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1 Combinatorial games

1.1 Combinatorial games

In this chapter, we study combinatorial games.

Definition 1.1.1 (Combinatorial game). A combinatorial game is a game
satisfies the following properties.

1. There are two players in the game.

2. There is a finite set of possible positions.

3. The players move from one position to another alternatively.

4. Both players know the rules and the moves of the other player. In other
words, it is a game with perfect information.

5. The game reaches a terminal position, that is a position for which
no further move is possible, in a finite number of moves no matter how
it is played. Then one of the players is declared the winner and the
other the loser.

Note that in a combinatorial game, no random moves such as the rolling
of a dice or the dealing of cards are allowed. This rules out games like
backgammon and poker. A combinatorial game is a game with perfect in-
formation which does not allow simultaneous moves and hidden moves. This
rules out rock-paper-scissor and battleship. Also no draws are allowed in a
combinatorial game. This rules out tic-tac-to.

Given a combinatorial game, we would like to ask whether there exists
a winning strategy for either one of the players. If the answer is yes, which
player has a winning strategy and what is the winning strategy? First we
prove the fundamental theorem of combinatorial game theory.

Theorem 1.1.2 (Zermelo’s theorem). For any combinatorial game, exactly
one of the players has a winning strategy.

Proof. We prove the theorem by induction on the maximum number of moves
of the game. If the maximum number of moves of a game is 1, then the theo-
rem is obvious. Assume that the theorem is true for any game with maximum
number of moves not larger than n. Suppose the maximum possible number
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of moves of a game G is n + 1. Denote the first and the second player of
G by I and II respectively. Let k be the number of possible choices of the
first move of I. After each choice i, i = 1, 2, · · · , k, of first move of I, denote
the remaining game by Gi. Then the maximum number of moves of Gi is at
most n for any i = 1, 2, · · · , k. By induction hypothesis, for each Gi, either
I or II has a winning strategy. Suppose there exists i such that I has a
winning strategy for Gi. Then I has a winning strategy by choosing i in the
first move. Otherwise, II has a winning strategy for every Gi which implies
that II has a winning strategy for G. It is also clear that only one of the
two players can have a winning strategy.

In this notes, we only consider impartial game with normal play rule.

Definition 1.1.3. We say that a combinatorial game is

1. impartial if the sets of moves available from any given position are
the same for both players. Otherwise, it is said to be partizan.

2. played with normal play rule if the last player to move wins. Other-
wise, it is played with misère play rule.

From now on, we will assume that all combinatorial games are impartial
and played with normal play rule. The following game is an example.

Example 1.1.4 (Take away game). There is a pile of n chips on a table.
Two players take turns removing the chips from the table. In each turn, a
player can remove either 1, 2 or 3 chips. The player removing the last chip
wins.

By Zermelo’s theorem, exactly one of the players has a winning strategy.
In the above take away game, it is not difficult to see that if initially there
are n chips, then the first player has a winning strategy if n is not a multiple
of 4 and the second player has a winning strategy if n is a multiple of 4.
The winning strategy is to remove the chips so that the remaining number
of chips is a multiple of 4.

1.2 P-positions and N-positions

We have seen in the last section that for any combinatorial game, exactly one
of the players has a winning strategy. Thus for any position of a combinatorial
game, exactly one of the players, the one who makes the previous move or
the one who is going to make the next move, has a winning strategy.
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Definition 1.2.1 (P-position and N-position). We say that a position of an
impartial combinatorial game is a

1. P-position if the player who makes the previous move has a winning
strategy.

2. N-position if the player who makes the next move has a winning strat-
egy.

Let us denote the player who makes the first move by I and the player
who makes the second move by II. Then I has a winning strategy if the
initial position is an N-position and II has a winning strategy if the initial
position is a P-position. The winning strategy for the player, who has it, is
always moving to a P-position.

Under the normal play rule, the player who reaches a terminal position is
the winner. Thus all terminal positions are P-positions. Observe that if an
N-position is reached, then the next player has a move to a position that the
previous player of the position has a winning strategy. This means from an
N-position, there is always a move to a P-position. On the other hand, any
move from a P-position will reach a position so that the next player of the
position has a winning strategy. Therefore a P-position can only move to an
N-position. It turns out that these properties characterized the P-positions
and N-positions.

Theorem 1.2.2 (Characterization of P-positions and N-positions). The P-
positions and N-positions of an impartial game with normal play rule are
determined by the following properties.

1. All terminal positions are P-positions.

2. Any move from a P-position reaches an N-position. In other words, if
a position can be moved to a P-position, then it is an N-position.

3. Any N-position has a move to a P-position. In other words, if a position
can be moved only to N-positions, then it is a P-position.

This allows us to determine all P-positions and N-positions recursively in
the following way.
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Step 1. Label all terminal positions as P-positions.
Step 2. Label all positions which has a move to labeled P-position

as N-positions.
Step 3. Label all positions which can be moved only to labeled

N-positions as P-positions.
Step 4. If all positions are labeled, then stop; otherwise go to step 2.

After we label all positions, the winning strategy of the player is always
moving to a P-position until a terminal position is reached.

For the take away game (Example 1.1.4), the set of positions is {0, 1, 2, 3, · · · , n}.
We can label the positions as follows.

1. The only terminal position is 0. We label 0 as P-position.

2. The positions which has a move to 0 are 1, 2, 3. We label them as
N-positions.

3. The position 4 can only move to 1, 2, 3 which are N-positions. Label 4
as P position.

4. Use Step 2 to label 5, 6, 7 as N-positions.

5. Use Step 3 to label 8 as P-position.

6. Use Step 4 to label 9, 10, 11 as N-positions.

The above process continues until all positions are labeled. It is not difficult
to see that the set of P-positions is the set of multiple of 4. To give a rigorous
proof for that the multiples of 4 are exactly the P-positions, we may use the
following theorem which follows directly from Theorem 1.2.2. Recall that
any position is either a P-position or an N-position by Zermelo’s theorem
(Theorem 1.1.2). So if P is the set of P-positions of a combinatorial game,
then the set of N-positions of the game is P c, where P c is the complement
of P in the set of all positions.

Theorem 1.2.3. A set of positions P is the set of P-positions of a combi-
natorial game if and only if P satisfies the following 3 properties.

1. All terminal positions lie in P .

2. For any position p ∈ P , any move from p reaches a position q 6∈ P .
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3. For any position q 6∈ P , there exists a move from q reaching a position
p ∈ P .

Now we prove that P = {k : k ≡ 0(mod 4) and 0 ≤ k ≤ n} is the set of
P-positions of the take away game (Example 1.1.4).

Theorem 1.2.4. The set of P-positions of the take away game (Example
1.1.4) is

P = {k : k ≡ 0(mod 4)}

Proof. We need to prove that the set P satisfy the conditions in Theorem
1.2.2.

1. The only terminal position is 0 and 0 ∈ P .

2. For any position k ∈ P , any move from k will reach k − r, where
r = 1, 2, 3, which is not a multiple of 4 and is not a position in P .

3. For any position k 6∈ P , k is not a multiple of 4 and let r = 1, 2, 3 be the
remainder when k is divided by 4. Then k can be moved to k− r ∈ P .

Therefore the set P satisfies the conditions in Theorem 1.2.3 which means
that P is the set of P-positions of the game.

The following game is a generalization of the take away game.

Example 1.2.5 (Subtraction game). Let n be a positive integer and S ⊂
Z+ be a subset of the set of positive integers. The subtraction game with
subtraction set S is played as follows. There is a pile of n chips where n is
a position integer. Two players remove the chips in the pile alternatively. In
each turn, a player removes k chips where k ∈ S. The game ends when there
is no possible move and the player who makes the last move wins.

Let’s analyze the game when S = {1, 3, 4}. The labeling of P-positions
and N-positions are shown below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
P N P N N N N P N P N N N N P N · · ·

One would guess that whether a position k is a P-position depends on the
remainder when k is divided by 7. We may prove that it is really the case.
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Theorem 1.2.6. The set of P-positions of the subtraction game (Example
1.2.5) with S = {1, 3, 4} is

P = {k : k ≡ 0, 2(mod 7)}

Proof. We need to check the following 3 conditions.

1. The only terminal position is 0 and 0 ∈ P .

2. Suppose there are k chips in the pile where k ∈ P . If k ≡ 0(mod 7),
the positions that the next player may reach are congruent to 6, 4, 3
modulo 7 which lie outside P . If k ≡ 2(mod 7), the positions that the
next player may reach are congruent to 1, 6, 5 modulo 7 which also lie
outside P . Therefore a position in P can be moved only to positions
not in P .

3. Suppose there are k chips in the pile where k 6∈ P . For k ≡ 1, 3, 4, 5, 6( mod
7), the next player may remove 1, 1, 2, 3, 4 chips and the remaining num-
ber of chips are congruent to 0, 2, 2, 2, 2 modulo 7 respectively which
are positions in P . Therefore a position not in P can always be moved
to a position in P .

Therefore P is the set of P-positions of the game.

To find the set of P-positions and N-positions of a combinatorial game,
one may label the first few P-positions. Then make a guess on what the set
of P-positions should be and prove that it is the case.

Example 1.2.7 (Wythoff’s game). There are two piles of chips. In each
turn, a player may either remove any positive number of chips from one of
the piles, or remove the same positive number of chips from both piles. The
player who removes the last chip wins. Determine the set of P-positions of
the game.

Solution. Use (x, y) to denote the position that there are x chips and y
chips in the two piles. Note that here (x, y) and (y, x) will be considered
as the same position. There is only one terminal position (0, 0) and it is
a P-position. Using the procedures of labeling P-positions and N-positions,
one finds that the first few P-positions are as follows.

(0, 0), (1, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15), (11, 18), (12, 20), · · ·

Denote by (an, bn), n = 0, 1, 2, 3, · · · , the integer pairs in the above sequence.
Observe that (an, bn) is uniquely determined by the following properties.
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• For any n = 0, 1, 2, 3, · · · , we have bn = an + n.

• For any 0 ≤ m < n, we have am < an.

• For any positive integer k = 1, 2, 3, · · · , exactly one of the following
statements holds: (1) there exists positive integer n such that an = k;
(2) there exists positive integer n such that bn = k.

Note that every positive integer appears exactly once in the sequence of
integer pairs. Now we prove

P = {(an, bn) : n = 0, 1, 2, · · · }

is the set of P-positions.

1. The only terminal position is (0, 0) and (0, 0) ∈ P .

2. Suppose (x, y) 6∈ P with x ≤ y. Let n = y− x. Then x 6= an otherwise
(x, y) = (an, an + n) = (an, bn) which contradicts (x, y) 6∈ P . If x < an,
then there exist m < n such that x = am or x = bm. Observe that y is
larger than both am and bm. Thus (x, y) can be moved to (am, bm) ∈ P .
If x > an, then (x, y) can be moved to (an, bn) ∈ P by removing x− an
chips in both piles. Hence a position not in P has a move to a position
in P .

