0.1 I v 015 02 025 03

15

f(z) is not continuous at = = 0.
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Theorem (Intermediate value theorem)

Suppose f(x) is a function which is continuous on [a,b]. Then for
any real number n between f(a) and f(b), there exists £ € (a,b)
such that f(§) = 7.

(0, £(b))

[ e

Q |---
[
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Theorem (Extreme value theorem)

Suppose f(x) is a function which is continuous on a closed and
bounded interval [a,b]. Then there exists a, § € [a,b] such that

fla) < f(x) < f(B) for any x € [a, b].

) (b, £())

fla)
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Differentiable functions

Definition (Differentiable function)
Let f(x) be a function. Denote

fa) =t Ha 1) = S (@)

h—0 h

and we say that f(z) is differentiable at x = a if the above limit
exists. We say that f(x) is differentiable on (a,b) if f(z) is
differentiable at every point in (a,b).

The above limit can also be written as

) — 1 £ @)

T—a Tr—a
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(a+h,fla+h))

. +h)—
slope of tangent = }lm M

1—0

a \ a+h

Figure: Definition of derivative
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slope of tangent at z =2 is — 1
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Application of Differentiation

Theorem

If f(x) differentiable at x = a, then f(z) is continuous at x = a.

Differentiable at x = a = Continuous at z = a

| A

Proof.
Suppose f(z) is differentiable at = a. Then

B () — o)) = T (M) —)

T—a T—a xr—a
= lim (M) lim (z — a)
r—ra Tr—a r—ra
= f(a)-0=0
Therefore f(x) is continuous at = = a. O

Note that the converse of the above theorem does not hold. The function

f(z) = |z| is continuous but not differentiable at 0.
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The following functions are not differentiable at = = a.
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Application of Differentiation

Q f(z)=¢ f’(O):’ILiir%)eh;eo :}llii%eh_l =1
Q f(z)=Inu f’(l):}llig})ln(l-'_};)_lnl :}llig})ln(l-l-h) =
Q f(z) =sina: f’(O):%Er%)m%mO:}llig%SiEhzl.
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4 —1, ifx <1

2 . is differentiable at x = 1.
ar® +bxr, ifzx>1

Find the values of a,b if f(z) = {

Solution: Since f(x) is differentiable at x = 1, f(x) is continuous at z = 1 and we
have

lim f(z) = f(1) = lim (az®+bzx)=a+b=23.
z—17+ z—17+
Moreover, f(z) is differentiable at = 1 and we have

F(L+h) — £(1) @1 +h)—1) =3 _

lim ————= = lim 4
h—0— h h—0— h
_ 2 _ _
lim. M — lim a(l+h) b(1+h)—3 =2 +b
h—0+ h h—0+ h
Therefore atb=3 = a=1
2a +b=4 b=2
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Definition (First derivative)

Let y = f(x) be a differentiable function on (a,b). The first
derivative of f(z) is the function on (a,b) defined by

y _ gy fl@th) = f(z)
4@ =l B '

Theorem

Let f(z) and g(x) be differentiable functions and ¢ be a real
number. Then

Q (f+9)(z)=[f(x)+d(z)
Q (cf)(z) = cf'(x)

N
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Q@ ¢ =¢"forzeR
dx
d 1

Q@ —Inzx=—forx >0
dx T

Qo icosx:—sinx forz € R
dx

Q isinazzcosa: forz € R
dx
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Application of Differentiation

Let y = z™. For any x € R, we have

dy — lim (z+h)" —z"
dx h—0 h
. (@+h—z)((z+h)" L+ @+h)" 2+ - 42"}
h—0 h

= lim(z+h)" 1+ @+h)" 2+ . £z
h—0

= ng" !

Note that the above proof is valid only when n € Z* is a positive
integer.
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(Alternative proof)

&y
dx

Derivatives
Differentiation Mean value theorem
Application of Differentiation

h—0 h h—0

- Ly +x—2+x—3+x—4+
T 4 RN TR TR

— 0+1 2 3z® 4B
R T A TR
_ 1 332 33’3

= l+zt+ o+ +

= ez

<

In general, differentiation cannot be applied term by term to infinite series. The

second proof is valid only after we prove that this can be done to power series.

124 /338



Derivatives
Differentiation Mean value theorem

Application of Differentiation

Proof

d 1
(— Inz = 7) Let f(x) =Inz. For any x > 0, we have
dx az

h
dy . In(z+h)—Inz . In <1+E> 1
— = l1m = 1m = —¢
dzx h—0 h h—0 h T

d
(d— cosz = fsinx) Let f(x) = cosxz. For any z € R, we have
x

_ —2sin (z + b)) sin (B
dy — lim cos(z + h) — cosz . ( 2) (2) I
dr  h—0 h h—0 h

d
(d— sinx = cos cc) Let f(z) = sinz. For any x € R, we have
z

h : h
dy . sin(z 4 h) —sinz _ 2cos (m+ 5) s (§>
— = lim ———— = lim = cos .
dx  h—0 h h—0 h
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Application of Differentiation

Definition

Let a > 0 be a positive real number. For x € R, we define

aw zlna
a =€ o

| A

Theorem

Let a > 0 be a positive real number. We have

Q oY =a%aY forany z,y € R

Q iaz =a"Ina.

d

Proof.

| &
N

o a:c+y _ e(w+y)1na _ exlnaeylna = a®aY?

d d
e zziezlna:ezlnalna:azlna

%a dx

O

4
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Application of Differentiation

Let f(x) = |z| for z € R. Show that f(x) is not differentiable at « = 0.

Observe that
(h)—f0 _ . —h_
hli%lf h B hlggf Rt
T fh) =) _ T h_ 1
h—0%+ h h—0t h
Thus the limit .
i S0 = 1)
h—0 h
does not exist. Therefore f(x) is not differentiable at « = 0. O
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Application of Differentiation

Figure: f(x) = |z| is not differentiable at z =0

128/338



Derivatives
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Application of Differentiation

Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a,b). Then
Q f/(z) is differentiable on (a,b).
Answer: F

@ f'(x) is continuous on (a,b).
Answer: F

© f/(z) is bounded on (a,b).
Answer: F
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Let f(z) = |z|z for z € R. Find f'(x).

Solution: When = < 0, f(z) = —2? and f'(z) = —2z. When = > 0,
f(z) = 2% and f'(z) = 2. When 2 = 0, we have

im L = SO [BR=0 || =0
h—0 h h—0 h h—0
Th "(0) = 0. Theref
us f'(0) erefore Cor ife<0
fl(x) = 0, ifx=0
2z, ifz >0

2|x|.

Note that f'(x) = 2|z is continuous at = = 0.
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Application of Differentiation

o f(z) is differentiable at z = 0. (f(x) is differentiable on R.)
f/(x) is continuous on R.

@ f’(z) is not differentiable at z = 0.
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Application of Differentiation

Let

@ Find f'(z) for x # 0.

@ Determine whether f(z) is differentiable at = = 0.

Solution
1. When x # 0,

1 1
f'(x) =sin = — = cos ~.
® @ @

2. We have

- hsin +

lim f(h) = £(0) = lim Mh _ lim sin 1
h—0 h h—0 h h—0 h

does not exist. Therefore f(x) is not differentiable at = = 0.

132 /338



Derivatives
Differentiation Mean value theorem
Application of Differentiation

in ( ,1(—.“’ ! if &
j"(;l‘) _ sin (;r) . o (;r) yifax#0

undefined, ifax=0

e f(z) is not differentiable at x = 0.
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Application of Differentiation

Let

O Find f'(z).

@ Determine whether f’(x) is continuous at x = 0.

1. When x # 0, we have

1 1 1 1 1
f'(x) = 2z sin — + 2° <—2 cos ) = 2rsin — — cos —.
x i 5 5 5
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Application of Differentiation

Solution
2. When x = 0, we have

_ h%sin L
£ (0) = lim [ =50 = lim 222k _ iy hsinl.
h—0 h

h—0 h h—0

Since }llin%h =0 and |sin +| < 1 is bounded, we have f'(0) = 0. Therefore
—

1 1
2rsin — —cos —, ifx#0
" a

£(w) = 20
07 ifx=0

Observe that
lim f'(z) = lim (2:5 sin 1 cos l)
xz—0 X

z—0 T

does not exist. We conclude that f'(z) is not continuous at z = 0.
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@ f/(0) =0 (f(z) is differentiable on R)

@ f’(z) is not continuous at =0
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Differentiation Mean value theorem
Application of Differentiation

1 2 1
f’(;r) _ 2x sin <ﬁ> 3 cos <F> Jifax#0

0, ifz=0

@ f/(0) =0 (f(x) is differentiable on R)
@ f/(x) is not continuous at z =0

@ f’(z) is not bounded near z =0
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Application of Differentiation

f(z)is f(z) is f'(=) is
f(x) continuous differentiable continuous
atz =0 atz =0 atz =0
|| Yes No Not applicable
||z Yes Yes Yes
1
T sin <5) f(0)=0 Yes No Not applicable
2. (1
zésin | = ); f(0)=0 Yes Yes No
7
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Application of Differentiation

Example
The following diagram shows the relations between the existence of limit,
continuity and differentiability of a function at a point a. (Examples in the
bracket is for a = 0.)
Second differentiable (f(z) = SH;I; f(0)=1)
I
Continuously differentiable (f(z) = |z|z)
I
Differentiable (f(x) = x?sin(z™1); £(0) = 0)
I
Continuous (f(z) = |z|)
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Differentiation Mean value theorem
Application of Differentiation

Rules of differentiation

Theorem (Basic formulas for differentiation)

d

— " =na" L

dx

d

—e® =¢” —Ilnx =—

dz dzx T

— sinx = cosx —cosx = —sinz
dx dx

— tanx = sec? x —cotx = —csc?x
dx dx

—secxr =secrtanx —— cscx = —csScxcotx
dx dx

— coshz = sinh z — sinhz = cosh z
dx dx
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Differentiation

Derivatives
Mean value theorem
Application of Differentiation

Theorem (Product rule and quotient rule)

Let w and v be differentiable functions of x. Then
d d'u du
—uv +v
dx da: dz
du _ v -ug
dx v v?2

o

f(z) and v = g(x).

Let u =

d
—uv

dx

o J@ g+ ) — f(@)e(@)
h—0 h

_ . (fl+h)gz+h)—flz+h)g(z) [flz+h)g(z)— f(z)g(z)

- &gno( h + h )

— o (e LRI ) S )= )

_ dv du

= Y m
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Application of Differentiation

fath) _ f(@)
du o 9EER) "~ g(@)
v h—0 h

dx

hg(z)g(x + h) hg(z)g(x + h)
S@th) = f@) o gt h) - o)
1) S @ye@+ h) )

. <f(w + hg(@)—f(2)g(x) _ f@)g(a + hH(m)g(m))
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Application of Differentiation

Theorem (Chain rule)

Let y = f(u) be a function of uw and uw = g(x) be a function of x.
Suppose g(z) is differentiable at x = a and f(u) is differentiation at
u=g(a). Then fog(x) = f(g(x)) is differentiable at x = a and

(fo9)(a) = f'(9(a))g'(a).

In other words,
dy _dy du

de  du dx’
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Differentiation Mean value theorem

Application of Differentiation

(fog)(a)
o Jeet ) = f(g(e))
h—0 h
_ o Jle ) = fg(@)) | glath) — g(a)
h—0  g(a+h)—g(a) hr—0 h
L fe@) k)~ fle(@) | glath) —g(@)
k—0 k h—0 h
(Note that g(a + h) — g(a) = k — 0 as h — 0 because g(x) is continuous.)
= f'(9(a))g'(a)

<

The above proof is valid only if g(a + k) — g(a) # 0 whenever h is sufficiently close to
0. This is true when g’(a) # 0 because of the following proposition.

Proposition

Suppose g(z) is a function such that g’(a) # 0. Then there exists § > 0 such that if
0 < |h| < 4, then
gla+h) —g(a) # 0.
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Application of Differentiation

When ¢'(a) = 0, we need another proposition.

Proposition

Suppose f(u) is a function which is differentiable at w = b. Then there exists
0 >0 and M > 0 such that

|f(b+ h) — f(b)] < M|h| for any |h| < 0.

The proof of chain rule when ¢'(a) = 0 goes as follows. There exists § > 0
such that

|f(9(a+h)) = f(g(a))| < Mlg(a+h) = g(a)] for any |h| < 4.

Therefore
im [F@ ) = Jg(@) | gy 9leth) —gla)] _
h—0 h h—0 h

which implies (f o g)’(a) = 0.
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Application of Differentiation

The chain rule is used in the following way. Suppose u is a
differentiable function of . Then
%un — nun—l%
d , o Ldu
dx T dx
—Ihu = 1 du
dx u dx
d . du
T cosu = —sin u%
. du
T sinu = cos u%
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Example

ISH
ISH

1. —sin®z

dx

d
E

2. dx

4 _1
" dx (Inx)?

4. % In cos 2x

5. %tan\/l—l—ax2

6. i sec® V/sinz
dx

Derivatives
Differentiation Mean value theorem

Application of Differentiation

3sin?z— sinz = 3sin? z cos z

dx
f —/T = eV®
dz 2./z
_ 8 Y. 2
(Inz)3 dx z(lnx)3
cosl2x (—sin2z)-2=— 2;)1;22; = —2tan 2z

2./ 2
secQ\/l—l—imz-il op = TR VT AT i
2v/1 + z2 V1 + z?

: - - 1
3sec? /sin x(sec v/sin z tan v/sin 1) ——— - cos =

2v/sin x
3sec? v/sin x tan v/sin z cos x
2v/sin x
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Differentiation Mean value theorem

Application of Differentiation

7. % cos® xsin = cos*zcosz + 4cos® x(—sinz)sinz
= cos®x —4cos® xsinx
d sec2x _ In=z(2sec2ztan2z) — sec 2z(L)
"dr Inz (Inx)?
_ sec2x(2ztan2xlnz — 1)
z(lnz)?
g, clane _ e (xsec%c;tanx)
z

2(1y _ 2x
10. sin (L) _ COS( i a2 ) Vv1i+a2(1) lnx(Q\/m)
- \WiIra it —

_ 1+ 22 —2°lnzx COS( Inz )
z(1+22)3 VI+a?
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Application of Differentiation

Definition (Implicit functions)

An implicit function is an equation of the form F(z,y) = 0. An implicit function may
not define a function. Sometimes it defines a function when the domain and range are
specified.

Theorem

| \

Let F(z,y) = 0 be an implicit function. Then

oF | OFdy

ox Oy dx
and we have
d OF
W _ _oa
OF °
dx By

Here g—p is called the partial derivative of F' with respect to x which is the derivative

of F' with respect to x while considering y as constant. Similarly the partial derivative

%—5 is the derivative of F' with respect to y while considering x as constant.
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Application of Differentiation

Example

|

Find d—y for the following implicit functions.
5

Q 2®—ay—azy’ =
@ cos(ze¥) +z2tany = 1

| A

Solution
L2w—(y+ay)— (2 +2oyy’) = 0
zy’ +2zyy = 2z —y—y?
y 22—y—y’
x + 2xy
2. —sin(xeY)(e¥ + weVy') + 2z tany + x2sec2yy’ = 0

x? sec? yy' — xe¥ sin(ze¥)y’

e¥sin(ze¥) — 2z tany
J = eYsin(ze¥) — 2z tany

x2 sec? y — zeY sin(zeY)
i
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Application of Differentiation

Suppose f(y) is a differentiable function with f'(y) # O for any y. Then the inverse
function y = f~1(x) of f(y) is differentiable and
—1Nf 1
U@ = sraemy
In other words,
dy _ 1
de Z—z
@) = =
FEH@NEY @) = 1
—1y/ _ 1
U= @)
D/
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Derivatives
Differentiation

Mean value theorem
Application of Differentiation

Q Forsin':[-1,1] - [-%, T,
272
Zsin g = 1
dx T VI—z2
@ Forcos™':[-1,1] — [0,7],
L P
d VI—g?
@ Fortan™':R — [—E, E],
2° 2
itanflgv— L
dz 1+ 22
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Differentiation Mean value theorem
Application of Differentiation

dx cosy
1
= ———— (Note: cosy > 0 for —

1 —sin?y

1
V1 — x2

The other parts can be proved similarly.

S
IN
<
IN

SE
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Differentiation Mean value theorem

Application of Differentiation

Example

|

Find &Y if y = 2°.
T

| Q‘
A

Solution

There are 2 methods.

Method 1. Note that y = 2® = e*'™®. Thus
dy _
der

Method 2. Taking logarithm on both sides, we have

exlnx(l +1Inz) =z"(1 + Inz).

Iny = zlhz

1dy = 1l+nx

y dx

d

d—z = y(1+Inx)
= z"(1+Inz)

v
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Application of Differentiation

Let u and v be functions of 2. Show that

/ —1 !
—u’ =u'v lnu+u’" ou.

dx
We have
i ’LLﬂ _ i ev Inu
dx  dx

!
= e”l““(vllnu%—wg)
i
v’
= uv(vllnu—i——)
w

/ —1 ’
uw'v' Inu+u’ Tvu
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Differentiation Mean value theorem
Application of Differentiation

Second and higher derivatives

Definition (Second and higher derivatives)

Let y = f(z) be a function. The second derivative of f(z) is the function

dy _d (dy

dz? ~ dx \ dzx
The second derivative of y = f(z) is also denoted as f”(z) or y”. Let n be a
non-negative integer. The n-th derivative of y = f(z) is defined inductively by

dny d dnfly

-— = — f >1
dxm dx (d:z:”*1 orn=
doy

o

The n-th derivative is also denoted as (™) (z ) or y(™. Note that

FO(z) = f(2).
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Differentiation Mean value theorem
Application of Differentiation

2

Find a4 for the following functions.
dx2

© v =In(secz + tanz)
Q?-—y?=1

p 1

1. ¥y = ————(secztanz + sec?x)
secr + tanx

= secx
y’ = secxtanz
2. 2z —2yy’ = 0
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Differentiation Mean value theorem

Application of Differentiation

Theorem (Leinbiz's rule)

Let uw and v be differentiable function of x. Then

n

(un)™ =3 (Z) (18 ()

k=0

where (Z) = ﬁlk), is the binormial coefficient.

(W)@ = u©y©
@)@ = uMyO 4 4@y

@)@ = u@yO 4 2,DyD | 4Oy

(@)® = u®y© 4 3Dy 4 3,Dy@ 4 0@

@)@ = u®y© 4 4@y 4 6uDp® 4 4y M@ 4 4 Oy®

158 / 338



Derivatives
Differentiation Mean value theorem

Application of Differentiation

Proof

We prove the Leibniz's rule by induction on n. When n = 0,
(uv)® = uv = u v, Assume that for some nonnegative m,

(uv)<m) = Z (?) u(m=k) k),

k=0
Then
() D)
= —x(uv)(m)
_ A~ (m) ek, )
- E5 ()

=N

-3 m>(u<mk+1>v(k>+u(mk>v<k+1>)
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Differentiation Mean value theorem
Application of Differentiation

m m—+1
= S (M )utmry® Mmoo m— (k1) (k)
k k—1

m m+
_ Z (TIZ Mk, (k) + Z <km1> Mk, (k)
k=1

m—+1 7 -
_ (m—k+1), (k)
k=0
+1
_ N <m+ 1) (m+1-k) (k)
= k u v

Here we use the convention (™) = (,/;) = 0 in the second last equality. This

completes the induction step and the proof of the Leibniz's rule. O
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Application of Differentiation

Let y = z%e>*. Find y(") where n is a nonnegative integer.

Solution

Let u=a? and v = ¢**. Then v® = 22, u® =2z, u® =2 and v® =0 for
k > 3. On the other hand, v'®) = 3*¢3® for any k > 0. Therefore by Leibniz’s
rule, we have

g = (g)uw)qj(nur <Tll>u(1>v<n—1>+ (Z)u(%("‘Q)

= 2%(3"€*) 4+ n(2z) (3" ') + %(z)(g”*%“)

= (3" +2-3" 'nz+3"*(n® —n))e*”
3"7%(92° + 6nz 4+ n® — n)e®”
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Application of Differentiation

Mean value theorem

Suppose f(z) is a function which is differentiable on (a,b).

@ If f(z) attains its maximum or minimum at z = ¢ € (a, b), then
7o) =o.
Answer: T

@ If f'(c) =0, then f(x) attains its maximum or minimum at
z=c€ (a,b).
Answer: F

@ If f'(z) =0 for any = € (a,b), then f(x) is constant on (a,b).
Answer: T

@ If f(z) is strictly increasing on (a, b), then f'(z) > 0 for any x € (a,b).
Answer: F

@ If f'(z) > 0 for any (a,b), then f(z) is strictly increasing on (a,b).
Answer: T

@ If f(z) is monotonic increasing on (a,b), then f'(x) > 0 for any
z € (a,b).
Answer: T
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Application of Differentiation

Theorem
Let f be a function on (a,b) and ¢ € (a,b) such that

© 7 is differentiable at x = c, and

Q either f(z) < f(c) for any = € (a,b), or f(z) > f(c) for any z € (a,b).
Then f'(c) = 0.

Proof.

Suppose f(z) < f(c) for any x € (a,b). The proof for the other case is essentially the
same. For any h < 0 with a < ¢+ h < ¢, we have f(c+ h) — f(c) <0 and h is

negative. Thus
RS
m —

= >0
h—0— h

I'(e) >
On the other hand, for any h > 0 with ¢ < ¢+ h < b, we have f(c+ h) — f(c) <0
and h is positive. Thus we have

<0

o= 1w LEER =S

h—0t h

Therefore f/(c) = 0. O

v
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Application of Differentiation

f/(z) > 0 for any =

Strictly increasing

0, ifz <0
S o Y=9{ o ..
Monotonic increasing < f'(z) > 0 for any = { i 2> 0
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Application of Differentiation

Theorem (Rolle's theorem)

Suppose f(x) is a function which satisfies the following conditions.
Q /(=) is continuous on [a, b].
@ f(x) is differentiable on (a,b).
Q f(a) = f(b)

Then there exists £ € (a,b) such that f'(§) = 0.
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Application of Differentiation

Proof.
By extreme value theorem, there exist a < a, 8 < b such that

fla) < f(x) < f(B) forany z € [a, b].

Since f(a) = f(b), at least one of a, 8 can be chosen in (a,b) and
we let it be £&. Then we have f/(§) = 0 since f(x) attains its
maximum or minimum at &. L]

o’
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Application of Differentiation

Theorem (Lagrange’s mean value theorem)

Suppose f(x) is a function which satisfies the following conditions.
© f(z) is continuous on |[a,b).
@ f(x) is differentiable on (a,b).

Then there exists £ € (a,b) such that
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Differentiation

Derivatives
Mean value theorem

Let g(z) = f(x) ~ T =T ) Since g(a) = o) = f(a),
by Rolle’s theorem, there exists € (a,b) such that
gE =0
po- 010 _
o - 101

Application of Differentiation
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Application of Differentiation

Let f(x) be a function which is differentiable on (a,b). Then f(x) is
monotonic increasing if and only if f'(z) > 0 for any = € (a,b).