3. Suppose (an, bn) ∈ P with (an, bn) 6= (0, 0). Then the next position
is either (an − k, bn), (an, bn − k) or (an − k, bn − k) for some positive
integer k. The positions (an−k, bn), (an, bn−k) 6∈ P since each positive
integer appears in exactly one pair. The position (an − k, bn − k) 6∈ P
because (bn − k)− (an − k) = an − bn = n and the only integer pair in
P having difference equal to n is (an, bn). Hence a position in P cannot
be moved to a position in P .

Therefore the set of P-positions of the game is P . �

One may wonder whether there is a formula to find the values of (an, bn)
for large n instead of writing down the whole sequence term by term.

Theorem 1.2.8. Let (an, bn) the sequence of integer pairs defined in Example

1.2.7. Let ϕ = 1+
√
5

2
be the golden ratio. For real number x, denote by bxc

the largest integer which satisfies bxc ≤ x. Then for any n = 0, 1, 2, · · · , we
have

(an, bn) = (bnϕc, bnϕc+ n).
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Proof. It is obvious that the sequence defined by (an, bn) = (bnϕc, bnϕc+n)
satisfies bn = an + n for any n and am < an whenever m < n. It suffices to
show that for any positive integer k = 1, 2, 3, · · · , exactly one of the following
statements holds: (1) there exists positive integer n such that an = k; (2)
there exists positive integer n such that bn = k. This follows from the
Beatty’s theorem.

The Beatty’s theorem allows us to write down two sequences of positive
integers which cover every positive integer exactly once in a miraculous way.

Theorem 1.2.9 (Beatty’s theorem). For real number x ∈ R, denote by bxc
the largest integer such that bxc ≤ x and {x} = x−bxc be the fractional part

of x. Let α, β > 1 be irrational real number such that
1

α
+

1

β
= 1. Then for

any positive integer k, exactly one of the following statements holds:

• there exists positive integer n such that bnαc = k;

• there exists positive integer n such that bnβc = k.

Proof. See Exercise 1.

1.3 Nim

In this section, we study the game nim which is an important game in the
study of combinatorial games.

Example 1.3.1 (Nim). There are 3 piles of chips. In each turn, a player
chooses one of the 3 piles and removes any positive number of chips in the
pile. The player who remove the last chip wins.

We will use (x, y, z) to denote the position that the number of chips in
the 3 piles are x, y, z. To describe the set of P-positions of nim, we first give
the definition of nim-sum.

Definition 1.3.2. Let a and b be two non-negative integers. Let (an · · · a2a1a0)2
and (bn · · · b2b1b0)2 be the binary expressions of a and b respectively. In other
words,

a = 2nan + · · ·+ 4a2 + 2a1 + a0 and b = 2nbn + · · ·+ 4b2 + 2b1 + b0
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Then the nim-sum of a and b is defined by

(an · · · a2a1a0)2 ⊕ (bn · · · b2b1b0)2 = (sn · · · s2s1s0)2

where
sk = ak + bk(mod 2)

for k = 0, 1, 2, · · ·n. In other words, the nim-sum of a and b is the sum of
binary numbers without carry digits. Nim-sum is also referred to as nimber
addition.

Example 1.3.3. Find the following nim-sum.

1. 11⊕ 9

2. 25⊕ 13

Solution:

1. First, write the numbers in binary form 11 = 10112 and 9 = 10012.
Now

1 0 1 12

⊕ 1 0 0 12

1 02

Thus 11⊕ 9 = 102 = 2.

2. We have 25 = 110012 and 13 = 11012. Now

1 1 0 0 12

⊕ 1 1 0 12

1 0 1 0 02

Thus 25⊕ 13 = 101002 = 20. �

The following theorem follows immediately from the definition.

Theorem 1.3.4. Let N be the set of non-negative integers. The set N forms
an Abelian group under the nim-sum ⊕ with 0 as identity and the inverse of
an element x ∈ N is x itself. In other words,
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1. (Associative law) For any x, y, z ∈ N, (x⊕ y)⊕ z = x⊕ (y ⊕ z).

2. (Identity) For any x ∈ N, x⊕ 0 = 0⊕ x = x.

3. (Inverse) For any x ∈ N, x⊕ x = 0.

4. (Commutative law) For any x, y ∈ N, x⊕ y = y ⊕ x.

A direct consequence is that ⊕ satisfies cancelation law.

Theorem 1.3.5 (Cancelation law). For any x, y, z ∈ N, if x ⊕ z = y ⊕ z,
then x = y.

Proof. Suppose x⊕ z = y ⊕ z. Then

x = x⊕ (z ⊕ z) = (x⊕ z)⊕ z = (y ⊕ z)⊕ z = y ⊕ (z ⊕ z) = y

There is a simple description of P-positions of the nim game in terms of
nim-sum.

Theorem 1.3.6 (P-positions of nim). The set of P-positions of nim game is

P = {(x, y, z) : x⊕ y ⊕ z = 0}

Proof. We check the 3 conditions for P-positions as follows.

1. There is only one terminal position (0, 0, 0) and (0, 0, 0) ∈ P .

2. Suppose (x, y, z) 6∈ P . Then x⊕ y⊕ z 6= 0. When calculating the nim-
sum using the binary expressions of x, y, z, look at the leftmost column
with odd number of 1. Choose a pile that the corresponding binary
digit of the number of chips in the pile is 1. Remove the chips from the
pile so that all columns contain even number of 1 and the nim-sum of
the 3 numbers would become 0. Therefore any position not in P has a
move to a position in P .

3. Suppose (x, y, z) ∈ P . Then x ⊕ y ⊕ z = 0. Suppose the position
(x, y, z) is moved to (x′, y′, z′). Without loss of generality, we may
assume that only x is changed and we have x′ < x, y′ = y, z′ = z. Now
if x′ ⊕ y′ ⊕ z′ = 0, then by cancelation law,

x′ ⊕ y ⊕ z = x⊕ y ⊕ z ⇒ x′ = x

which is a contradiction. Thus a position in P cannot move to a position
in P .
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Therefore P is the set of P-positions of the nim game.

Remark: We may consider a nim game with n piles of chips for any
positive integer n. The set of P-positions of the n-pile nim game is

P = {(x1, x2, x3, · · · , xn) : x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn = 0}

1.4 Sprague-Grundy function

Any combinatorial game is associated with a directed graph.

Definition 1.4.1 (Graph game). Let G = (X,F ) be a directed graph,
where X is the set of vertices and F : X → P(X) is a function from X to
the power set P(X) of X. An element y ∈ F (x) is called a follower of x.
The combinatorial game associated with directed graph G is the game with
the following rules.

1. The set of positions is X.

2. A player can move from a position x ∈ X to any follower y ∈ F (x) of
x.

3. A position x ∈ X is a terminal position if F (x) = ∅.

Conversely, for each combinatorial game, we define a directed graph associ-
ated with it as follows. The set of vertices X is the set of positions of the
game. For any x ∈ X, the set of followers F (x) of x is the set of positions
that a player can make a move to from x. We will consider a directed graph
and the combinatorial game associated to it as the same thing and denote
both of them by G.

We always assume that G is progressively bounded. This means start-
ing from any position x ∈ X, a terminal position must be reached in a finite
number of moves. This implies in particular that x 6∈ F (x) for any x ∈ X.

To solve the combinatorial game associated with a directed graph, we
introduce the Sprague-Grundy function.

Definition 1.4.2 (Sprague-Grundy function). Let G = (X,F ) be a directed
graph. The Sprague-Grundy function of G is the function g : X → N
defined by

g(x) = min{n ≥ 0 : n 6= g(y) for any y ∈ F (x)}, for x ∈ X
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The Sprague-Grundy function g is unique provided that G is progressively
bounded. The value of g(x) for x ∈ X can be found recursively as follows.

1. Let X0 = {x ∈ X : F (x) = ∅} be the set of terminal positions. We
have g(x) = 0 for any x ∈ X0.

2. Suppose the value of g is known on X0 ∪X1 ∪ · · · ∪Xk. Define Xk+1 =
{y ∈ X : F (x) ⊂ X0 ∪X1 ∪ · · · ∪Xk}. For any x ∈ Xk+1, we have

g(x) = min{n ≥ 0 : n 6= g(y) for any y ∈ F (x)}

Note that for any y ∈ F (x), g(y) is known because y ∈ X0∪X1∪· · ·∪Xk.

3. Repeat step 2 until g(x) is known for any x ∈ X.

Example 1.4.3. Consider the directed graph

The set of vertices is X = {A,B,C,D,E, F,G,H, I, J}. We may label
the values of the Sprague-Grundy function of the vertices with the following
steps.

1. Label terminal positions H, I, J as 0

2. Label D,F as 1

3. Label E,G as 2
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4. Label B as 0 and C as 3

5. Label A as 1

The follower function and the values of Sprague-Grundy function are
shown in the following table.

x F (x) g(x)
A {B,C} 1
B {C,D,E} 0
C {E,F,G, I} 3
D {H} 1
E {D,H, I} 2
F {I, J} 1
G {F, J} 2
H ∅ 0
I ∅ 0
J ∅ 0

�

The procedures described above can be used to guess a formula for the
Sprague-Grundy function of a game. To prove that a function g(x) is the
Sprague-Grundy function of a game G = (X,F ), we need to show the fol-
lowing two statements.
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1. For any x ∈ X, if k is a non-negative integer such that k < g(x), then
there exists x′ ∈ F (x) such that g(x′) = k.

2. For any x ∈ X and x′ ∈ F (x), we have g(x′) 6= g(x).

Example 1.4.4 (Sprague-Grundy function of subtraction game). The Sprague-
Grundy function of the subtraction game G(m) with subtraction set S =
{1, 2, · · · ,m} (Example 1.2.5) where m ∈ Z+ is the function g : N →
{0, 1, 2, · · · ,m} defined by g(x) ≡ x(mod m+ 1).

Proof. We need to prove that g satisfies the following two conditions.

1. For any 0 ≤ k < g(x), there exists x′ ∈ F (x) such that g(x′) = k:

For any 0 ≤ k < g(x), we have 0 < g(x) − k ≤ m. Thus x′ =
x− (g(x)− k) ∈ F (x) which corresponds removing g(x)− k chips from
the pile. Then we have g(x′) = g(x− g(x) + k) = k since x− g(x) is a
multiple of m+ 1.

2. For any x′ ∈ F (x), we have g(x′) 6= g(x):

For any x′ ∈ F (x), we have x − x′ = 1, 2, · · · ,m which implies x′ 6≡
x(mod m+ 1). Thus g(x′) 6= g(x).

This completes the proof that g is the Sprague-Grundy function of G.

Example 1.4.5. Let X = {0, 1, 2, · · · , n} where n is a positive integer. Let
S ⊂ Z+ be a collection of positive integers. For any x ∈ X, define F (x) =
{y ∈ X : y = x − s for some s ∈ S}. Then the game associated with
G = (X,F ) is the subtraction game with subtraction set S (Example 1.2.5).
Now suppose S = {1, 3, 4}. We list the values of g below

x 0 1 2 3 4 5 6 7 8 9 10 11 12
g(x) 0 1 0 1 2 3 2 0 1 0 1 2 3

In fact, it is not difficult to see that

g(x) =


0, if x ≡ 0, 2 (mod 7)

1, if x ≡ 1, 3 (mod 7)

2, if x ≡ 4, 6 (mod 7)

3, if x ≡ 5 (mod 7)

�
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Example 1.4.6. The values of the Sprague-Grundy function g(x, y) of the
Wythoff’s game (Example 1.2.7) are listed below.

x\y 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 2 0 4 5 3 7 8
2 2 0 1 5 3 4 8 6
3 3 4 5 6 2 0 1 9
4 4 5 3 2 7 6 9 0
5 5 3 4 0 6 8 10 1
6 6 7 8 1 9 10 3 4
7 7 8 6 9 0 1 4 5

�

Example 1.4.7 (At least half game). There are n chips on the table. On
each turn, a player may remove at least half of the chips. The values of the
Sprague-Grundy function of the game are listed below.

x 0 1 2 3 4 5 6 7 8 9 10 11 12
g(x) 0 1 2 2 3 3 3 3 4 4 4 4 4

More precisely
g(x) = min{k : 2k > x}

�

The at least half game is a rather silly game. One can win at the first
move by removing all the chips. In other words, the only P-position of the
game is the terminal position 0. However if the game is played with several
piles in stead of just one, the Sprague-Grundy function will be helpful in
finding a winning strategy.

The following theorem shows how to find the set of P-positions using the
Sprague-Grundy function.

Theorem 1.4.8. Let G = (X,F ) be a directed graph and g be the Sprague-
Grundy function of G. Then the set of P-positions of the combinatorial game
associated with G is

P = {x ∈ X : g(x) = 0}

Proof. We prove that the set P satisfies the conditions for P-positions (The-
orem 1.2.3).
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1. For any terminal position x, we have F (x) = ∅. Then {n ≥ 0 : n 6=
g(y) for any y ∈ F (x)} = N which implies g(x) = 0. Thus x ∈ P .

2. For any x 6∈ P , we have g(x) 6= 0. Then there exists y ∈ F (x) such
that g(y) = 0 which means y ∈ P . Thus any position not in P has a
follower in P .

3. For any x ∈ P , we have g(x) = 0. Then for any y ∈ F (x), we must
have g(y) 6= 0 for otherwise g(x) cannot be 0. Thus any follower of a
position in P does not lie in P .

Therefore P is the set of P-positions of the game.

To find the Sprague-Grundy function g(x1, x2, x3) of nim game, we know
that g takes the value 0 when (x1, x2, x3) is a P-position which means that
x1 ⊕ x2 ⊕ x3 = 0. It is then very natural to guess that g(x1, x2, x3) =
x1 ⊕ x2 ⊕ x3. The following theorem says that it is in fact the case.

Theorem 1.4.9. Let g(x1, x2, x3) be the Sprague-Grundy function of nim
game (Example 1.3.1). Then

g(x1, x2, x3) = x1 ⊕ x2 ⊕ x3

for any position (x1, x2, x3) where ⊕ denotes the nim-sum.

Proof. Let x = (x1, x2, x3) be a position. To prove that g(x) = x1 ⊕ x2 ⊕ x3
is the Sprague-Grundy function, we need to prove two statements.

1. For any 0 ≤ m < g(x), there exists y ∈ F (x) such that g(y) = m:

Consider the leftmost digit of m⊕g(x). The digit of g(x) = x1⊕x2⊕x3
at this digit is 1 since m < g(x). Then at least one of the digits of
x1, x2, x3 at this digit is 1. Without loss of generality, we may assume
that the digit of x1 at this digit is 1. It follows that m⊕g(x)⊕x1 < x1.
Let y1 = m⊕ g(x)⊕ x1. Then the position y = (y1, x2, x3) is a follower
of x and we have

g(y) = y1 ⊕ x2 ⊕ x3
= m⊕ g(x)⊕ x1 ⊕ x2 ⊕ x3
= m⊕ g(x)⊕ g(x)

= m
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2. For any y ∈ F (x), we have g(y) 6= g(x):

Without loss of generality, we may assume that y = (y1, x2, x3) with
y1 < x1. Now if g(y) = g(x), then y1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3.
This implies y1 = x1 by cancelation law of nim-sum which contradicts
y1 < x1. Therefore we must have g(y) 6= g(x).

This completes the proof that g is the Sprague-Grundy function of the nim
game.

1.5 Sum of combinatorial games

Suppose we have n combinatorial games G1, G2, · · · , Gn. We may play a new
game G with the following rules.

1. On each turn, a player selects one of the games and makes a move in
that game leaving all other games untouched.

2. The game G is at a terminal position if all games are at terminal
positions.

The game described above is call the sum of the games G1, G2, · · · , Gn and is
denoted by G = G1 +G2 + · · ·+Gn. As we have seen in the last section, each
combinatorial game is associated with a directed graph. The sum of games
can be defined using the language of directed graph as follows. Noted that
we consider a directed graph and the combinatorial game associated with it
as the same thing.

Definition 1.5.1 (Sum of combinatorial games). The sum of the com-
binatorial games G1 = (X1, F1), G2 = (X2, F2), · · · , Gn = (Xn, Fn) is
defined as G = (X,F ) where

X = X1 ×X2 × · · · ×Xn = {(x1, x2, · · · , xn) : xk ∈ Xk}

and F : X → X is defined by

F (x1, x2, · · · , xn)

=
n⋃
k=1

{x1} × · · · {xk−1} × Fk(xk)× {xk+1} × · · · × {xn}

= F1(x1)× {x2} × · · · × {xn}
⋃
{x1} × F (x2)× · · · × {xn}⋃

· · ·
⋃
{x1} × · · · × {xn−1} × Fn(xn)
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Theorem 1.5.2 (Sprague-Grundy theorem). Let g1, g2, · · · , gn be the Sprague-
Grundy functions of the combinatorial games G1 = (X1, F1), G2 = (X2, F2),
· · · , Gn = (Xn, Fn) respectively. Then the Sprague-Grundy function of the
sum G = G1 +G2 + · · ·+Gn is

g(x1, x2, · · · , xn) = g1(x1)⊕ g2(x2)⊕ · · · ⊕ gn(xn)

Proof. Let (x1, x2, · · · , xn) ∈ X1 × X2 × · · · × Xn. To prove that g is the
Sprague-Grundy function of G, we need to prove two statements.

1. For any 0 ≤ m < g(x), there exists x′ ∈ F (x) such that g(x′) = m:

For any 0 ≤ m < g(x) = g1(x1) ⊕ g2(x2) ⊕ · · · ⊕ gn(xn), consider the
leftmost digit of m ⊕ g(x). The digit of g(x) at this digit is 1 since
m < g(x) and there exists 1 ≤ k ≤ n such that the digit of gk(xk) at
this digit is 1. It follows that m ⊕ g(x) ⊕ gk(xk) < g(xk) and there
exists x′k ∈ Fk(xk) such that gk(x

′
k) = m ⊕ g(x) ⊕ gk(xk). Now take

x′ = (x1, · · · , xk−1, x′k, xk+1, · · · , xn). Then we have ∈ F (x) and

g(x′)

= g1(x1)⊕ · · · ⊕ gk−1(xk−1)⊕ gk(x′k)⊕ gk+1(xk+1)⊕ · · · ⊕ gn(xn)

= g(x)⊕ gk(x′k)⊕ gk(xk) (Note: x⊕ x = 0 for any x.)

= g(x)⊕ (m⊕ g(x)⊕ gk(xk))⊕ gk(xk)
= m

2. For any x′ ∈ F (x), we have g(x′) 6= g(x):

We prove the statement by contradiction. Suppose there exists x′ =
(x1, · · · , xk−1, x′k, xk+1, · · · , xn) ∈ F (x), where x′k is a follower of xk in
Gk, such that g(x′) = g(x). Then gk(x

′
k) = gk(xk) by cancelation law

(Theorem 1.3.5) which is impossible because gk is the Sprague-Grundy
function of Gk.

Therefore g is the Sprague-Grundy function of G.

Example 1.5.3 (n-pile nim game). In the 1-pile nim game, there is one pile
of chips and in each turn, a player can remove any positive number of chips
in the pile. Denote the 1-pile nim game by G. The n-pile nim game Gn is
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the sum of n copies of the 1-pile nim game G. Since the Sprague-Grundy
function of G is g(x) = x, the Sprague-Grundy function of Gn is

gn(x1, x2, · · · , xn) = g(x1)⊕ g(x2)⊕ · · · ⊕ g(xn)

= x1 ⊕ x2 ⊕ · · · ⊕ xn
When n = 1, the Sprague-Grundy function of G1 = G is g(x) = x. The only
P-position is the terminal position x = 0. The winning strategy is to remove
all chips from the pile in the first step.

When n = 2, the Sprague-Grundy function of G2 = G+G is g(x1, x2) =
x1 ⊕ x2. The set of P-positions of G2 is

P = {(x1, x2) : x1 ⊕ x2 = 0}
= {(x1, x2) : x1 = x2}

Thus a position of G2 is a P-position if and only if the number of chips in
the two piles are the same.

When n = 3, G3 is the ordinary nim game and its Sprague-Grundy func-
tion is g(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. �

Example 1.5.4. Let G(m) be the subtraction game (Example 1.2.5) with
subtraction set S = {1, 2, · · · ,m}. Recall that (Theorem 1.4.4) the Sprague-
Grundy function of G(m) is gm : N → {0, 1, 2, · · · ,m} defined by gm(x) =
x(mod m + 1). Consider the game G = G(3) + G(6) + g(9). For x =
(10, 13, 17), we have g(x) = 2 ⊕ 6 ⊕ 7 = 3 6= 0. Thus (10, 13, 17) is an
N-position. To win the game, the next player can make a move to either
(9, 13, 17), (10, 12, 17) or (10, 13, 14). The reader may check that these are
P-positions, in other words with value of g equals to 0.

Example 1.5.5. Consider the sum of the following 3 games:

Game 1: The 1-pile nim game (Example 1.5.3).

Game 2: The at least half game (Example 1.4.7).

Game 3: The subtraction game G(15) with subtraction set {1, 2, · · · , 15}
(Example 1.4.4).

The Sprague-Grundy function of Game 1, Game 2, Game 2 are

g1(x) = x

g2(x) = min{k : 2k > x}
g3(x) = x(mod 16)
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respectively. The position (15, 19, 28) has Sprague-Grundy value

g(15, 19, 28) = g1(15)⊕ g2(19)⊕ g3(28)

= 15⊕ 5⊕ 12

= 6

Therefore (15, 19, 28) is an N-position. Now the position (15, 5, 12) of the
nim game has winning moves to (9, 5, 12), (15, 3, 12) and (15, 5, 10). A P-
position is reached if the Sprague-Grundy values of the three games are one
of the above triple. The possible moves are listed in the following table.