Proof. Suppose f(x) is monotonic increasing on (a,b). Then for any
z € (a,b), we have f(z+ h) — f(z) >0 for any h > 0 and thus

f'(z) = lim w > 0.

h—0t

On the other hand, suppose f'(x) > 0 for any = € (a,b). Then for any
a, 8 € (a,b) with o < 3, by Lagrange’'s mean value theorem, there exists
€ € (o, B) such that

FB) = fa) = f(&)(B—a) > 0.

Therefore f(x) is monotonic increasing on (a, b). O

f(z) is constant on (a,b) if and only if f'(z) = 0 for any = € (a,b).
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Application of Differentiation

Theorem

If f(z) is a differentiable function such that f'(x) > 0 for any = € (a,b),
then f(z) is strictly increasing.

| A

Proof.

Suppose f/(z) > 0 for any x € (a,b). Then for any «, 8 € (a,b) with
a < 3, by Lagrange's mean value theorem, there exists £ € (a, 3) such

that
f(B) = fla) = f'(§)(B—a) > 0.

Therefore f(x) is strictly increasing on (a,b). O

The converse of the above theorem is false.

f(x) = 23 is strictly increasing on R but f’(0) = 0 is not positive.
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1
Prove that 1 — — <Inz <z — 1 for any = > 0.
T

Solution. Let f(z) =lnz — <1 - %) Then f'(z) = % - =—5 Now
f'(1) =0 and

O<z<l|z>1
f'(z) - +
Therefore f(z) attains its minimum at z = 1 and we have

fl@)y=Inz — xTil > f(1) =0 for any > 0. On the other hand, let

g(x) =z —1—1Inz. Then g'(m)zl—%: m;l. Now ¢'(1) = 0 and

O<z<1|z>1
f'(x) - +

Therefore g(x) attains its minimum at x = 1 and we have
glx)=xz—1—Inz > g(1) =0 for any = > 0.
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Application of Differentiation

Let 0 < a < 1. Prove that

a(l —a)x

1 _
+ ax 5

<(1+4+2)* <1+ az, forany z > 0.

Solution. Let f(z) =1+ az — (1 + ). Then f(0) =0 and for any = > 0,

fl(x):a—ﬁ>a—a:().

Therefore f(z) > 0 for any > 0. On the other hand, let
o a(l — a)z?
g(x) = (1+2)* - l—l—am—f . Then g(0) = 0 and for any = > 0,

g(z) = W—a—&-a(l—a)w
> mfa(lf(lfa)x)
ol —a)’2?
1+ (1-a)x >0

Therefore g(x) > 0 for any z > 0.
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Application of Differentiation

Theorem (Cauchy’s mean value theorem)

Suppose f(x) and g(x) are functions which satisfies the following conditions.
Q f(x),g9(x) is continuous on [a,b].
Q f(z),g(x) is differentiable on (a,b).
© J'(x) #0 for any x € (a,b).

Then there exists & € (a,b) such that

_ f(b) = f(a)
Proof. Let h(z) = f(z) — m(g(ﬂﬂ) —g(a)).
Since h(a) = h(b) = f(a), by Rolle’s theorem, there exists £ € (a, b) such that
o SO @) o
1O~ L —amd© = 0
f©) _ )= fla)

g'(§) g(b) — g(a)
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Application of Differentiation

L’Hopital’s rule

Theorem (L'Hopital’s rule)

Let a € [—o0,+o0]. Suppose f and g are differentiable functions
such that

(1] liin f(z) = li_r)n g(x) =0 (or £00).
@ ¢/(z) #0 for any x # a (on a neighborhood of a).

@) _
e:l—mg()

Then the limit ofM at x = a exists and lim Lx) =1.
g9(z) z—a g(r)
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Application of Differentiation

Proof

We give here the proof for a € (—o0, +00). For any = # a, by
applying Cauchy’s mean value theorem to f(z), g(z) on [a,x] or
[x, a], there exists £ between a and z such that

(2) = f(o) _ f(z)
g9'(¢ ) ~ g(@) —gla) (@)

Here we redefine f(a) = g(a) = 0, if necessary, so that f and g are
continuous at a. Note that £ — a as z — a. We have

f@) _ . O _

oa g(w)  ava g/(€)
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Application of Differentiation

Example (Indeterminate form of types % and

00
. sinxz —xcosx . xsinx 1
1. lm ——F = lim—=—
£—0 a3 a—0 3x? 3
. z? ) 2z . 2 ) 2
2. lim — = lim - = = lim = lim =
z—0 Insecx z—0 SCTIME o0 tanz @0 sec? x
322
: 111(1 + ‘TS) . 1+23 q 3 . 2
3. lim ———= = lim = lim lim
z—0 T —sinx z—0 1 — cosx z—0 14+ 23 2—01 — cosx
. 2x
= 3lim — =6
z—0 sin x
42? :
. In(1+2Y . T . 421+ 2?)
4. lim S CINE: = lim ——— = lim e =
@—+oo In(1 + z2) z—+too 2L 3400 2x(1 + x?)
1+
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Application of Differentiation

Example (Indeterminate form of types co — oo and 0 - o)

1
1 1 —1-1 - =
5. lim (77 ) = limo>—— T fjm =&
z—1\lnz x-—1 =1 (z—1)lnz 221 2= {Inzx
. r—1 . 1 1
= hm —_—=llm — = —
z—=lx—1+xzlnz z—12+Inx 2
1
tan—! T
6. lim cot3ztan—!zx =  lim 22 = 5
z—0 z—0 tan3z z—0 3sec? 3z
I 1 1
B im ——— = —
x—0 3(1 4+ z2)sec?3z 3
. . In sin x . e
7. lim zlnsinz = lim i = lim i
z—0+ z—0t = z—0t — =%
x x
_.2
_ lim —%-CosT _
z—0t sin
1 1 1) -1 -1
8. lim zln s = lim n(@+1) —In(e )
x— 400 r—1 T — 400 %
1 1
. 741 z—1 . 272
= lim ——r = lim — =2
s S z—=+oo (x4 1)(z —1)
x
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Example (Indeterminate form of types 0.

Evaluate the following limits.

Q lim 25"~
z—0F
1
li =2
Q lim (cosz)=

Q lim (1+22)7m=

T —+00

178 /338



Derivatives
Differentiation Mean value theorem

Application of Differentiation

. . 1
(1] ln( lim xs‘“z> = lim In(z®"*)= lim sinzlnz = lim kel

z—0 z—0t z—071 z—0+t cscx
1 i 02
. . —sin“x
= lim —2%— = lim — =
z—0+t —cscxcotx z—0+t xcosxT

Thus lim z5"% = 0 =

z—0t
1 1 1 —t
Q In (llm (cosx)= 2) = lim In(cosz)=? = lim DB _ lim anze
x—0 xz—0 x2 x—0 2x
. —sec?z 1
= lim = ——
z—0 2 2
Thus hrrb(cos @m)a? = e~ 3
6
3In(1+2
o ln( lim (1+2x)1f’z) _ i 2RO42) T _g
x—+oo x—+00 ]nq; x—r+00 P

Thus lim (1-‘1—2:1})3111:» = e3.

T—+oo
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Application of Differentiation

Example

The following shows some wrong use of L'Hopital rule.

1.
secx — 1 . secxtanx
im-———— = lim ——
z—0 e2z — 1 x—0 2e2x
sec? xtan x + sec3 x
= lim
z—0 4e2x
1
4
This is wrong because lin% e?® =£ (0, 4+00. One cannot apply
Tr—r
g . . secrtanz o
L'Hopital rule to lim ——————_ The correct solution is
x—0 262w
. secxr—1 . secxrtanx
lim ——— = lim ———— = 0.

z—0 e2® — ] z—0 2e2x
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2.

Application of Differentiation

. brx—2cos’zx . Bb+2coszsinz
lim ——— = lim ——M—
z—+o0 3x + sin” x z—+oo 3+ sinx cosx
. 2(cos? z — sin® z)
= 1m
a—+oo  cos2x — sin?
= 2

This is wrong because liIJIrl (54 2cosxsinzx) and
T—>+00

lim (3 + coszsinx) do not exist. One cannot apply L'Hopital
r—r—+00
. 5+ 2coszsinx L.
ruleto lim —————— . The correct solution is
z—+oo 3+ sinx cosx

2
. bz —2cos’x . b2z g

lim ————= lim ——%—=_.
z—+o0o 3x 4 sin” x z—+o00 3 4 Lf; @ 3
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Taylor series

Definition (Taylor polynomial)

Let f(z) be a function such that the n-th derivative exists at x = a. The
Taylor polynomial of degree n of f(z) at z = a is the polynomial

" (3) (n) a
f@+f @@t D aap D gy 1 T gy

Theorem

A

The Taylor polynomial p,(x) of degree n of f(x) at x = a is the unique
polynomial such that

p®(a) = f®)(a) for k=0,1,2,...,n
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Example

Find the Taylor polynomial ps(z) of degree 3 of f(z) =1+ 2z = (1+z)

x = 0.

Differentiation

Derivatives
Mean value theorem
Application of Differentiation

Solution. The derivatives f*) () up to order 3 are
k 0 1 2 3
fR () | (1+2)2 %(1+x)*% —~(14z)? %(1+m)*%
1 1 3
(k) 1 il = 2
f7(0) 5 1 3
Therefore the Taylor polynomial of f(z) of degree 3 at x =0 is
/ " 332 (3) 3:3
ps(z) = f(O)+ f(0)z + fH(O) 55 + [ (0) 57
o (DN (D)2 (32
- 2)" 1) 21 " \8) 3
O S
B 2 8 16

at
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Differentiation value theorem

Application of Differentiation

< o 1 + X .'l,'2 + 'lf:;
o pale) 278716
N x
pz) =1+5
2 flz)=vV1+z
po(z) =1 v a2
ﬂ =145 5

Figure: Taylor polynomials for f(z) =1+ ax atz =0
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example

Let f(x) = cosz. The first few derivatives are

k 0 1 2 3 4
f®(z) [ cosz | —sinz | —cosz | —sinz | cosz
&) | 1 0 —1 0 1

We see that

k R — k 8 —
) (1) — (=1)*cosz, ifn=2k ") () — (1%, ifn=2k
F(@) {(—1)k snz, ifn=ok_1 4TTO=9¢ ifn=2k—1

Therefore the Taylor polynomial of f(z) of degree n =2k at z =0 is

7 2 1 3 (2k)z2F
pu@) = fO+ 7O+ O ZOE L 0O
(-Dz? (02 | ()2 (=D)*a
= 1+ (0)z+ Q!I + 37 Jr 4!36 Tk‘)a'c
3 2 334 6 (_1)km2k
I T RN O5)]
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

s pal) =ps(z) =1-7

() (2) =1 2? } at 20 ‘ a®
(1) = po(x) = T 2
(@) = Pl 2 7247 720 " 40320
po(z) =pi(z) =1
f(z) = cosz
7 ; 0 T 7 7 7 =

pu(x) = pu(z)

| §

pe(r) = pr(x)\ =

pof(z) = ps(x)

Figure: Taylor polynomials for f(z) = cosz at 2 =0
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example

|

Find the Taylor polynomial of degree n of f(x) = p at z =

Solution. The derivatives f*)(x) are

k 0 1 2 3 - o
f(k) z) et | —z72 | 2273 | 6272 | --- (71)”n!x_("+1)
By 1 -1 2 -6 |- (-1)"n!

Therefore the Taylor polynomial of f(z) of degree n at x =1 is

17 5= 2 (n) r—1)"
pu(z) = f(1)+f’(1)(x—1)+%+...+%
- 1—(x—1)+2($2‘!1)2+(‘6)(§!—1>3+...+W

= 1-(z-1D+(@-1)°-(z-1>*+-- -+ (-1)*(@=z-1)"
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

poz) =1—(z—1)+ (z —1)°

po(z) =1

Figure:

1
Taylor polynomials for f(z) = — at «
X
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example

Find the Taylor polynomial of f(z) = (1 + z)® at x = 0, where a € R.
Solution. The derivatives are
f(z) (1+=2)"
f@) = otz
@) = ale-1)1+2)*"
(@) = ala=-1(a=-2)(1+2)*?
fPa) = ala-1)(@-2)-(a—k+1)1+2)""
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Thus we have

A0 = 1
f(0) =
0 = ala-1)

FBO) = ala=D@=2(a=k+1)
Therefore the Taylor polynomial of f(z) = (1 + x)“ of degree n at z =0 is

po(@) = SO+ F @t O ST SO
= 1+0¢x+am;7!1)x2+.. a(a—l)(a—Q)#' (0 —n+1)z"
= () ()

where

4
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

The Taylor polynomials of degree n for f(z) at x = 0.
f(x) Taylor polynomial
- 1 z? B g™
2 4 6 k_ 2k
x x (=1)%z _
3 5 7 k., 2k+1
. s x x (-D)*=z _
sin x x—§+5'—ﬁ+ + 2k 1) ,n=2k+1
2 3 4 n+1l,_mn
P 7 7z (=) "z
In(1 T T
al+e) e-F+F -ty
1ix l+z+2°+23+---+ 2
2 3 4 n+1 n
® a 5x (=)™ (2n —3)!lz
Vi 1o 2 42 9% 4
LR R S TR v I 2
—1)2? —1)(a — 2)2°
(1 +2) 1+aw+a(a - )z N a(a )3('04 )z P (Z)xn
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example
The Taylor polynomials of degree n for f(z) at = a.
f(z) Taylor polynomial
L (z—m)? (z—m)* (=D)*(x—7)*
COSx,a—ﬂ' —1+ 2! - 4! ++T
2/ o9\2 2/ o\n
¢ a=2 2 pet(p_g)4 8= @D
2! n!
1
Sw=1 1—(z—D+@-1)2—(z—1)°%+---+(-1)"(z -1
2vz 7 2 478 16 gn+1
ﬁ;wzl 1+2(z—1)+4=x—1)2+8@x—1)*+---+2"(x - 1)"
0 z? x> (2n — 3)Nz™
VIOD—2z; a=0 10— — — —— — ——— — ... _ L
o 10~ 2000 200000 102n—1n
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition (Taylor series)

Let f(z) be an infinitely differentiable function. The Taylor series
of f(x) at z = a is the infinite power series

"(a G)(a
T(z) :f(a)—i-f'(a)(x—a)—{—f;! )(w—a)2~|—f 3!( )(w—a)3+---
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Example

Derivatives
Differentiation Mean value theorem

Application of Differentiation

The following table shows the Taylor series for f(z) at = = a.

1
;a=0
Vi+az
1+2)* a=0

Taylor series

1 2
-I—x-&-?!-&-fg!-&----
1 2zt 2l
BT TR TR

(z —7)3 x —7)°

= 1) = 1) = 1)*
SRR TV L L2V

x x> 5t

=== = ====qFcoo

2 8 16 128
p_x 3 52’ 350t 638
2 8 16 128 256
ale—1)z?  ala—1)(a—2)z*
TR 3!
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

=

2 3

X T x

f_1+x+—+—+
éok! 3!
fgﬁﬁﬂﬂ_ﬁ+ﬁ_£+
= (2K)! 2 41 6!
%) (71)k1,2k+1_ 7:1;73 xfsii’?
P T e TR B i
gﬂ:x_gj+§_ﬁi+..
k=1
Sath=l4ao+a?+23+...
k=0
&, —1)2? - 1)(a — 2)z®
5 ()a" =14 an+ o LAt )3(,“ o
k=0 !

(_1)k$2k+1 O B 7

118

=T —

2k +1 3

+ 7
S O
Fan2ek+1n)  C 1 \2) 3

=~
I
o

gk

+
1-3) 2’  (1-3:5\a
2-4)5 " \2:4.6) 7
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Suppose T'(x) is the Taylor series of f(x) at x = 0. Then for any positive
integer k, the Taylor series for f(z*) at x = 0 is T(z").

Example

f(x) Taylor series at z =0

1—2® 4ot —af ...

1+a2
1wt st et
N 2 78 T 16 128
sina® 2t 28 2

a2 3! 5! 7!
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Theorem

Suppose the Taylor series for f(x) at x =0 is
T(x) = Zakxk =ag + a1% + a2z’ + azz® + - .
k=0

Then the Taylor series for f'(z) is

o0
T (2) = Z karz" " = a1 + 2a0x + 3asz® + dagx® + - - - .
k=1
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example

Find the Taylor series of the following functions.

1
O oy
Q tan 'z |
Q Let F(z) = — L so that F'(z) = _ The Taylor series for
T T 1+a T +a)2 4
F(z) atz=0is
Tx)=-14+z—z* +a> o' +....
1
Therefore the Taylor series for F'(x) = (S is

T (z)=1—2z+3z° — 4z + - .
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Solution

2. Suppose the Taylor series for f(z) =tan 'z atx =0 is

T(z) = ap + a1 + asx’ + azx® + asz?t - -

which

1
Now comparing T' (x) with the Taylor series for f'(x) = T

takes the form
1—-2+2* —a2%+...,

we obtain the values of a1,az,as,... and get
3 5 7
T T T
T(z) = = oo,
(z) =ao+2 3T =+

Since ap = f(0) = 0, we have
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Suppose the Taylor series for f(x) and g(x) at x = 0 are

k 2 3
arr = ao +a1x + axx” +asx” + -,

=3
&

I
M8

>
Il

0

bkxk:b0+b1x+bzx2+b3x3+---,

=
&

I
NE

ol
I

0

respectively. Then the Taylor series for f(z)g(z) at x =0 is

> (Sautens) o

n=0
= aobo + (aoby + a1bo)z + (aobz + arby + agho)z® +
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

The coefficient of 2™ of the Taylor series of f(x)g(x) at z =0 is

(Leibniz's formula)

n! k n!

k=0

_ ot M0 M0)

— kl(n — k)! n!

_ Z F®0) ¢ M)
— Kk (n—k)!

= arbn_k
k=0
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example

@ The Taylor series for e*® In(1 + z) is

1622 64x3 x? x3 x4
1+4x + 21 +* 31 Spoce == = = == qpoco

2 & 4
1 1 1
= ——44)a?+ (44 (—=)+8)z+---
x+( 2+)m +(3+ (2)+>x+
+7x2+19I3
= x —
2 3
. tan~la
@ The Taylor series for Wiy is
A 2yt )
T3S 2 "8
+ Das g (221 1+1>m5+
= )P+ === —
2 3 4 3 2 5
+a:3+4915
= =z —
6 120

v
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Theorem

Suppose f(x) and g(z) are infinitely differentiable functions and
the Taylor series of f(x) and g(z) at x =0 are

akxk + ak+1$k+1 + ak+2xk+2 S ooc

and
bkl’k + bk+1xk+1 + bk+2$k+2 + .-

where by, # 0. Then

f(=) gt ap1® + apor® + -
im = lim
z—0 g(:)j) z—0 bk + bk+1£l? + bk+2$2 + ..
_
=
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Proof.
The assumptions on f(z) and g(x) imply that

F(0) = f'(0) = f(0) = --- = f*7D(0) = 0; f®(0) = ax
9(0) =g'(0) =g"(0) =--- = g*~V(0) = 0; g™¥(0) = by,
Therefore, by L'Hopital’s rule, we have
@ @) ) fP) e
@) " g@) ") T @) b
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

1.

lim -
z—0 T —sinz )
NGRS S RSO Ot bk Lt
x—0 \ .T—(IE—% )
11z
lim —2 +
x—»O%
E
4 .
. e’ 1 . €e€¥sinx —xcosx
lim [ — — =lim ——
z—0 \ T tanx z—0 TrsinT
2 3 2
L e 2 de oo = 2 oo ) = (= 2= db oo
hr% =3
V(- 4---)
24
~ 6
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Curve sketching

To sketch the graph of y = f(z), one first finds
@ Domain: The values of z where f(x) is defined.
@ z-intercepts: The values of x such that f(z) = 0.
e y-intercept: f(0)

@ Horizontal asymptotes:

If lim  f(z) =0b, then y = b is a horizontal asymptote.
T——00/+00

@ Vertical asymptotes:

If lim f(x)=—o00/+ o0, then x = a is a vertical
z—a~ /at
asymptote.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

_3:U—|-5

EXampIe ].: f(l') = ?
T

3r+5 1
y = =3
1 y x+2 x+2
Domain : T # =2
5
8 z-intercept : ~3

y-intercept :

Horizontal asymptote : =3
Vertical asymptote : r=-2
4
""" e B Bl
y=3 2{ 5
2
6 4 5 0 2 4 6 8 10
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

2
e+ 2
Example 2: f(z) = —5—
e+ 1
? 242 1
y=—5-—-=1+
¢+ 1 ¢+ 1
256 .
Domain : R
2 r-intercept : none
y-intercept : 2
Horizontal asymptote : y =1
15 Vertical asymptote : none
___________ e __ ===
0.5
-1 -0.8 o 0.5 1 158 2 25 3 X
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Derivatives

Differentiation Mean value theorem

Application of Differentiation

xT
Example 3: f(z) = ——
15
y=1
___________________ e o e e deeeo-
03 YTt
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14
05 Domain : R
z-intercept : 0
y-intercept : 0
____________________ e L I ____.
y=—1 Horizontal asymptote: y=—-1,y=1
Vertical asymptote : none
15
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Differentiation

value theorem

Application of Differentiation

Example 4: f(x) = |ln|z||

w

y = [nfa]]

Domain :
z-intercept :
y-intercept :

Vertical asymptote :

Horizontal asymptote :

x#0
+1

none
none

3 2 N\ 0 71 2 3 4 5
\ /7
N 7
\ /
\ /
v !
\ 1
Ly =1
\ prmn
|y =Infz]
‘I
|I
l’Zl

210/338



Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition (Oblique asymptote)

lim  (f(z) — (ax +b)) =0,

z——00/+00

we say that y = az + b is an oblique asymptote of y = f(z).
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Differentiation

2
z° =3z —4
Example 5: f(z) = Q3
2 2
e —-3rxr—4 2°-2x—(x—2)—6 6
Note that = ( ) =r—1-— .
z—2 T —2 T —2
¢ E y=x—1 /,/’/
) | /,»’/ 2t -3r—4
: :’,/’/ A
,/’/ . i Domain : T #2
E z-intercept : —-1,4
=2 y-intercept : 2
- E Vertical asymptote : z =2
» | Oblique asymptote : y=x—1
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition

Let f(z) be a continuous function. We say that f(z) has a

© local maximum at z = a if there exists § > 0 such that f(z) < f(a) for
any z € (a —d,a+9).

@ local minimum at x = q if there exists § > 0 such that f(z) > f(a) for
any z € (a —d,a+9).

local maximum y=f(z)

local minimum\
i
( > )

a—0 ¢ a4
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Let f(x) be a continuous function. Suppose f(x) has local maximum or
local minimum at x = a. Then either

Q f(a)=0, or

@ f'(x) does not exist at x = a.

f’(x) does not exist
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Theorem (First derivative test)

Let f(z) be a continuous function and f'(a) = 0 or f'(a) does not

exist. Suppose there is § > 0 such that |
fl@)>0 1 fz)<0

a—o0<z<al|la<z<a+d

f'() + -

Then f(x) has a local maximum at x = a.

o

a—d0<z<ala<z<a-+o F@) <0} f@)>0
f'(z) - + |

Then f(z) has a local minimum at x = a.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Theorem (Second derivative test)
Let f(x) be a differentiable function and f’(a) = 0.
@ If f"(a) <0, then f(z) has a local maximum at x = a.

f"(a) <0

Q If f"(a) > 0, then f(z) has a local minimum at z = a.

f"(a)>0
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition (Turning point)

We say that f(x) has a turning point at z = a if f’(x) changes
sign at x = a.