Game original position original g value final g value possible moves
1-pile nim 15 15 9 9

at least half 19 5 3 4,5,6,7
G(15) 28 12 10 26

Hence P-positions that the next player can reach are (9, 19, 28), (15, 4, 28),
(15, 5, 28), (15, 6, 28), (15, 7, 28) and (15, 19, 26). �

Example 1.5.6 (Take or break game). There are several piles of chips. In
each turn, a player may either

1. remove any positive number of chips from one of the piles, or

2. split one of the piles into two non-empty piles.

The values of the Sprague-Grundy function of the game are obtained from
the following table.

x possible splitting
Sprague-Grundy values
of possible splitting

g(x)

0 none 0
1 none 1
2 (1, 1) 0 2
3 (1, 2) 3 4
4 (1, 3), (2, 2) 5,0 3
5 (1, 4), (2, 3) 2,6 5
6 (1, 5), (2, 4), (3, 3) 4,1,0 6
7 (1, 6), (2, 5), (3, 4) 7,7,7 8
8 (1, 7), (2, 6), (3, 5), (4, 4) 9,4,1,0 7
9 (1, 8), (2, 7), (3, 6), (4, 5) 6,10,2,6 9
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It can be proved that the Sprague-Grundy function of the game is given by

g(x) =


4k + 1, if x = 4k + 1

4k + 2, if x = 4k + 2

4k + 4, if x = 4k + 3

4k + 3, if x = 4k + 4

Consider the position (3, 5, 8). Its Sprague-Grundy value is

g(3, 5, 8) = g(3)⊕ g(5)⊕ g(8)

= 4⊕ 5⊕ 7

= 6

Thus (3, 5, 8) is an N-position. We may find the winning moves by looking
at the nim-sum

1 0 02

1 0 12

⊕ 1 1 12

1 1 02

The winning moves and the corresponding Sprague-Grundy values are listed
in the following table.

Winning move Sprague-Grundy value
(2, 5, 8) g(2, 5, 8) = 2⊕ 5⊕ 7 = 0
(3, 4, 8) g(3, 4, 8) = 4⊕ 3⊕ 7 = 0
(3, 5, 1) g(3, 5, 1) = 4⊕ 5⊕ 1 = 0

(3, 5, 3, 5) g(3, 5, 3, 5) = 4⊕ 5⊕ 4⊕ 5 = 0

Sometimes we may get a winning move by increasing the Sprague-Grundy
value. Consider the position (1, 7, 8). The Sprague-Grundy value is

g(1, 7, 8) = g(1)⊕ g(7)⊕ g(8)

= 1⊕ 8⊕ 7

= 14

Consider the nim-sum
0 0 0 12

1 0 0 02

⊕ 0 1 1 12

1 1 1 02
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We see that a winning move is (1, 6, 8). However there is one more winning
move by increasing the Sprague-Grundy value of 8. This can be done by
splitting 8 into (1, 7). The winning moves are listed in the following table.

Winning move Sprague-Grundy value
(1, 6, 8) g(1, 6, 8) = 1⊕ 6⊕ 7 = 0

(1, 7, 1, 7) g(1, 7, 1, 7) = 1⊕ 8⊕ 1⊕ 8 = 0

�

Suppose we have n combinatorial games G1, G2, · · · , Gn and G = G1+G2

+ · · ·+Gn is their sum. One remarkable consequence of the Sprague-Grundy
theorem (Theorem 1.5.2) is that G is some how equivalent to the n-pile
nim game. The position (x1, x2, · · · , xn) of G corresponds to the position
(g1(x1), g2(x2), · · · , gn(xn)) of the n-pile nim game where g1, g2,· · · , gn are
Sprague-Grundy functions of G1, G2,· · · , Gn respectively. Suppose (x1, x2,
· · · , xn) is an N-position. The next player has a winning strategy as fol-
lows. Since g(x1, x2, · · · , xn) = g1(x1) ⊕g2(x2) ⊕ · · ·⊕ gn(xn) 6= 0 which
means (g1(x1), g2(x2), · · · , gn(xn)) is an N-position of the nim game. Con-
sequently, the next player has a winning strategy by removing chips from
the k-th pile leaving the other n − 1 piles unchange to reach (g1(x1), · · · ,
gk−1(xk−1),m, gk+1(xk+1) · · · , gn(xn)) for some m < gk(xk). Now there exists
x′k which is a follower of xk such that gk(x

′
k) = m. Then the next player

can win by moving from (x1, x2, · · · , xn) to (x1, · · · , xk−1, x′k, xk+1, · · · , xn)
which is a P-position.

Exercise 1

1. Let ⊕ denotes the nim-sum.

(a) Find 27⊕ 17

(b) Find x if x⊕ 38 = 25.

(c) Prove that if x⊕ y ⊕ z = 0, then x = y ⊕ z.

2. Let ⊕ denotes the nim-sum.

(a) Find 29⊕ 20⊕ 15.

(b) Find all winning moves of the game of nim from the position
(29, 20, 15).
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3. Find all winning moves in the game of nim,

(a) with three piles of 12, 19, and 27 chips.

(b) with four piles of 13, 17, 19, and 23 chips.

4. Consider the subtraction game with S = {1, 3, 4, 5}.

(a) Find the set of P-positions of the game.

(b) Prove your assertion in (a).

(c) Let g(x) be the Sprague-Grundy function of the game. Find g(4),
g(18) and g(29).

5. Let g(x) be the Sprague-Grundy function of the subtraction game with
subtraction set S = {1, 2, 6}.

(a) Find g(4), g(6) and g(100).

(b) Find all winning moves for the first player if initially there are 100
chips.

(c) Find the set of P-positions of the game and prove your assertion.

6. Let g(x) be the Sprague-Grundy function of the subtraction game with
subtraction set S = {2, 3, 6}. The game terminates when there are 0
or 1 chip remaining. The player who makes the last move wins.

(a) Find g(6), g(13) and g(34).

(b) Find all winning moves from the position 13 and 34.

(c) Find the set of P-positions of the game and prove your assertion.

7. In the Wythoff’s game, there are 2 piles of chips. In each turn, a player
may either remove any number of chips from one of the piles, or remove
the same number of chips from both piles. The player removing the
last chip wins.

(a) Find all winning moves for the starting positions (6, 9), (11, 15)
and (13, 20).

(b) Find (x, y) if (x, y) is a P-position and

(i) x = 100
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(ii) x = 500

(iii) x− y = 999

8. In the Wythoff’s game, there are 2 piles of chips. In each turn, a player
may either remove any positive number of chips from one of the piles,
or remove the same positive number of chips from both piles. The
player removing the last chip wins.

(a) If (a, 15) is a P-position, find a.

(b) If (b, b+ 60) is a P-position, find b.

(c) Find all winning moves from the positions (15, 23) and (100, 160).

9. In a staircase nim game there are 5 piles of coins. Two players take
turns moving. A move consists of removing any number of coins from
the first pile or moving any number of coins from the k-th pile to the
k− 1-th pile for k = 2, 3, 4, 5. The player who takes the last coin wins.
Let (x1, x2, · · · , x5) denotes the position with xi coins in the i-th pile.

(a) Prove that (x1, x2, · · · , x5) is a P-position if and only if (x1, x3, x5)
is a P-position in the ordinary nim.

(b) Determine all winning moves from the initial position (4, 6, 9, 11, 14).

10. Consider the following 3 games with normal play rule.

Game 1: 1-pile nim
Game 2: Subtraction game with subtraction set S = {1, 2, 3, 4, 5, 6}
Game 3: When there are n chips remaining, a player can only

remove 1 chip if n is odd and can remove any even
number of chips if n is even.

Let g1, g2, g3 be the the Sprague-Grundy functions of the 3 games re-
spectively. Let G be the sum of the 3 games and g be the Sprague-
Grundy function of G.

(a) Find g1(14), g2(17), g3(24).

(b) Find g(14, 17, 24).

(c) Find all winning moves of G from the position (14, 17, 24).
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11. Consider the following 3 games.

Game 1: 1-pile nim
Game 2: Subtraction game with subtraction set S = {1, 2, 3, 4, 5, 6, 7}
Game 3: When there are n chips remaining, a player can remove any

odd number of chips if n is odd and can remove 1 or 2
chips if n is even.

Let g1, g2, g3 be the Sprague-Grundy functions of the 3 games respec-
tively. Let G be the sum of the three games and g be the Sprague-
Grundy function of G.

(a) Find g1(7), g2(14), g3(18).

(b) Find g(7, 14, 18).

(c) Find all winning moves of G from the position (7, 14, 18).

12. Consider the game associated with the following directed graph

(a) Copy the graph and write down the value of the Sprague-Grundy
function of each vertex.

(b) Write down all vertices which are at P-position but not at terminal
position.

(c) Consider the sum of three copies of the given graph game.



Combinatorial games 27

(i) Find g(A,B,E) where g is the Sprague-Grundy function.

(ii) Find all winning moves from (A,B,E).

13. Let g(x) be the Sprague-Grundy function of the take-and-break game.

(a) Write down g(10), g(11), g(12).

(b) Find all winning moves from (10, 11, 12)

14. For real number x ∈ R, denote by bxc the largest integer such that
bxc ≤ x and {x} = x − bxc be the fractional part of x. Let α, β > 1

be irrational real number such that
1

α
+

1

β
= 1. Let k be a positive

integer.

(a) Prove there exists positive integer n such that bnαc = k if and

only if

{
k

α

}
>

1

β
.

(b) Prove that exactly one of the following statements holds:

• there exists positive integer n such that bnαc = k;

• there exists positive integer n such that bnβc = k.

15. A game is played on a game board consisting of a line of squares labeled
1, 2, 3, . . . from left to right. Three coins A,B,C are placed on the
squares and at any time each square can be occupied by at most one
coin. A move consists of taking one of the coins and moving it to
a square with a small number so that coin A occupies a square with
a number smaller than coin B and coin B occupies a square with a
number smaller than coin C. The game ends when there is no possible
move, that is coins A,B,C occupy at square number 1, 2, 3 respectively,
and the player who makes the last move wins. Let (x, y, z), where
1 ≤ x < y < z, be the position of the game that coins A,B,C are
at squares labeled x, y, z respectively. The position (3, 8, 9) is shown
below.

A B C

1 2 3 4 5 6 7 8 9 10 11 12 13
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Examples of legal moves from position (3, 8, 9) are (1, 8, 9), (3, 4, 9) and
(3, 5, 9). One cannot move coin C from position (3, 8, 9). Define

g(x, y, z) = (x− 1)⊕ (z − y − 1), for 1 ≤ x < y < z

where ⊕ denotes nim-sum.