If f(x) has a turning point at = a, then either f'(a) =0 or
f'(x) does not exist.

Turning point f'(a)=0 f'(a) does not exist

Relative maximum

Relative minimum
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 6: f(z) = #_;_5
-3
f(x):m,x#—&l
f(z) = (2% + 42 —5)(1) — (z — 3)(2z +4) _ (x+1)(xz—T7)
. (@ — 1)2(z + 5)2 (@ —1)%(z 1 5)

Thus f/(x) = 0 when z = —1,7.

r< 5| -b<r<-1|-1l<a<l|l<e<T|a>"T
MO - + + -

(—1,%) is a minimum point and (77Tls) is a maximum point.
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Differentiation Mean value theorem

Application of Differentiation

Example: f(z) = v=3

x2+4x -5
1 I
! 4=t
1 I
1 1
1 1
] 15 |
1 I
: 1 3
1 I y fr .
! - 244 -5 .
1 51 = 1
1 1 5 I (7, *)
! (-1,35) ! 3 J8
7 & :5 4 3 2 [ ’ 3 5 5 7 8 9
1 1
1 05 1
! ! Domain : r# —5,1
: , : z-intercept : 3
1 1 3
! ! y-intercept : -
: & 15 : B
1T=—9 | Horizontal asymptote : y =10
1 1
1 2 I Vertical asymptote : r=-dr=1
1 1
1 | 1 1
Turni ints : -1, - —
! . ! urning points (-1, 2), (7. 18)
1 1
1 I
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Derivatives
Mean value theorem
Application of Differentiation

Differentiation

Definition (Concavity)
We say that f(z) is

@ Concave upward on (a,b) if f”(z) > 0 on (a,b).
@ Concave downward on (a,b) if f”/(z) <0 on (a,b).

Concave upward (f”(xz) > 0) /

Concave downward (f”(z) < 0) / \
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

Definition (Inflection point)

We say that f(x) has an inflection point at = = a if f(x)
changes sign at z = a.

If f(z) has an inflection point at # = a, then ether f”(a) =0 or
1" (a) does not exist.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 7: f(z) = |z +1|(3 — x)

B N (z+1)(z —3) if z < —1
fla)=lz+1(3—2) = 1)z —3) fe>-1

y=|r+1/(3—x)

Domain : R
z-intercept : —-1,3
y-intercept : 3
Asymptotes : none
Turning point : (—1,0),(1,4)
Inflecction point :  (—1,0)
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 8: f(z) =z + ﬁ

(f(z) —z) = lim

r—Foo m -

Since 0,

lim
z—+oo
y = f(x) has an oblique asymptote y = x.

When z < 0, f(ac):m—l.

. T

f’(:c):1+;

f”(l')——%

When z > 0, f(:v)z:v—i—%.

F@=1-—

1! 2

f (fﬂ)zg

r<0|0<z<]l |z>1

) |+ - +
f'@) |+ + +

f(x) has a minimum point at z = 1.
f(x) has no inflection point.
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Differentiation

Example 8: f(z) =z +

Derivatives

Mean value theorem

Application of Differentiation

Domain :

z-intercept :
y-intercept :
Asymptotes :
Turning point :
Inflection point :

none
r=0y=2x
(1,2)
none
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Derivatives
Differentiation Mean value theorem

Application of Differentiation
122 + 1

Example 9: f(z) 3
Tz —

Domain : T #3 y=-2
1
z-intercept : -5
. 1
y-intercept : 3

Asymptotes : y=-2y=2

o

=
~——~— |

Turning point :

Inflection point :

M= N =
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 10: f(z) =2 — (z — 8)3

fl(x):_m
N T
[ (z) )7
f'(z), f"(x) do not exist at x = 8.
r<8|xz>8
F@ - [ -
') | = +

f(z) has no turning point.
f(z) has an inflection point at z = 8.
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

Example 10: f(z) =2 — (x — 8)%

P y=2—(x—8)

=

Domain :
x-intercept :
y-intercept :
Asymptotes :
Turning point :
Inflection point

16

none
none

(8,2)

30
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Example 11: f(x) =

Derivatives

Differentiation Mean value theorem

Application of Differentiation

1=Vl

Domain : R
z-intercept : —-1,0,1
y-intercept : 0
Asymptotes : none

Turning point :  (—1,0),(0,1), (1,0)

Inflection point : (—1,0),(1,0)
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

2
-2
Example 12: f(z) = v +:§
x
Domain: = # 0
T+ —2 x—2
f(.l?): 2 =1+ 2

f(x) has a horizontal asymptote y = 1.
2?2 —2x(x—2) x-2x-2) x—4
fl(z) = " = ' _
)

x3 3

f@) =~ 6 == 26 T4
f"(z) =0 when z = 6.
(=00,0) | (0,4) | (4,6) | (6,+00)
Fo | - [+ [ - -
@l = -1 - ¥

(4,
(6, %) is an inflection point.

= 00[©

) is maximum point.
0
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

2
¢ +x—2
Example 12: f(x) = — 2
(=00,0) | (0,4) | (4,6) | (6,+00) | | 4.2 10
fl(z) - + - - ( ). (67 ?)
f"(.’lt) _ — — + " L4
y = 1 03
. Domain : x#0
. z-intercept : -2,1
5 _ . y-intercept : none
Y= rrr—e +'7; 2 Vertical asymptote : z=0
- o Horizontal asymptote : y =1
04 9
Maximum point : (4, g)
10
0z Inflection point : (6, 5)
-2 1
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

2 _
Example 12: f(x) = %H

Domain : x#0
z-intercept : -2,1
y-intercept : none
Vertical asymptote : z=0
Horizontal asymptote : y =1
9
Maximum point : (4, g)
10

Inflection point : (6,
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Derivatives
Differentiation Mean value theorem

Application of Differentiation

1 «
Example 3 f(x) = W
f(x):x+4+ @ _2)2,x7é2
f(x) has an oblique asymptote y = = + 4
Pla 302 (x —2)? — 2(x — 2)2®  3a*(x —2)—22° 2% — 6a?

(@)= (w2 e T
f'(x) =0 when 2 = 0,6
(322 — 122)(z — 2)® — 3(x — 2)%(2® — 622?) 24x

= (=2 ~ -2y
f"(x) =0 when . =0.
(—=00,0) | (0,2) | (2,6) | (6,400)
f'(x) + + - +
f"(z) - + + +
(6, 277) is minimum point.
(0,0) is an inflection point.
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

25 : (%
| At
Domain : x#2 : y T -
2-intercept : 0 B i (r—2) e
y-intercept : 0 ! (6, z) ’/”
Vertical asymptote : = =2 s | 2 e
1 - —
Oblique asymptote : y=x+4 ! ° JPtes y=z+4
. . 27 0 | e
Minimum point : (6, ?) L
! ,’ o
Inflection point : (0,0) o (=00,0) | (0,2) | (2,6) | (6,+00)
T fl) | + + | - +
,/" ! f(x) - + + +
14 12 10 -8 5’//’4 -2 0 % 4 6 8 10 12 14 16
0.0
/”, 5 :
-7 1
-7 1
L7 rr=2
,” -10 :
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Differentiation

Derivatives
Mean value theorem
Application of Differentiation

5 ;
|
Domain : T #2 i
z-intercept : 0 0 !
y-intercept : 0 |
|
Vertical asymptote : z = 2 16 !
Oblique asymptote : y=x+4 |
I
27 10 !
Minimum point : (6, ?) !
!
Inflection point : (0,0) , ‘i
e 1
Pie 1
-7 1

14 12 10 8 . i 4’ 0 é 4 6 8 10
0,00
/’, 5 !

L= i r=2

-2 0 '
|
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Differentiation

Derivatives
Mean value theorem

Application of Differentiation

Example 14: f(z) = x%(ac — 3)%
First . ) )
3 3 3
fim @) o 2EZ30 (1—§) —1
r—+oco I rz—too x r—+oo x
and
2
. B . 3\32
AW o) = g ((1 -2) - 1)
2
T DR
h—0 h
= -2

Thus y = = — 2 is an oblique asymptote.
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Derivatives
Differentiation Mean value theorem
Application of Differentiation

es not exist when z = 0, 3.
(x—3)5 + Lad(@—3) 3)(x—1)

5 —
(e
wl= O

x%(:c — 3)%
x

1" (z) does not exist when z =0, 3.

00,0) | (0,1) | (1,3) | (3, +00)
f(x) + + — +
[ (@)

1 2%) is a maximum point.
(3,0) is a minimum point.
0,0) is an inflection point.
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Example 14: f(x)

y=x—-2 -
(o) [0 [(L3) [ Groo) | | (1,29)
f(z) + + - + ¢ 7
oI B - ! o y=a
-8 7 {] -5 -3 -2 1 0 1 ///Z 3 3 4 5 6 8 9 10
. " Domain : R
7 z-intercept : 0,3
s y-intercept : 0
,// " Oblique asymptote: y=x — 2
L . Turning points : (1, 2%), (3,0)
R _ Inflection point : (0,0)
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Example 14: f(x)

Domain :
r-intercept :

y-intercept :

Oblique asymptote :

Turning points :

Inflection point :
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Integration
Techniques of Integration
Integration More Techniques of Integration

Indefinite integral and substitution

Definition
Let f(x) be a continuous function. A primitive function, or an
anti-derivative, of f(z) is a function F'(z) such that

The collection of all anti-derivatives of f(x) is called the indefinite
integral of f(z) and is denoted by

/ f(@)da.

The function f(z) is called the integrand of the integral.
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Integration
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Integration More Techniques of Integration

Note: Anti-derivative of a function is not unique. If F(z) is an
anti-derivative of f, then F'(z)+ C is an anti-derivative of f(x) for
any constant C. Moreover, any anti-derivative of f(z) is of the
form F(z) + C and we write

/f(x)dx =F(x)+C
where C' is arbitrary constant called the integration constant.

Note that [ f(z)dz is not a single function but a collection of
functions.
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Let f(x) and g(z) be continuous functions and k be a constant.

0/ z) + g(z d:c—/f d:c—!—/()d
Q/kf(x)d:v:k/f(m)dx

Theorem (formulas for indefinite integrals)
xn+1
"dx = C 1
z"dx P +C,n # 1
e’de =e* + C; /;daz:lnm—i—c
cosxdr = sinz + C; sinxdr = — cosx + C

sec’ zdz = tanz + C; csc® zdz = —cotz + C

cscxcot xdr = —cscx + C

——
——

sec x tan xdx = secx + C
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Integration More Techniques of Integration

2

1. /(x37x+5)dx = f%+5x+c
2 2
9. /de Y b
T X

(m—|—2—|—l) dx
a7

+2z+In|z|+C

302+ —1
NG

4. /(3812$—261)d$ =
cos?

= 3secx —2e"+C

dx =

Il
\ M‘aw\\ »J;‘E“ﬂk

(31’3/2 +1— a:_l/Q) dx

o

T +x72x%+0

[S1] Koy}

(3secztanx — 2¢*) dz

—
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Integration More Techniques of Integration

Example

Suppose we want to compute

/a:\/ 72+ 4dx
First we let
u=ax>+4.