(a) Prove that g(x, y, z) is the Sprague-Grundy function of the game.
(All properties of ⊕ can be used without proof.)

(b) Find all winning moves from the positions (6, 13, 25) and (23, 56, 63).



2 Two-person zero sum games

2.1 Game matrices

In a two-person zero sum game, two players, player I and player II, make
their moves simultaneously. Then the payoffs to the players depend on the
strategies used by the players. In this chapter, we study only zero sum
games which means the sum of the payoffs to the players is always zero. We
will also assume that the game has perfect information which means all
players know how the outcomes depend on the strategies the players use.

Definition 2.1.1 (Strategic form of a two-person zero sum game). The
strategic form of a two-person zero sum game is given by a triple (X, Y, π)
where

1. X is the set of strategies of player I.

2. Y is the set of strategies of player II.

3. π : X × Y → R is the payoff function of player I.

For (x, y) ∈ X×Y , the value π(x, y) is the payoff to player I when player
I uses strategy x and player II uses strategy y. Note that the payoff to
player II is equal to −π(x, y) since the game is a zero sum game. The game
has perfect information means that the function π is known to both players.
We will always assume that the sets X and Y are finite. In this case we may
assume X = {1, 2, · · · ,m} and Y = {1, 2, · · · , n}. Then the payoff function
can be represented by an m×n matrix which is called the game matrix and
we will denote it by A = [aij]. A two-person zero sum game is completely
determined by its game matrix. When player I uses the i-th strategy and
player II uses the j-th strategy, then the payoff to player I is the entry aij
of A. The payoff to player II is then −aij. If a two-person zero sum game
is represented by a game matrix, we will call player I the row player and
player II the column player.

Given a game matrix A, we would like to know what the optimal strategies
for the players are and what the payoffs to the players will be if both of them
use their optimal strategies. The answer to this question is simple if A has a
saddle point.

Definition 2.1.2 (Saddle point). We say that an entry akl is a saddle point
of an m× n matrix A if
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1. akl = min
j=1,2,··· ,n

{akj}

2. akl = max
i=1,2,··· ,m

{ail}

The first condition means that when the row player uses the k-th strategy,
then the payoff to the row player is not less than akl no matter how the column
player plays. The second condition means that when the column player uses
the l-th strategy, then the payoff to the row player is not larger than akl no
matter how the row player plays. Consequently we have

Theorem 2.1.3. If A has a saddle point akl, then the row player may guar-
antee that his payoff is not less than akl by using the k-th strategy and the
column player may guarantee that the payoff to the row player is not larger
than akl by using the l-th strategy.

Suppose A is a matrix which has a saddle point akl. The above theo-
rem implies that the corresponding row and column constitute the optimal
strategies for the players. To find the saddle points of a matrix, first write
down the row minima of the rows and the column maxima of the columns.
Then find the maximum of row minima which is called the maximin, and
the minimum of the column maxima which is called the minimax. If the
maximin is equal to the minimax, then the entry in the corresponding row
and column is a saddle point. If the maximin and minimax are different,
then the matrix has no saddle point.

Example 2.1.4.

min
1 2 0
3 5 2
0 −4 −3
−2 4 1


0
2
−4
−2

max 3 5 2

Both the maximin and minimax are 2. Therefore the entry a23 = 2 is a
saddle point. �

Example 2.1.5.
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min 2 −1 3 1
−4 2 0 3
0 1 −2 4

 −1
−4
−2

max 2 2 3 4

The maximin is −1 while the minimax is 2 which are not equal. Therefore
the matrix has no saddle point. �

Saddle point of a matrix may not be unique. However the values of saddle
points are always the same.

Theorem 2.1.6. The values of the saddle points of a matrix are the same.
That is to say, if akl and apq are saddle points of a matrix, then akl = apq.
Furthermore, we have apq = apl = akq = akl.

Proof. We have

akl ≤ akq (since akl ≤ akj for any j)
≤ apq (since aiq ≤ apq for any i)
≤ apl (since apq ≤ apj for any j)
≤ akl (since ail ≤ akl for any i)

Therefore
akl = akq = apq = apl

We have seen that if A has a saddle point, then the two players have
optimal strategies by using one of their strategies constantly (Theorem 2.1.3).
If A has no saddle point, it is expected that the optimal ways for the players
to play the game are not using one of the strategies constantly. Take the
rock-paper-scissors game as an example.

Example 2.1.7 (Rock-paper-scissors). The rock-paper-scissors game has
the game matrix

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0
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Here we use the order rock(R), paper(P), scissors(S) to write down the game
matrix. �

Everybody knows that the optimal strategy of playing the rock-paper-
scissors game is not using any one of the gestures constantly. When one
of the strategies of a player is used constantly, we say that it is a pure
strategy. For games without saddle point like rock-paper-scissors game,
mixed strategies instead of pure strategies should be used.

Definition 2.1.8 (Mixed strategy). A mixed strategy is a row vector x
= (x1, x2, · · · , xm) ∈ Rm such that

1. xi ≥ 0 for any i = 1, 2, · · · ,m

2.
m∑
i=1

xi = 1

In other words, a vector is a mixed strategy if it is a probability vector.
We will denote the set of probability m vectors by Pm.

When a mixed strategy (x1, x2, · · · , xm) is used, the player uses his i-
th strategy with a probability of xi for i = 1, 2, · · · ,m. Mixed strategies
are generalization of pure strategies. If one of the coordinates of a mixed
strategy is 1 and all other coordinates are 0, then it is a pure strategy. So
a pure strategy is also a mixed strategy. Suppose the row player and the
column player use mixed strategies x ∈ Pm and y ∈ Pn respectively. Then
the outcome of the game is not fixed because the payoffs to the players will
then be random variables. We denote by π(x,y) the expected payoff to
the row player when the row player uses mixed strategy x and the column
player uses mixed strategy y. We have the following simple formula for the
expected payoff π(x,y) to the row player.

Theorem 2.1.9. In a two-person zero sum game with m × n game matrix
A, suppose the row player uses mixed strategies x and the column player uses
mixed strategies y independently. Then the expected payoff to the row player
is

π(x,y) = xAyT

where yT is the transpose of y.
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Proof. The expected payoff to the row player is

E(payoff to the row player)
=

∑
1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy and II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijP (I uses i-th strategy)P (II uses j-th strategy)

=
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

aijxiyj

= xAyT

Let A be an m× n game matrix. For x ∈ Pm, the vector

xA ∈ Rn

has the following interpretation. The j-th coordinate, j = 1, 2, · · · , n, of the
vector is the expected payoff to the row player if the row player uses mixed
strategy x and the column player uses the j-th strategy constantly. In this
case a rational column player would use the l-th strategy, 1 ≤ l ≤ n, such
that the l-th coordinate of the vector xA is the least coordinate among all
coordinates of xA. (Note that the column player wants the expected payoff
to the row player as small as possible since the game is a zero sum game.)

On the other hand, for y ∈ Pn, the i-th coordinate, i = 1, 2, · · · ,m, of
the column vector

AyT ∈ Rm

is the expected payoff to the row player if the row player uses his i-th strategy
constantly and the column player uses the mixed strategy y. In this case a
rational row player would use the k-th strategy, 1 ≤ k ≤ m, such that the
k-th coordinate of AyT is the largest coordinate among all coordinates of
AyT .

When a game matrix does not have a saddle point, both players do not
have optimal pure strategies. However there always exists optimal mixed
strategies for the players by the following minimax theorem due to von Neu-
mann.

Theorem 2.1.10 (Minimax theorem). Let A be an m × n matrix. Then
there exists real number ν ∈ R, mixed strategy for the row player p ∈ Rm,
and mixed strategy for the column player q ∈ Rn such that
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1. pAyT ≥ ν, for any y ∈ Pn

2. xAqT ≤ ν, for any x ∈ Pm

3. pAqT = ν

In the above theorem, the real number ν = ν(A) is called the value, or the
security level, of the game matrix A. The strategy p is called a maximin
strategy for the row player and the strategy q is called a minimax strategy
for the column player. The value ν of a matrix is unique. However maximin
strategy and minimax strategy are in general not unique.

The maximin strategy p and the minimax strategy q are the optimal
strategies for the row player and the column player respectively. It is because
the row player may guarantee that his payoff is at least ν no matter how the
column player plays by using the maximin strategy p. This is also the reason
why the value ν is called the security level. Similarly, the column player may
guarantee that the payoff to the row player is at most ν, and thus his payoff
is at least −ν, no matter how the row player plays by using the minimax
strategy q. We will prove the minimax theorem in Section 3.4.

2.2 2× 2 games

In this section, we study 2 × 2 game matrices closely and see how one can
solve them, that means finding the maximin strategies for the row player,
minimax strategies for the column player and the values of the game. First
we look at a simple example.

Example 2.2.1 (Modified rock-paper-scissors). The rules of the modified
rock-paper-scissors are the same as the ordinary rock-paper-scissors except
that the row player can only show the gesture rock(R) or paper(P) but not
scissors while the column player can only show the gesture scissors(S) or
rock(R) but not paper. The game matrix of the game is

S R
R
P

(
1 0
−1 1

)
It is easy to see that the game matrix does not have a saddle point. Thus
there is no pure maximin or minimax strategy. To solve the game, suppose
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the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1− x)

(
1 0
−1 1

)
= (x− (1− x), 1− x) = (2x− 1, 1− x)

This shows that when the row player uses mixed strategy x = (x, 1−x), then
his payoff is 2x− 1 if the column player uses his 1st strategy scissors(S) and
is 1− x if the column player uses his 2nd strategy rock(R). Now we solve the
equation 2x − 1 = 1 − x and get x = 2

3
. One may see that if 0 ≤ x < 2

3
,

then 2x− 1 < x− 1 and a rational column player would use his 1st strategy
scissors(S) and the payoff to the row player would be 2x − 1 < 1

3
. On the

other hand, if 2
3
< x ≤ 1, then 2x − 1 > 1 − x and a rational column

player would use his 2nd strategy rock(R) and the payoff to the row player
would be 1 − x < 1

3
. Now if x = 2

3
, that is if the row player uses the mixed

strategy (2
3
, 1
3
), then he may guarantee that his payoff is 1− x = 2x− 1 = 1

3

no matter how the column player plays. This is the largest payoff he may
guarantee and therefore the mixed strategy p = (2

3
, 1
3
) is the maximin strategy

for the row player. Similarly, suppose the column player uses mixed strategy
y = (y, 1− y). Consider

AyT =

(
1 0
−1 1

)(
y

1− y

)
=

(
y

−y + (1− y)

)(
y

1− 2y

)
If 0 ≤ y < 1

3
, then y < 1 − 2y and a rational row player would use his 2nd

strategy paper(P) and his payoff would be 1 − 2y > 1
3
. If 1

3
< y ≤ 1, then

y > 1− 2y and a rational row player would use his 1st strategy rock(R) and
his payoff would be y > 1

3
. If y = 1

3
, then the payoff to the row player is always

1
3

no matter how he plays. Therefore q = (1
3
, 2
3
) is the minimax strategy for

the column player and he may guarantee that the payoff to the row player is
1
3

no matter how the row player plays. Moreover the value of the game is
ν = 1

3
. We summarize the above discussion in the following statements.

1. The row player may use his maximin strategy p = (2
3
, 1
3
) to guarantee

that his payoff is ν = 1
3

no matter how the column player plays.

2. The column player may use his minimax strategy q = (1
3
, 2
3
) to guar-

antee that the payoff to the row player is ν = 1
3

no matter how the row
player plays. �

Now we give the complete solutions to 2× 2 games.
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Theorem 2.2.2. Let

A =

(
a b
c d

)
be a 2× 2 game matrix. Suppose A has no saddle point. Then

1. The value of the game is

ν =
ad− bc

a− b− c+ d

2. The maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
3. The minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
Proof. Suppose the row player uses mixed strategy x = (x, 1− x). Consider

xA = (x, 1−x)

(
a b
c d

)
= (ax+c(1−x), bx+d(1−x)) = ((a−c)x+c, (b−d)x+d)

Now the payoff to the row player that he can guarantee is

min{(a− c)x+ c, (b− d)x+ d}

Since A has no saddle point, we have a− c and b−d are of different sign and
the maximum of the above minimum is obtained when

(a− c)x+ c = (b− d)x+ d

⇒ x =
d− c

a− b− c+ d

Note that x and 1− x = a−b
a−b−c+d must be of the same sign because A has no

saddle point. We must have 0 < x < 1 and we conclude that the maximin
strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
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Similarly suppose the column player uses mixed strategy y = (y, 1 − y).
Consider

AyT =

(
a b
c d

)(
y

1− y

)
=

(
aq + b(1− y)
cq + d(1− y)

)
=

(
(a− b)y + b
(c− d)y + d

)
The column player may guarantee that the payoff to the row player is at
most

max{(a− b)y + b, (c− d)y + d}

The above quantity attains it minimum when

(a− b)y + b = (c− d)y + d

⇒ y =
d− b

a− b− c+ d

and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
By calculating

pA =

(
ad− bc

a− b− c+ d
,

ad− bc
a− b− c+ d

)
and AqT =

(
ad−bc

a−b−c+d
ad−bc

a−b−c+d

)
we see that the maximum payoff that the row player may guarantee to him-
self and the minimum payoff to the row player that the column player may
guarantee are both ad−bc

a−b−c+d . In fact the minimax theorem (Theorem 2.1.10)
says that these two values must be equal. We conclude that the value of A
is ν = ad−bc

a−b−c+d .

Note that the above formulas work only when A has no saddle point. If
A has a saddle point, the vectors p and q obtained using the formulas may
not be probability vectors.

Example 2.2.3. Consider the modified rock-paper-scissors game (Example
2.2.1) with game matrix

A =

(
1 0
−1 1

)
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The game matrix has no saddle point. By Theorem 2.2.2, the value of the
game is

ν =
ad− bc

a− b− c+ d
=

1× 1− 0× (−1)

1− 0− (−1) + 1
=

1

3

the maximin strategy for the row player is

p =

(
d− c

a− b− c+ d
,

a− b
a− b− c+ d

)
=

(
1− (−1)

1− 0− (−1) + 1
,

1− 0

1− 0− (−1) + 1

)
=

(
2

3
,
1

3

)
and the minimax strategy for the column player is

q =

(
d− b

a− b− c+ d
,

a− c
a− b− c+ d

)
=

(
1− 0

1− 0− (−1) + 1
,

1− (−1)

1− 0− (−1) + 1

)
=

(
1

3
,
2

3

)
�

Example 2.2.4. In a game, each of the two players Andy and Bobby calls
out a number simultaneously. Andy may call out either 1 or −2 while Bobby
may call out either 1 or −3. Then Bobby pays p dollars to Andy where p
is the product of the two numbers (Andy pays Bobby −p dollars when p is
negative). The game matrix of the game is

A =

(
1 −3
−2 6

)
The value of the game is

ν =
1× 6− (−2)× (−3)

1− (−3)− (−2) + 6
= 0

the maximin strategy for Andy is

p =

(
6− (−2)

1− (−3)− (−2) + 6
,

1− (−3)

1− (−3)− (−2) + 6

)
=

(
2

3
,
1

3

)
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and the minimax strategy for Bobby is

q =

(
6− (−3)

1− (−3)− (−2) + 6
,

1− (−2)

1− (−3)− (−2) + 6

)
=

(
3

4
,
1

4

)
�

We say that a two-person zero sum game is fair if its value is zero. The
game in Example 2.2.4 is a fair game.

2.3 Games reducible to 2× 2 games

To solve an m × n game matrix for m,n > 2 without saddle point, we may
first remove the dominated rows or columns. A row dominates another if all
its entries are larger than or equal to the corresponding entries of the other.
Similarly, a column dominates another if all its entries are smaller than or
equal to the corresponding entries of the other.

Definition 2.3.1. Let A = [aij] be an m× n game matrix.

1. We say that the k-th row is dominated by the r-th row if akj ≤ arj for
any j = 1, 2, · · · , n.

2. We say that the l-th column is dominated the s-th column if ail ≥ ais
for any i = 1, 2, · · · ,m.

We say that a row (column) is a dominated row (column) if it is domi-
nated by another row (column).

If the k-th row of A is dominated by the r-th row, then for the row player,
playing the r-th strategy is at least as good as playing the k-th strategy.
Thus the k-th row can be ignored in finding the maximin strategy for the
row player. Similarly the column player may ignore a dominated column
when finding his minimax strategy.

Theorem 2.3.2. Let A be an m × n game matrix. Suppose A has a domi-
nated row or dominated column. Let A′ be the matrix obtained by deleting a
dominated row or dominated column from A. Then

1. The value of A′ is equal to the value of A.
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2. The players of A have maximin/minimax strategies which never use
dominated row/column.

More precisely, if the k-th row is a dominated row of A, A′ is the (m−1)×n
matrix obtained by deleting the k-th row from A, and p′ = (p1, · · · , pk−1, pk+1,
· · · , pm) ∈ Pm−1 is a maximin strategy for the row player of A′, then p =
(p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm is a maximin strategy for the row player
of A. Similarly, if the l-th column is a dominated row of A, A′ is the
m × (n − 1) matrix obtained by deleting the l-th column from A, and q′ =
(q1, · · · , ql−1, ql+1 · · · , qn) ∈ Pn−1 is a minimax strategy of A′, then q =
(q1, · · · , ql−1, 0, ql+1, · · · , qn) ∈ Pn is a minimax strategy of A.

Proof. Suppose the k-th row of A is dominated by the r-th row and A′

is obtained by deleting the k-th row from A. Let ν ′ be the value of A′

and q ∈ Pn be a minimax strategy of A′. For any mixed strategy x =
(x1, · · · , xm) ∈ Pm, define x′ = (x′1, · · · , x′k−1, x′k+1, · · · , x′m) ∈ Pm−1 by

x′i =

{
xi if i 6= r

xk + xr if i = r

and we have
xAqT ≤ x′A′qT ≤ ν ′

Here the first inequality holds because the k-th is dominated by the r-th
row and the second inequality holds because q is a minimax strategy of A′.
Thus the value of A is less than or equal to ν ′. On the other hand, let
p′ = (p1, · · · , pk−1, pk+1, · · · , pm) ∈ Pm−1 be a maximin strategy of A′ and
let p = (p1, · · · , pk−1, 0, pk+1, · · · , pm) ∈ Pm. Then we have

pAyT = p′A′yT ≥ ν ′

for any y ∈ Pn. It follows that the value of A is ν ′ and p is a maximin
strategy of A. The proof of the second statement is similar.

The removal of dominated rows or columns does not change the value of a
game. The above theorem only says that there is at least one optimal strategy
with zero probability at the dominated rows and columns. There may be
other optimal strategies which have positive probability at the dominated
rows or columns. However any optimal strategy must have zero probability
at strictly dominated rows and columns. Here a row is strictly dominated
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by another row if all its entries are strictly smaller than the corresponding
entries of the other. Similarly a column is strictly dominated by another
column if all its entries are strictly larger than the corresponding entries of
the other.

Example 2.3.3. To solve the game matrix

A =

 3 −1 4
2 −3 1
−2 4 0


we may delete the second row since it is dominated by the first row and get
the reduced matrix

A′ =

(
3 −1 4
−2 4 0

)
Then we may delete the third column since is dominated by the first column.
Hence the matrix A is reduced to the 2× 2 matrix

A′′ =

(
3 −1
−2 4

)
The value of this 2 × 2 matrix is 0.7. The maximin and minimax strategies
are (0.6, 0.4) and (0.5, 0.5) respectively. Therefore the value of A is 0.7, a
maximin strategy for the row player is (0.6, 0, 0.4) and a minimax strategy for
the column player is (0.5, 0.5, 0). Note that we need to insert the zeros to the
dominated rows and columns when writing down the maximin and minimax
strategies for the players. �

2.4 2× n and m× 2 games

Let

A =

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
be a 2×n matrix. We are going to explain how to solve the game with game
matrix A if there is no dominated row or column. Suppose the row player
uses strategy x = (x, 1 − x) for 0 ≤ x ≤ 1. The payoff to the row player is
given by

xA = (x, 1− x)

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
= (a11x+ a21(1− x), a12x+ a22(1− x), · · · , a1nx+ a2n(1− x))
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Now we need to find the value of x so that the minimum

min
1≤j≤n

{a1jx+ a2j(1− x)}

of the coordinates of xA attains its maximum. We may use graphical method
to achieve this goal.

Step 1.
For each 1 ≤ j ≤ n, draw the graph of

v = a1jx+ a2j(1− x), for 0 ≤ x ≤ 1

The graph shows the payoff to the row player if the column player uses
the j-th strategy.

Step 2.
Draw the graph of

v = min
1≤j≤n

{a1jx+ a2j(1− x)}

This is called the lower envelope of the graph.

Step 3.
Suppose (p, ν) is a maximum point of the lower envelope. Then ν is
the value of the game and p = (p, 1− p) is a maximin strategy for the
row player.

Step 4.
The solutions for y ∈ Pn to the equation

AyT = ν1T

where 1 = (1, 1), give the minimax strategy for the column player.

Example 2.4.1. Solve the 2× 4 game matrix

A =

(
−1 0 4 6
5 3 2 −1

)
Solution.



Two-person zero sum games 43

Step 1. Draw the graph of
C1 : v = −x+ 5(1− x)

C2 : v = 3(1− x)

C3 : v = 4x+ 2(1− x)

C4 : v = 6x− (1− x)

Step 2. Draw the lower envelope (blue polygonal curve).

Step 3. The maximum point of the lower envelope is the intersection
point of C2 and C4. By solving{

C2 : v = 3(1− x)

C4 : v = 6x− (1− x)

we obtain the maximum point (p, ν) = (0.4, 1.8) of the lower envelope.