We may formally write

o du d 2 .
du = . dz |:£(ZIJ + 4)} dx = 2zdx

Here du is called the differential of u defined as % dx. Thus the integral is

/x\/mdx /szdx /fdu

(@ +4)3
3

0= +C

u§
3
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Techniques of Integration
Integration More Techniques of Integration

[avviar = /m%)
= ;/\/mcixz
= ;/Md(xz—i-él)
($2+4)%

= —5—+¢C
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Theorem

Let f(x) be a continuous function defined on [a,b]. Suppose there
exists a differentiable function u = ¢(x) and continuous function
g(u) such that f(x) = g(p(x))¢'(z) for any z € (a,b). Then

[t = [ge@)e @i
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Integration More Techniques of Integration

/xQeI:;de 2e® g
3 2341 $3
Let u =a"+1, = e d 3

then du = 3z%dx = & lagd

| — c,om—t\}\
\\

eg”erld(as3 +1)

Il
w| =

@

3
QU
<

Il

o W

e“ C zs+1
= 3t = 3 +C
a:3+1
€
= C
3 +
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4 . 4 .
/cos x sin xdx /cos x sin xdx
Let u = cosz, = /cos4 xd(— cos x)
then du = — sin zdx = —/cos4 xdcos T
4 cos® x
= f/u du = — — L g
)
5
U
= ——+4C
5 4=
5
cos’ T
— C
5 +
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/ dzx / dx
rlnz zlnz
Let u = Inz, = dlnz
Inz
dx
thendu:? = In|lnhz/ +C
_ [du
- U
= Infu|+C
= In|lnz|+C
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Integration More Techniques of Integration

dx dx
et +1 et +1
61‘
letu=1+e" = 1—-—])d
et u +e 7, /( 1—|—e“f) 2
then du = —e™ “dx = = e
1+e®
/e_ldx = z—In(1+e*)+C
l1+e* o
- _ [
- U
= —lnu+C
= —In(l+e®)+C
= z—In(1+¢€°)+C

v

249 /338



Integration
Techniques of Integration

Integration More Techniques of Integration

= =
Letu—1+f, = \/\5}\/13;/5)
then du = —— = g [ YIWWZ
Riprer S
B U B 1+ vz
= 2/(1—%)@ = 2yz—2In(1++z)+C
= 2u—2Inu+C’
= 2yz—2In(l++z)+C
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Definite integral

Definition
Let f(x) be a function on [a,b]. A Partition of [a,b] is a set of
finite points

P={xp=a<zi <z9<:- <2y =b}

and we define

Ar, = xp —Tp_q, fork=1,2,...,n
Pl = A
1P| = max {As}
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Definition

Let f(z) be a function on [a,b]. The lower and upper Riemann sums
with respect to partition P are

L(f, kaAa:k, and U(f, P ZMkAmk

k=1

where

my = inf{f(x) : xx—1 <x <z}, and My = sup{f(z) : vp—1 < x < 1}
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M,
my

Integration
Techniques of Integration

Integration More Techniques of Integration

A:L‘k

a =2y T1 . Tp-1 T Tp1Tp=0

Figure: Upper and lower Riemann sum
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y = f(x)

Figure: Upper and lower Riemann sum
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Definition (Riemann integral)

Let [a,b] be a closed and bounded interval and f : [a,b] — R be a
real valued function defined on [a,b]. We say that f(z) is
Riemann integrable on [a, ] if the limits of L(f, P) and U(f, P)
exist as || P|| tends to 0 and are equal. In this case, we define the
Riemann integral of f(x) over [a,b] by

L(f,P)= lim Ll
/ fle IIPIH0 (> ) I1Pll— (- P).
Note: We say that | lim ,C(f P) = L if for any € > 0, there exists

| P
d = 6(e) > 0 such that |f |IP|| <6, then |L(f,P)— L| <e.
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Theorem

Let f(x) and g(z) be integrable functions on [a,b], a < ¢ < b and k be
constants.

0/ z) +g(@ d:c—/f d:c—i—/b()dx
) / K (w)dn = k / f(@)d

o/ ' fa)da = [ t@a+ [ ' f(a)da

0 [ raar——| ’ feis
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Suppose f(x) is a continuous function on [a,b]. Then f(x) is
Riemann integrable on [a,b] and we have

b
/af(:r)dx = lim fok YAz,
— ,}Ln;o;f<a+n(b_a))(b;a>‘
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y= f(z)
>Aw:b_a /

k
a -1 xk:aJr—(b—a) b
n

Figure: Formula for Riemann integral
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Use the formula for definite integral of continuous function to evaluate

1
/ z2dx
0
v

Solution
1 " k /1-0
2 — 1i —(1 —
/Oxdx nl_}rr;og <0+n( 0)) ( - )

k=1

= lim
n—oo nS
k=1

m nn+1)2n+1)

v
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Fundamental theorem of calculus

Theorem (Fundamental theorem of calculus)

First part: Let f(z) be a function which is continuous on [a, b].
Let F' : [a,b] — R be the function defined by

F(z) = / " Fydt

Then F(x) is continuous on [a, b], differentiable on (a,b) and

for any x € (a,b). Put in another way, we have

di/:f(t)dt—f(x) o @ (@ D).
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Theorem (Fundamental theorem of calculus)

Second part: Let f(z) be a function which is continuous on [a, b].
Let F(z) be a primitive function of f(x), in other words, F(x) is a
continuous function on [a,b] and F'(x) = f(x) for any x € (a,b).
Then

b
/ f(@)dz = F(b) — Fla).
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Example

Let f(z) = v/1 — z2. The graph of y = f(z) is a unit semicircle centered at
the origin. Using the formula for area of circular sectors, we calculate

1

x):/oxf(t)dt:/ V1= t2dt = ersm; .

By fundamental theorem of calculus, we know that F'(x) is an anti-derivative
of f(z). One may check this by differentiating F'(x) and get

P = g (it \/i =+ =)

- ()
- Vi
~  f()
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-1

€T /1 _ :
Figure: / V1—t2dt = * 3 a7
0

2
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3 gt 3
1. / (x® — 4z +5)dx = T —2x2+5$}
1 L 1
[ 3* 5 1 .
= 172(3)+5(3) — 172(1)+5(1)
= 14
0 [ o2x+6 0
2. / 20 gy = }
_3 L 2 | 4
_ e®—1
o 2
1z 15
3. /12 sec? 3z dz = {tani&x}
0 3 0
~ tan3(§3) —tan0
_ 1
3
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The fundamental theorem of calculus can be used to evaluate limit of
series of a certain form.

Theorem

i 30 (7)
(1 ()41 () (R) e ()

/01 f(z)dz
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Find

noo1 1 1 1
Q i > =1 .. _
noeo i+ k ngr;o(n+1+n+2+ +2n>

n

. n n n
(2] nlgl;o;lnz_i_kz *nlggo<n2+12+n2+22+"'+n2+n2)

Qlimii L —hm—( ! + ! + +L>
n—oo \/n i1 /n+k nocyn\vn+l n+2 V2n

266 /338



Integration
Techniques of Integration

Integration More Techniques of Integration

n 1 1 2 1
1. lim > = lim —
n—oo =i n+k n—00 1 11+*
1
1
= /Oﬁdxf[ln(l—l—x)]
= In2
1 L 1 1 2 1
2. li _n = lm - —
niieo kzl n? + k? nioe n kgl 1+ (%)
1
1 1 11
= ; 1+x2dm [tan™ " z]o
- T
4

/ de_[2\/1+ ]0

= 2(/2-1)

267 /338



Integration
Techniques of Integration
Integration More Techniques of Integration

= T Yn+1)(n+2) - (2n)_

n—00 n
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Therefore

= lim —In

1 2
= lim — In ((1 aF ) ( )
n—oo n, n
1 2
= lim f(ln(lJr )Jrln(l —
n—oo N, n
1
= / In(1 + z)dz
0

= [1+2)In(1l+=) — g
= 2ln2-1

n—oo

In < lim 7\1/(77/-1- 1)( )

((n+1)(n+2

n—oo n,

fim VOEFDEED 00 omee1 _ 4y gy

n—oo n e
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Example (Definite integral and substitution)

5
1. / v 12 — 9dx
3

Let u =22 — 9,
When z =3, u=0
When z =5, u =16
du = 2zdx

1 16
= = Vudu

2()

3716
u?2
0

64

3

5
/ v 12 — 9dx
3
5
= %/ \/mz—gd(x2—9)
3

3

(@2 -9%]

w|@ @i
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Example (Definite integral and substitution)

dx

w2
2 V3 g, / sin V7
0 \/5 9 \/E

Let u =/, 72
= 2/ sin vz dv/x
0

When z =0, u=0
7l'2
When z =72, u=7 = 2[-cosz],

= 2 [— cos Vm2 — (—cos 0)}
du = d—x
2z = 4

= 2/ sin u du
0

= 2[—cosul;

= 4
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Integration

Example

We have the following formulas for derivatives of functions defined by integrals.

0 1 [ fti= @

d b
0 & [ st =—s
d [ dv

© 5/ fwa=rmy

d [*@ dv
© i/ wa=seg

Integration
Techniques of Integration

More Techniques of Integration

272 /338



Integration
Techniques of Integration

Integration More Techniques of Integration

1. This is the first part of fundamental theorem of calculus.

2 %/:f(t)dt % (— /:f(t)dt)

O
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Integration

Example

Find F’(x) for the the functions.
Q F(x) :/ Vite'dt
1

T sint

Q F(x) :/z Tdt
Q Flz)= /Ox V1 + thdt

More Techniques of Integration
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1 i/z Vite'dt = ze®
Cdzx Jy

9 i/ Smtdt _ _sinz

de J, t 7z

d sin — d )
3. — V1+tidt = 1+sin*xz— sinx

dz [, dx

= coszy1+sintz
2

d S . (z2)2 d , (—)2 d

4. i | . e dt = e T e dx( x)

4 2
= 2xe® +¢€°
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Trigonometric integrals

Useful identities for trigonometric integrals.
(1) o cos?x+sin’z=1
o sec’z =1+tan’z
o csclx=1+cot’x

1+ cos2x
2, _
Q e cos‘x = 5
. 9 1 — cos2x
o Sin“x=—"—
2
sin 2x

e cosxsinx = 5

©@ o coszcosy = x(cos(z+y)+ cos(z —y))

o sinzsiny = 5(cos(x — y) — cos(z +y))

2

o coszsiny = i(sin(z +y) — sin(z — y))
1
2
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Techniques

To evaluate
/ cos™ xsin” xdx

where m,n are non-negative integers,

@ Case 1. If m is odd, use cosxdx = dsinx. (Substitute u = sinx.)

@ Case 2. Ifn is odd, use sinxdx = —d cosz. (Substitute v = cosz.)
@ Case 3. If both m,n are even, then use double angle formulas to reduce
the power.
5 1 4+ cos 2z
cos"x = ———
2
.2 1 — cos 2z
sinf“x = ————
2
. sin 2z
coszsinz = ——
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(1] /tanxdm:ln|secx\+c
(2] /cotxd:v:ln|sinx|+0

(3] /secxdw =In|secz + tanz| + C

Q /cscmdx =In|cscz — cotz| + C
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We prove (1), (3) and the rest are left as exercise.
sin zdx
1. [ tanaxdr = —

cosx
_ _/M
cosx
= —lIn|cosz|+C
= In|secz|+C
/secx(secm—l—tanac)da:
(secx + tanx)

_ (sec? x + sec x tan z)dx
(secx + tanx)

3. / sec zdx

d d(tanz + sec )
(secz + tan x)
= In|secz +tanz|+ C
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Techniques

To evaluate
m n
/ sec’ xtan' xdx

where m,n are non-negative integers,
@ Case 1. If m is even, use sec® zdx = dtanx. (Substitute u = tanz.)
@ Case 2. Ifn is odd, use secxtanzdx = dsecx. (Substitute uw = secx.)

@ Case 3. If both m is odd and n is even, use tan® z = sec> z — 1 to write
everything in terms of sec x.
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Example

Evaluate the following integrals.
(1) /sin2 zdx
Q /cos4 3xdx
9 /cos 2x cos xdx

Q / cos 3x sin bxdx
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Techniques of Integration

1. / sin’ zdz
2. / cos* zdx

3. / cos 2x cos xdx

4.

/

cos 3z sin bxdx

Integration More Techniques of Integration

1+ 2 cos 2z + cos? 2z
4

) as

sin 2x 1+ cos4x
1 +/ (78 >dx

3750 sin 2x n sin 4x
8 4 32

f/(cos3x+cos:r)d:r:

+C

= / (sin 8z + sin 2z) dx =

sin 3x n sinx
6 2

+C

cos8xr  cos2x

16

4
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Example

Evaluate the following integrals.

. 4

(1) /cosmsm xdx
D a8

Q /cos z sin” zdx
4 .2

Q /cos z sin” zdz
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sin® z
1. /cosxsin4 rdr = /sin4 xdsinz = 5 +C
2. /coszxsin?’ xdx = f/cos2x(1 — cos’z)d cos x

= —/(COSQQZ — cos*x)dcos

8 5
COS T COS T
= = )
3 T 75

. 2
3. /cos4 zsinzdr = / (1 s (:20s 2:v) (stQa:) dx

= % / (sin2 22 + cos 2 sin® Qm) dx

1 1 — cos4x 1 . 2 .
§/<#> d:c+ﬁ/sm 2zdsin 2z

z sin 4x i sin® 2z LC
16 64 48
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Example

Evaluate the following integrals.

(1) / sec? z tan” zdx
Q / sec z tan® zdzx
Q / tan® zdz
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1. /sec2 z tan® zdx

2. /sec:ﬂtan3 xdx

3. / tan® zdz

Integration
Techniques of Integration

Integration More Techniques of Integration

tan®

/taandtanm = % +C

/tan2 zdsecx = /(secQw— 1)dsecz
3

w —secx +C

tan z(sec’  — 1)dx

/tanxsec wdx—/tanwda:

tan zd tan x — In | sec x|

tan? z

5 —In|secz|+ C

286 /338



Integration
Techniques of Integration
Integration More Techniques of Integration

Integration by parts

Suppose the integrand is of the form u(x)v'(z). Then we may
evaluate the integration using the formula

/uv'dm = uv — /u'vdaz.

The above formula is called integration by parts. It is usually

written in the form
/udv = uv—/vdu.
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Example

Evaluate the following integrals.

1. / ze>®dx

2. /a:2 cos zdx

/x3 In zdx
4. /lnxdm

©
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3z
1. /xe?’zdm %/ de3® = mz — %/e&”dnﬁ

= 3 g ¢

2. /x2cosmda: = /desinm

. . 2
= 22 smx—/smxda@

8
®
®

= x2sinx—2/xsinmda¢
= wQSinw+2/wdcosx

= xQSinx+2xcosx—2/cosxda:

= z?sinz + 2z cosz — 2sinz + C
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3 1 4
3. /x Inxdz = 1/1nxdw

4
_ z'lnz 1 4
= 1 4/3: dlnx

_ m4lnx_1/x4 1 da
a 4 4 ap

4
_ mlnx_l/xgdx

44 44
zlnz x
= 1 *EJrC

4. /lnxdm = xlnx—/wdlnx
= xlnx—/dm

= zlhhz—-x2+C
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Evaluate the following integrals.

5. / zsinxdr
0

1
6. / eV dx
0
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Solution

T s
5. / rsinxdr = —/ x dcosx
0 0

= f[mcosaz]g+/ cosz dx
0

= —(wcosm —0)+ [sinz]f

= 7
1 1
6. / eV dx = 2 Vzedvz
0 0
1
= 2 axde®
0
1
= 2[zeV=]} - 2/ eV d/x
0
= 2e—2[eV"]}
= 2e—2(e—1)
= 2
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Example

Evaluate the following integrals.

7. /sin71 xdx

8. /ln(1+x2)da:

9. / sec® zdx

10. /ezsinxdm
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7. /sin71 xdx

8. /ln(l + %) dx

Integration More Techniques of Integration

. o =il
T sin lx—/a:dsm T

.1 xdx
rsin~ T —

1 [d(1—a?)
2) V1—2z2
zsin Ttz 4+vV1I—224+C

zIn(l + z?) — /xdln(l + 2%)

zsin~tz 4

22dx
14 22

wln(1+x2)—2/

1

zln(l + 2?) — 2z + 2tan" 'z 4+ C
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9.

3
/ sec” xdx

2 / sec® zdx
/ sec® zdx

/ sec xd tan x

secx tanx — / tan zd sec x

secx tanx — / sec z tan® zdx

secx tanx — /sec x(sec’ z — 1)dz
secx tanx — /sec3 zdr + /sec rdx

secxtanx + / sec xdx

secx tanx + In | sec x + tan x| I

2 C
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10. /em sinxdr = /sin xde”

= ezsinxf/ezdsinx

= & sinx—/ez cos xdx

= ¢° sinaa’—/cosacdeI

= ezsinx—ezcosw—i—/ezdcosx

= emsinm—e”cosx—/exsinmdm
2/ezsinxdm = e“sinx —e*cosz + C’

/ e’sinzdr =

(esinx —e®cosz) + C

N =
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Reduction formula

For integral of the forms

I— /cosn zdz, /sin" zdz, /as" cos xdzx, /ac" sin zdx,
/sec" xdz, /csc" xdz, /w"eldx, /(lnx)"dm,
/ez cos”™ xzdx /ez sin" zdx / dx / du
9 Y (ZL‘Q 4L a2)n’ (a2 _ 1'2)"’

we may use integration by parts to find a formula to express I,, in terms of I},
with k < n. Such a formula is called reduction formula.
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I, = /as" cos zdx

for positive integer n. Prove that

=1l

I, =z"sinz + nz"" " cosx —n(n — 1)I,_o, forn > 2
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I, :/m"cosxdm

/ z"dsinx

n . . n
a5 smxf/sm:cdm
no_ . n—1 .
T smm—n/x sin xdx
. -1
x"smx—i—n/x" dcosx
n . n—1 n—1
z"sinx + nx cosxfn/cosxdm

g =1 -9
z" sinx + na" cosx—n(n—l)/m" cos zdx

o —1
z" sinx +nx" " cosx —n(n — 1)I,—2
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Example

Let

dx
In=| —————
/ (% +a?)”

where a > 0 is a positive real number for positive integer n. Prove that

ap 2n — 3

I, =
2a%2(n — 1)(22 + a?)7 1 * 2a%2(n — 1)

In—1, forn >2
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I 7/ dx . a5 —/xd 1
w0 (x2+a2)n — (x2+a2)n (x2+a2)n
. i +/ 2nzdr
- (:I;2+a2)n (x2+a2)n+1

DB 9
_ a +2n/(m +a® —a)dx

(22 + a2)" (22 + a2)nt1
az dx 2 dx
= — 2 4o 2 9 — = f
(2% + a?)" + n/ (22 + a?)" na / (22 1 a2)n+1
X 2
= m + 2nl, — 2na”I541
I T 2n —1
s 2na?(z? + a?)” 2na? "
Replacing n by n — 1, we have
4z 2n —3

i =

2(n — 1)a2(z2 + a?)n-1 * 2(n — 1)a2 " "
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Alternative proof.

1 22 +a? — 22

a2 (z%2 + a®)™ v

1 / 1 x>
— — dzx
az (JSQ a2)n—1 (xz a2)n

1 1 as 2 2
—Ip1—— | —————d
a? 1T 92 / (z2 + a?)" &k

iI A ! /xd L
a2 "' T2 —1)a? (22 + a?)n-t

x

dx

1
aiQInfl T

: (L1
2(n — 1)a?(x? + a?)" ! a? 2(n-—1

z n 2n —3 I
2(n — 1)a?(z2 +a2)n-1 * 2(n—1)a2 "~

1
2(n — 1)a?(2? + a2)"~1  2(n — 1)a? /

) o

1

(172 + a2)n—1

O
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Example

Prove the following reduction formula
. 1 on—1 n—1 . n—2
/sm" xdx = ——coszsin” x4+ —— [ sin"” “ zdx
n n

for n > 2. Hence show that

(n=1)-(n—3)---6-4.2 :
. when n is odd
* sin™ zdz = i e I A
0 (n-1)-(n=3)---7-5:3 = when n is even
n(n—-2)--6-4-2 2
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/ sin” zdx

. n—1
—/sm xdcos T

1 =1
— cos x sin™ x+/cosxdsm" z

. n—1 2 on—2
—coszsin"” x+ (n— 1)/cos zsin”" " zdx

—coszsin™ 'z + (n — 1) /(1 —sin® ) sin™ "2 xdx

n/sm" xdr = —coszsin” x4+ (n— 1)/sm" zdx

. 1 . n—1 n—1 . n—2
/ sin"zdx = ——coszsin" x+ sin" ™ * zdx
n n

304 /338



Integration
Techniques of Integration

Hence when n is odd

/ sin" zdx =
0

[SE]

Integration More Techniques of Integration

fus fud
1 soon—1 2 n—1 2 . n-2
— | — COos T sin x e sin xdx
n 0 0
s

n—1 7 n—2
sin xdx
0

n

(n=1)-(n—3)- .6.4-2/% :
n(n—2)-753 ; sin xdx

(n—1)-(n—3)---6-4-2
n-(n—2)---7-5-3
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when n is even

s us s
3 1 5 n-1 (%
. . =1l . —2
/ sin"xzdx = — [f cos x sin” x} + sin" ™ “ zdx
0 n 0 0

jus
n—1 7 o @=9
= sin zdx
0

n

(n—l) (n—g)/% nea
= sin xdx
n n—2) Jo

_ (n=1)-(n—3)---7-5- d
T Tnn-2--642 J,
_ (n-1)-(n—-3)---7-5-3 =
- n-(n—2)---6-4-2 2
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I, = /x"ezdx; I,=z"€" —nl, 1, n>1
I, = /(lnx)"dm; I, =z(lnx)” —nl,—1, n>1
I, = /x sin zdx; I, =—x"cosx +nx™ " sine —n(n—1)Ih—2, n>2
n—1 ]
I = /cos” xdz; Il = oS rsmw +(n—1)1I—2, n>2
n
n—2
-2
I, = [ sec" zdx; I, = see & tanz + n In_2, n>2
nfll n—1
:  n e®cos" z(cosz +mnsinz) n(n-—1)
/ecosxx 1n2—|—1 +n2+l 2, N{=>
5 - m e®sin"~ " z(sinx —ncosx n(n—1
In:/e sin” xdzx; I = n(32+1 )—|— £2+1)In_2,n22
22" (z + a)2 2na
Iy = "V e — = In— >1
/‘T Al 2 +3 m+3 "=
= 22"/ 2
In:/ EN S N
v+ a 2n +1 2n +1
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Expression | Substitution dx Trigonometric ratios
cost) =
a e .
w=asing | d=acosfdo * sing =2
(] a
AN A—
/2 — 22 tanf =
Va2 + a2 .
z=atand | dr = asec>0dd v
Pl
a
x
x =asect | dx = asecftan0df Va2 - a?
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Theorem

dx .1z
c/m:sm atC

dzx 1 _q a8
—— ==t -+C
e/a2+x2 a a+

dx _ L a
© [ mm -+
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Proof

1. Let x = asinf. Then

a2 —22 = +a?—a?sin?0 = acosh

dr = acosfdf

1
2

Therefore
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2. Let x = atanf. Then
A +22 = d®+d’tan’0 =a’sec’ o
dzr = asec0df.
Therefore
/ﬁ dv = /ﬁ(“ 6df)

1

= = /d9
a
0

- 240
a

_ 1 tan"' Z 4 C
a a
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Proof.

3. Let z = asecf. Then

zvV/x2 —a? = asecHv/a?sec?0 — a2 = a®secftand
dr = asec6tanfdo.
Therefore

1 1
/ m dx = / m(d sec  tan 9d9)

1/d@

a

- Yic
a

1 _
= —cos 1E+C
a T

a . 1
— since cos ) = =
qz sec 6

1

Note that = cos™

SIS

O
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Example

Use trigonometric substitution to evaluate the following integrals.