Step 4. Find the minimax strategies for the column player by solving(
0 6
3 −1

)(
y2
y4

)
=

(
1.8
1.8

)
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and get y2 = 0.7 and y4 = 0.3.

Therefore the value of the game is ν = 1.8. The maximin strategy for the
row player is p = (0.4, 0.6) and the minimax strategy for the column player
is q = (0, 0.7, 0, 0.3). �

Example 2.4.2. Solve the 2× 5 game matrix

A =

(
1 3 0 −1 2
−1 −3 2 5 −2

)
Solution. The lower envelope is shown in the following figure.

By solving 
C1 : v = x− (1− x)

C3 : v = 2(1− x)

C4 : v = −x+ 5(1− x)
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we see that the maximum point of the lower envelope is (p, ν) = (0.75, 0.5).
Thus the maximin strategy for the row player is (0.75, 0.25) and the value of
the game is ν = 0.5. To find minimax strategies for the column player, we
solve  1 1 1

1 0 −1
−1 2 5

 y1
y3
y4

 =

 1
0.5
0.5


Note that we have added the equation y1+y3+y4 = 1 to exclude the solutions
which are not probability vectors. (Explain why we didn’t do it in Example
2.4.1.) Using row operation, we obtain the row echelon form 1 1 1 1

1 0 −1 0.5
−1 2 5 0.5

 −→
 1 0 −1 0.5

0 1 2 0.5
0 0 0 0


The non-negative solution to the system of equations is

(y1, y3, y4) = (0.5 + t, 0.5− 2t, t) for 0 ≤ t ≤ 0.25

Therefore the column player has minimax strategies

q = (0.5 + t, 0, 0.5− 2t, t, 0) for 0 ≤ t ≤ 0.25

In particular, (0.5, 0, 0.5, 0, 0) and (0.75, 0, 0, 0.25, 0) are minimax strategies
for the column player. �

Example 2.4.3. Solve the 2× 5 game matrix

A =

(
−3 −1 −2 2 1
1 −1 3 −2 0

)
Solution. The lower envelope is shown in the following figure.
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The maximum points of the lower envelope are points lying on the line seg-
ment joining (0.25,−1) and (0.5,−1). Thus the value of the game is ν = −1.
The maximin strategies for the row player are

p = (p, 1− p) for 0.25 ≤ p ≤ 0.5

and the minimax strategy for the column player is

q = (0, 1, 0, 0, 0)

�

Next we consider m × 2 games. There are two methods to solve such
games.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy for the column player.
Draw the upper envelope

v = max
1≤i≤m

{ai1y + ai2(1− y)}

Suppose the minimum point of the upper envelope is (q, ν). Then the
value of the game is ν and the minimax strategy for the column player
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is q = (q, 1− q). Moreover the maximum strategies for the row player
are the solutions for x ∈ Pm to the equation

xA = ν1 = (ν, ν)

Method 2.
Solve the game with 2×m game matrix −AT . Then

value of A = − value of −AT
maximin strategy of A = minimax strategy of −AT
minimax strategy of A = maximin strategy of −AT

Example 2.4.4. Solve the 4× 2 game matrix

A =


4 −2
3 0
−1 1
−3 4


Solution.

Method 1.
Let y = (y, 1 − y), 0 ≤ y ≤ 1, be the strategy of the column player.
The upper envelope is
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Solving {
R2 : v = 3(1− y)

R4 : v = −3y + 4(1− y)

the minimum point of the upper envelope is (q, ν) = (0.4, 1.2). Now
the row player would only use the 2nd and 4th strategy and we solve

(x2, x4)

(
3 0
−3 4

)
= (1.2, 1.2)

which gives (x2, x4) = (0, 7, 0.3). Therefore the value of the game is
ν = 1.2, the maximin strategy for the row player is p = (0, 0.7, 0, 0.3)
and the minimax strategy for the column player is q = (0.4, 0.6).

Method 2.
Consider

−AT =

(
−4 −3 1 3
2 0 −1 −4

)
Draw the lower envelope
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We see that the value of −AT is -1.2 and the maximin strategy of −AT
is (0.4, 0.6). Solving(

−3 3
0 −4

)(
x2
x4

)
=

(
−1.2
−1.2

)
We get x2 = 0.7 and x4 = 0.3. Thus the minimax strategy of −AT is
(0, 0.7, 0, 0.3). Therefore

value of A = − value of −AT = 1.2
maximin strategy of A = minimax strategy of −AT = (0, 0.7, 0, 0.3)
minimax strategy of A = maximin strategy of −AT = (0.4, 0.6)

�

Theorem 2.4.5 (Principle of indifference). Let A be an m×n game matrix.
Suppose ν is the value of A, p = (p1, · · · , pm) be a maximin strategy for the
row player and q = (q1, · · · , qn) be a minimax strategy for the column player.

For any k = 1, 2, · · · ,m, if pk > 0, then
n∑
j=1

akjqj = ν. In particular, when

the column player uses his minimax strategy q, then the payoff to the row
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player are indifferent among all his k-th strategies with pk > 0. Similarly,

for any l = 1, 2, · · · , n, if ql > 0, then
m∑
i=1

ailpi = ν. In particular, when the

row player uses his maximin strategy p, then the payoff to the row player are
indifferent among all the l-th strategies of the column player with ql > 0.

Proof. For each k = 1, 2, · · · ,m, we have

n∑
j=1

akjqj ≤ ν

since q is a minimax strategy for the column player. On the other hand,

ν = pAqT =
m∑
k=1

pk

(
n∑
j=1

akjqj

)
≤

m∑
k=1

pkν = ν

Thus we have

pk

n∑
j=1

akjqj = pkν

for any k = 1, 2, · · · ,m. Therefore

n∑
j=1

akjqj = ν

whenever pk > 0. The proof of the second statement is similar.

Exercise 2

1. Find the values of the following game matrices by finding their saddle
points

(a)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


(b)


−4 5 −3 −3
0 1 3 −1
−3 −1 2 −5
2 −4 0 −2


2. Solve the following game matrix, that is, find the value of the game,

a maximin strategy for the row player and a minimax strategy for the
column.
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(a)

(
1 7
2 −2

)

(b)

(
3 −1
−2 4

)

(c)

(
3 2 4 0
−2 1 −4 5

)

(d)

(
1 0 4 2
0 2 −3 −2

)

(e)


5 −3
−3 5
2 −1
4 0


(f)

 5 −2 4
3 −3 1
0 3 2


(g)

 5 1 −2 6
−1 0 1 −2
3 2 5 4


3. Raymond holds a black 2 and a red 9. Calvin holds a red 3 and a black

8. Each of them chooses one of the cards from his hand and then two
players show the chosen cards simultaneously. If the chosen cards are
of the same colour, Raymond wins and Calvin wins if the cards are of
different colours. The loser pays the winner an amount equal to the
number on the winner’s card. Write down the game matrix, find the
value of the game and the optimal strategies of the players.

4. Alex and Becky point fingers to each other, with either one finger or
two fingers. If they match with one finger, Becky pays Alex 3 dollars.
If they match with two fingers, Becky pays Alex 11 dollars. If they
don’t match, Alex pays Becky 1 dollar.

(a) Find the optimal strategies for Alex and Becky.

(b) Suppose Alex pays Becky k dollars as a compensation before the
game. Find the value of k to make the game fair.

5. Player I and II choose integers i and j respectively where 1 ≤ i, j ≤ 7.
Player II pays Player I one dollar if |i − j| = 1. Otherwise there is no
payoff. Write down the game matrix of the game, find the value of the
game and the optimal strategies for the players.

6. Use the principle of indifference to solve the game with game matrix
1 −2 3 −4
0 1 −2 3
0 0 1 −2
0 0 0 1
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7. In the Mendelsohn game, two players choose an integer from 1 to 5
simultaneously. If the numbers are equal there is no payoff. The player
that chooses a number one larger than that chosen by his opponent
wins 1 dollar from its opponent. The player that chooses a number two
or more larger than his opponent loses 2 dollars to its opponent. Find
the game matrix and solve the game.

8. Aaron puts a chip in either his left hand or right hand. Ben guesses
where the chip is. If Ben guesses the left hand, he receives $2 from
Aaron if he is correct and pays $4 to Aaron if he is wrong. If Ben
guesses the right hand, he receives $1 from Aaron if he is correct and
pays $3 to Aaron if he is wrong.

(a) Write down the payoff matrix of Aaron. (Use order of strategies:
Left, Right.)

(b) Find the maximin strategy for Aaron, the minimax strategy for
Ben and the value of the game.

9. Let

A =

(
−3 1
c −2

)
where c is a real number.

(a) Find the range of values of c such that A has a saddle point.

(b) Suppose the zero sum game with game matrix A is a fair game.

(i) Find the value of c.

(ii) Find the maximin strategy for the row player and the minimax
strategy for the column player.

10. Prove that if A is a skewed symmetric matrix, that is, AT = −A, then
the value of A is zero.

11. Let 1 = (1, 1, · · · , 1). Prove the following statements.

(a) If A is a symmetric matrix, that is AT = A, and there exists
probability vector y ∈ Pn such that AyT = v1T where v ∈ R is a
real number, then v is the value of A.

(b) There exists a square matrix A, a probability vector y and a real
number v such that AyT = v1T but v is not the value of A.
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12. Let n be a positive integer and

D =


λ1

λ2
0

. . .

0 λn


be an n× n diagonal matrix where λ1 ≤ λ2 ≤ · · · ≤ λn.

(a) Suppose λ1 ≤ 0 and λn > 0. Find the value of the zero sum game
with game matrix D.

(b) Suppose λ1 > 0. Solve the zero sum game with game matrix D.

13. Let

A =


1 −1 0 0 0
−1 −1 1 0 0
0 1 1 −1 0
0 0 −1 −1 1
0 0 0 1 −1

 .

(a) Find a vector x = (1, x2, x3, x4, x5) ∈ R5 and a real number a such
that

AxT = (0, 0, 0, 0, a)T

(b) Find a vector y = (1, y2, y3, y4, y5) ∈ R5 and a real number b such
that

AyT = (1, 1, 1, 1, b)T

(c) Find the maximin strategy, the minimax strategy and the value
of A. (Hint: Find real numbers α, β ∈ R such that q = αx + βy
satisfies AqT = v1T for some v ∈ R.)

14. For positive integer k, define

Ak =

(
4k − 3 −(4k − 2)
−(4k − 1) 4k

)
.

(a) Solve Ak, that is, find the maximin strategy, minimax strategy
and value of Ak in terms of k.
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(b) Let r1, r2, · · · , rn > 0 be positive real numbers. Using the principle
of indifference, or otherwise, find, in terms of r1, r2, · · · , rn, the
value of

D =


1
r1

0 0 · · · 0

0 1
r2

0 · · · 0

0 0 1
r3
· · · 0

...
...