(1) /Mdm
1

o[ =w

O [ ey
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Solution

Integration

1. Let x =sinf. Then

Therefore

V1—a22

dzx

/ Vi—2dz

More Techniques of Integration

V1 —sin?0 = cosé

cos 0d6.

/ cos® 0do

/cos229+1d9

sin260 6

1 =F 5 +C

sinfcosf sin~lz
2 i 2

zv/1—22 sin 'z
2 = 2

+C

+C
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Solution

2. Let x = tan6. Then

1+ tan? 0 = sec? 0
sec? 6do.

l—l—as2
dx

Therefore

(sec® 0d0)

/ 1 de - / 1
Vitaz? N sec

= / sec 6df

= In|tanf + secl| + C

= In(z++vV1+2?)+C
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3. Letx = 2sinf. Then

V4—22 = +/4—4sin?0 = 2cosh

dr = 2cos6df.

Therefore

z> 8sin® §
/ﬁdm = / o (2 cos 0d0)
= 8/sin3 0do
= —8/(1 — cos® 0)d cos 0
3
= 8 <% = cost9> +C

_ (4-2? 2
= #74(47‘%)

(S

D=
+
Q
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4. Let x = 3tan6. Then

942> = 9+9tan’0 =9sec’0
dr = 3sec?6do.
Therefore
1 . 1 9 _ i 5
/ (9 +x2)2 do = / 81sect 0 (3sec” 6d9) = 27 /COS 0do

1 1 (sin26
= 5—4/(60529-}-1)(16*5—4( 5 —|—0>+C’
1

= —(cosfsinf+6)+C

54

— i( 3z +tan*1§>+0
S\ Vora? Vorat 3

= #+itanflf+0
18(9 1 z2) ' 54 3
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Integration of rational functions

Definition (Rational functions)

A rational function is a function of the form

where f(z), g(z) are polynomials with real coefficients with g(z) # 0.

Techniques
We can integrate a rational function R(x) with the following two steps.

@ Find the partial fraction decomposition of R(x), that is, express

B A B(z + a) C
R@) =@+ oot 2 (mr ar B T (@ O TP

where q(z) is a polynomial, A, B,C, a, a,b represent real numbers and k
represents positive integer.

@ Integrate the partial fraction.
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f(z)

Let R(z) = (— be a rational function. We may assume that the leading
g(z

coefficient of g(z) is 1.

@ (Division algorithm for polynomials) There exists polynomials q(x),r(x)
with deg(r(z)) < deg(g(z)) or r(z) = 0 such that

q(z) and r(x) are the quotient and remainder of the division f(x) by
9().

@ (Fundamental theorem of algebra for real polynomials) g(x) can be
written as a product of linear or quadratic polynomials. More precisely,
there exists real numbers a1, ...,Qm,Q1,...,0n,b1,...,b, and positive
integers ki, ...,km,l1,...,l, such that

gx) = (z—a) - @—ar)" ((@+a1)? +D)" - (T +an)? +D)2)".
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Techniques

Partial fractions can be integrated using the formulas below.

da In|z —a|+ C, ifk=1
o f e : .
(z—a) —W-FC, ifk>1
1ln(:vQ—l—CLQ)—i—C ifk=1
°/ zdx )2 ’ -
(% + a?)* - ! 10, ifk>1

2(k — 1)(z2 + a?)+—1!
dx
C /(x2+a2)k

l'caufflg—i—C', ifk=1
=4 ¢ k—3 d
a5 2k — i3
ifk > 1
22k — D)@ 1 @)F 1 | 2a2(k — 1) / @ a1 "7
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Theorem

f(z)

Suppose
g(z

is a rational function such that the degree of f(x) is smaller

than the degree of g(x) and g(x) has only simple real roots, i.e.,

9(z) = a(z — a1)(z — az) -+ (z — ax)

for distinct real numbers a1, 2, -+ ,ax and a # 0. Then
f(@) _ f(a1) f(az) flax)
9@)  gln)@—m) | gla)@—az) " glow)( —ar)
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First, observe that

k
g'(x) =Za(w—al)(m—az)---(w—aj)---(:r—ak)

where (x — «;) means the factor © — o is omitted. Thus we have

k
gler) = D ala—an)(w—a2) (@i —az) - (o — ax)

Jj=1

—

= a(a; —on)(os —a2) - (o — o) -+ (o — o)
Since g(x) has distinct real zeros, the partial fraction decomposition takes the

form

aF .
g(z) r—o1 T — Qs T — oy
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Proof

Multiplying both sides by g(z) = a(z — o) (x — @2) - - - (x — ag), we get

k
flz) = ZAia(x —a)(x—az) - (z—a) - (z— ak)
i=1
Fori=1,2,---  k, substituting £ = «a;, we obtain
flai) = ZAJG j—oa)(oy —a2) - (o — i) - (o — o)
= Aia(ai—al)(ai —042)“-(@,‘/;\041')“-(&1‘ —Oék)
= Aig' (o)
and the result follows. O
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Example

Evaluate the following integrals.

o /x ;2_:n27—1d
0 [ iimm o
o[t
Q/%dw
e/x4+4

2z +1
dx
o /x4+2a72+1
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Solution

1. By division and factorization z® — x = x(x — 1)(x 4 1), we obtain the
partial fraction decomposition

B C

5
°+4r -3 5 5x — 3
=& L z—1 z4+1°

3 —z 3 —x

A
=z+1+=+

e
Multiply both sides by x(x — 1)(x + 1) and obtain

52 —3=A(z—1)(x+ 1)+ Bzx(x + 1) + Cx(z — 1)
= A=3,B=1,C=—-4.

Therefore

x5 4+ 42 — 3 2 3 1 4
— T Zdr = i1 = = d
/ 3 —z v /(er +era:—l x+l) “

3
C%—l—x—|—31n|w|—|—ln|:;r—1|—41n|x—|—1|—|—C.
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Solution

2. By factorization 22 + 3z* — 2x = x(x 4 2)(2x — 1), we obtain the
partial fraction decomposition

9z — 2 A B C

23 + 322 — 2z = +x+2+2x—1'

Multiply both sides by x(x + 2)(2x — 1) and obtain

9z —2=A(z+2)(2x — 1)+ Bzx(2z — 1) + Cz(z + 2)

Therefore
9r — 2
/ 223 + 3x2 — 2z du

/l— 2 4= 2 dx
x x+2 2¢ — 1

In|z| —2In|z+ 2|+ In|2z — 1| + C.
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3. The partial fraction decomposition is

-2 A ..B . C
zz—1)2 (z—-12 -1 =z’

Multiply both sides by x(x — 1)? and obtain
x> —2= Az + Bz(z — 1) + C(z — 1)°
- A=-1,B=3,C=-2.
Therefore

[t - [(amrsti-i)e

1 i 3hlz—1-2mfz|+C.
r—1
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4. The partial fraction decomposition is

1’2 2
-1  (@@-D@2+1)
1 1 1
- §<$2—1+x2—|—1)
_ 1 1
2 —1)(z+1) + 2(z2+1)
1 1 1

o1 2@tD) 2@ +1)

Therefore

/;fixl = / <4(I1_ 0 4(:vl+ DT 2(x21+ 1)) dx

1 1 1
Zln\x—1|—Zln\m+1|+§tanflx+0
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5. By factorization 2* + 4 = (2* + 2)? — (22)% = (2 — 22 + 2)(2® + 2z + 2),
82
/x4 o dx
/ 82 dx
dx
(22 — 2z + 2)(22 + 22 + 2)
4z
/Zw ((z2 72x+2)(3c2+2x+2)> dx
1 1
/296 (x2—2m+2 B x2—|—2m+2) de
/ 2z _ 2z da
(x—1)2+1 (z+1)2+1

B 2z — 1) 2 2z +1) 2
- /((m71)2+1+(x71)2+1_(:v+1)2+1+(x+1)2+1)dx

= In(z® =2z +2)+2tan""(z — 1) — In(z® + 22 + 2) + 2tan" ' (z + 1) + C
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6 2z + 1 "
’ o4 4222 4+ 1

/
-/ (wf}dﬁw +f (xzdflﬁ 2
Ve S
_ 1 dx _}/%

2 +1 z24+1 2

= —;—i—tanflas—i—1 xd L
x4+l 2 z2+1

= —#—i—ta,nfla:—i—1 i _1 du
a z2+1 2\z2+1 2/ x2+1

=2 1 1
= 22 4y @
2@ 1) Tzt T
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Find the partial fraction decomposition of the following functions.

5x — 3

o -—

3 —x
9r — 2

o 223 + 3x2 — 2x
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Q Forg(z) =2 -z =x(x—1)(z+1), ¢'(z) = 32> — 1. Therefore

5v—3 -3 5(1) — 3 5(-1) -3
-z g0z gM)z-1) g(-1)(x+1)
3,1 4
T oz -1 z+1
@ For g(x) = 22% + 32 — 22 = x(z + 2)(22 — 1), ¢'(x) = 62> + 62 — 2.
Therefore
9z — 2
223 + 322 — 22
_ -2, 92 9(3)-2
g0z ¢ (=2)(z+2) g'(3)2z-1)
1 2 2

r x+2 2x-—1
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t-substitution

To evaluate
/ R(cosz,sinz, tan z)dx

where R is a rational function, we may use t-substitution

t=tan =
= tan —.
2
Then
tanx = ——; cosx 1t sin x 7215
_ . _ o g = .
1—¢2’ 142’ 142’
1 2dt
dr =d(2tan” " t) = e
We have

: 1-¢* 2t 2t 2dt
/R(Cosas,smw,tana:)dx:/R(lthQ, T e 17t2> e

which is an integral of rational function.
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Example

Use t-substitution to evaluate the following integrals.
dx
o/ =
+ cosx
sin zdz
O s

cosz + sinx

a8
° /1+cosm+sinx
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T
1. Lett =tan —
e an2,

/

dx
1+ cosx

Alternatively

/

Integration

More Techniques of Integration

42
cosT = 1+i2,dﬂc: 12_51;2. We have
1 2dt / ap
_/ _ = [dt=t+C=tan=+C
112 2
(1+1+§2>1+t 2
B sin § 72cos§sin§+ci sin x
N cos 3 - 2cos? 3 " 1+cosz
7d$ = 7dx = 1 sec? zd:c
1+cosz 2c052§_2 2
az sin x
= tan=4+C=—"——+4+C
an2+ 1+cosm+
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2. Lett = tan g

/

sin zdx

cosx + sinx

COST =

Integration More Techniques of Integration

= 2t 2dt
T sinxz = T+ = e We have
/ 1i§2 2dt
e 2
1+t2 + 1+t2 Lot

1t _t-1 dt
1+ "1+  1+2t—1¢2

tan 1t+%ln|1+t2|f%ln|1+2t7t2|+0

_a 1. |1+2t—¢2
tan t*gln‘w +C
1. |1—1¢2 2t
tan 't — =1 C
an 2n‘1+t2+1+t2 +

z 1
5 an|cosx+81nm|+0
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Solution

Alternatively

/ sin zdx _ /(1_cosx—sinx> o
cosx + sinx cosx + sinx
1 [ d(sinz + cosx)
5/ cosz + sinx

NIE N8 N

— %1n|cosx+sinx|+0
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1—¢ 2t o 2t
B

We have

3. Lett = tang, cosT =

2dt

/ dx _ / 14t2
i - 1—t2 2t
1+ cosx +sinz 1+1+t2+1+7

dt
1+t
= In|l+t+C

= 1n‘1+tang’+0

sin x

= In[l+

1+ cosx
1+ cosx +sinz

C
1+ cosx +

= ln‘
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