...
. . .

...
0 0 0 · · · 1

rn

 .

(c) Find, with proof, the value of the matrix

A =


A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · A25

 .



3 Linear programming and maximin theorem

3.1 Linear programming

In this chapter we study two-person zero sum game with m×n game matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Suppose the row player uses strategy x = (x1, · · · , xm) ∈ Pm. Then the
column player would use his j-th strategy such that

a1jp1 + a2jp2 + · · ·+ amjpm

is minimum among j = 1, 2, · · · , n. Thus the payoff to the row player that
he can guarantee is

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

Hence if the above expression attains its maximum at x = p ∈ Pm, then p
is a maximin strategy for the row player. Moreover, the value of the game is

ν = max
x∈Pm

min
j=1,2,··· ,n

{a1jx1 + a2jx2 + · · ·+ amjxm}

By introducing a new variable v, we can restate the maximin problem, that
is finding a maximin strategy, as the following linear programming problem

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0
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Similarly, to find a minimax strategy for the column player, we need to solve
the following minimax problem

min v
subject to a11q1 + a12q2 + · · ·+ a1nqn ≤ v

a21q1 + a22q2 + · · ·+ a2nqn ≤ v
...

am1q1 + am2q2 + · · ·+ amnqn ≤ v
q1 + q2 + · · ·+ qn = 1
q1, q2, · · · , qn ≥ 0

To solve the maximin and minimax problems, first we transform them to a
pair of primal and dual problems.

Definition 3.1.1 (Primal and dual problems). A linear programming prob-
lem in the following form is called a primal problem.

max f(y1, · · · , yn) =
n∑
j=1

cjyj + d

subject to
n∑
j=1

aijyj ≤ bi, i = 1, 2, · · · ,m

y1, y2, · · · , yn ≥ 0

The dual problem associated to the above primal problem is

min g(x1, · · · , xm) =
m∑
i=1

bixi + d

subject to
m∑
i=1

aijxi ≥ cj, j = 1, 2, · · · , n

x1, x2, · · · , xm ≥ 0

Here x1, · · · , xm, y1, · · · , yn are variables, and aij, bi, cj, d, i = 1, 2, · · · ,m,
j = 1, 2, · · · , n, are constants. The linear functions f and g are called ob-
jective functions. The primal problem and the dual problem can be written
in the following matrix forms

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

y ≥ 0
Dual problem min g(x) = xbT + d

subject to xA ≥ c
x ≥ 0
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Here x ∈ Rm, y ∈ Rn are variable vectors, A is an m × n constant matrix,
b ∈ Rm, c ∈ Rn are constant vectors and d ∈ R is a real constant. The
inequality u ≤ v for vectors u,v means each of the coordinates of v − u is
non-negative.

For primal and dual problems, we always have the constraints x,y ≥ 0.
In other words, all variables are non-negative. From now on, we will not
write down the constraints x,y ≥ 0 for primal and dual problems and it is
understood that all variables are non-negative.

Definition 3.1.2. Suppose we have a pair of primal and dual problems.

1. We say that a vector x ∈ Rm in the dual problem, (or y ∈ Rn in the
primal problem), is feasible if it satisfies the constraints of the problem.
We say that the primal problem (or the dual problem) is feasible there
exists a feasible vector for the problem.

2. We say that the primal problem, (or the dual problem), is bounded if
the objective function is bounded above, (or below) on the set of feasible
vectors.

3. We say that a feasible vector x ∈ Rm in the dual problem, (or y ∈ Rn

in the primal problem), is optimal if the objective function f (or g)
attains its maximum (or minimax) at x (or y) on the set of feasible
vectors.

Theorem 3.1.3. Suppose x and y are feasible vectors in the dual and primal
problems respectively. Then

f(y) ≤ g(x)

Proof. We have

f(y) = cyT + d
≤ xAyT + d (since x is feasible and y ≥ 0)
≤ xbT + d (since y is feasible and x ≥ 0)
= g(x)

The theorem above has a simple and important consequence that the
primal problem is bounded if the dual problem associated with it has a
feasible vector, and vice verse.
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Theorem 3.1.4. Suppose we have a pair of primal and dual problems.

1. If the primal problem is feasible, then the dual problem is bounded.

2. If the dual problem is feasible, then the primal problem is bounded.

3. If both problems are feasible, then both problems are solvable, that is,
there exists optimal vectors p and q for the dual and primal problems
respectively. Moreover we have f(p) ≤ g(q).

Proof. For the first statement, suppose the primal problem has a feasible
vector q. Then for any feasible vector x of the dual problem, we have g(x) ≥
f(q) by Theorem 3.1.3. Hence the dual problem is bounded. The proof of the
second statement is similar. For the third statement, suppose both problems
are feasible. Then both problems are bounded by the first two statements.
Observe that the set of feasible vectors is closed. It follows that the optimal
values of the objective functions f and g are attainable. Therefore there
exists optimal vectors p and q for the dual and primal problems respectively
and f(q) ≤ g(p) by Theorem 3.1.3.

Furthermore we have the following important theorem in linear program-
ming concerning the solutions to the primal and dual problems.

Theorem 3.1.5. Suppose both the dual problem and the primal problem are
feasible. Then there exist optimal vectors p and q for the dual and primal
problem respectively, and we have

f(q) = g(p)

Proof. We have proved the solvability of the problems. The equality f(q) =
g(p) can be proved using minimax theorem and we omit the proof here.

3.2 Transforming maximin problem to dual problem

To find a maximin strategy for the row player of a two-person zero sum game,
we have seen in the previous section that we need to solve the following
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maximin problem.

max v
subject to a11p1 + a21p2 + · · ·+ am1pm ≥ v

a12p1 + a22p2 + · · ·+ am2pm ≥ v
...

a1np1 + a2np2 + · · ·+ amnpm ≥ v
p1 + p2 + · · ·+ pm = 1
p1, p2, · · · , pm ≥ 0

which can be written into following matrix form

max v
subject to pA ≥ v1

p1T = 1
p ≥ 0

where 1 = (1, · · · , 1) ∈ Rm. We solve the above maximin problem in the
following two steps.

1. Transform the maximin problem to a dual problem.

2. Use simplex method to solve the dual problem.

In this section, we are going to discuss how to transform a maximin problem
to a dual problem. Note that the maximin problem is neither a primal nor
dual problem because there is a constraint p1 +p2 + · · ·+pm = 1 which is not
allowed and we do not have the constraint v ≥ 0. To transform the maximin
problem into a dual problem, first we add a constant k to each entry of A so
that the value of the game matrix is positive. Secondly, we let

xi =
pi
v
, for i = 1, 2, · · · ,m

Then to maximize v is the same as minimizing

x1 + x2 + · · ·+ xm =
p1 + p2 + · · ·+ pm

v
=

1

v

Moreover for each j = 1, 2, · · · , n, the constraint

a1jp1 + a2jp2 + · · ·+ amjpm ≥ v
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is equivalent to
a1jx1 + a2jx2 + · · ·+ amjxm ≥ 1

and the maximin problem would become a dual problem. We summarize the
above procedures as follows.

1. First, add a constant k to each entry of A so that every entry of A is
positive. (This is done to make sure that the value of the game matrix
is positive.)

2. Let
xi =

pi
v
, for i = 1, 2, · · · ,m

3. Write down the dual problem

min g(x1, x2, · · · , xm) = x1 + x2 + · · ·+ xm
subject to a11x1 + a21x2 + · · ·+ am1xm ≥ 1

a12x1 + a22x2 + · · ·+ am2xm ≥ 1
...
a1nx1 + a2nx2 + · · ·+ amnxm ≥ 1

(Note that we always have the constraints x1, x2, · · · , xm ≥ 0) or in
matrix form

min g(x) = x1T

subject to xA ≥ 1

where 1 = (1, 1 · · · , 1) ∈ Rm.

4. Suppose x = (x1, x2, · · · , xm) is an optimal vector of the dual problem
and

d = g(x) = x1 + x2 + · · ·+ xm

is the minimum value. Then

p =
x

d
=
(x1
d
,
x2
d
, · · · , xm

d

)
is a maximin strategy for the row player and the value of the game
matrix A is

v =
1

d
− k
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To find the minimax strategy for the column player, we need to solve the
following minimax problem.

min v
subject to AqT ≤ v1T

1qT = 1
q ≥ 0

where 1 = (1, · · · , 1) ∈ Rn. If we assume that v > 0, the above optimization
problem can be transformed to the following primal problem by taking yj =
qj
v

for j = 1, 2, · · · , n.

max f(y) = 1yT

subject to Ay ≤ 1T

where y = (y1, y2, · · · , yn). (Note that we always have the constraint y ≥ 0
for primal problem.) Suppose y is an optimal vector for the above primal
problem. Then q = y

d
is a minimax strategy for the column player.

3.3 Simplex method

We have seen that a pair of maximin and minimax problems can be trans-
formed to a pair of dual and primal problems. In this section, we will show
how to use simplex method to solve the dual and primal problems simultane-
ously. Recall that the primal and dual problems are optimization problems of
the following forms. Please be reminded that we always have the constraints
x,y ≥ 0.

Primal problem max f(y) = cyT + d
subject to AyT ≤ bT

Dual problem min g(x) = xbT + d
subject to xA ≥ c

We describe the simplex method as follows.

Step 1. Introduce new variables xm+1, · · · , xm+m, yn+1, · · · , yn+m which
are called slack variables and set up the tableau
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y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

Step 2.

(i) If c1, c2, · · · , cn ≤ 0, then the solution to the problems are

Primal problem maximum value of f = d
y1 = y2 = · · · = yn = 0,
yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

Dual problem minimum value of g = d
x1 = x2 = · · · = xm = 0,
xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cm

(ii) Otherwise go to step 3.

Step 3. Choose l = 1, 2, · · · , n such that cl > 0.

(i) If ail ≤ 0 for all i = 1, 2, · · · ,m, then the problems are unbounded
(because yl can be arbitrarily large) and there is no solution.

(ii) Otherwise choose k = 1, 2, · · · ,m, such that

bk
akl

= min
ail>0

{
bi
ail

}
Step 4. Pivot on the entry akl and swap the variables at the pivot row
with the variables at the pivot column. The pivoting operation is
performed as follows.

yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

−→

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j
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Step 5. Go to Step 2.

To understand how the simplex method works, we introduce basic forms of
linear programming problem.

Definition 3.3.1 (Basic form). A basic form of a pair of primal and dual
problems is a problem of the form

Primal basic form max f(y) = cyT + d
subject to AyT − bT = −(yn+1, · · · , yn+m)T

y ≥ 0
Dual basic form min g(x) = xbT + d

subject to xA− c = (xm+1, · · · , xm+n)
x ≥ 0

where x = (x1, · · · , xm) ∈ Rm and y = (y1, · · · , yn) ∈ Rn. The pair of basic
forms can be represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The variables at the rightmost column and at the bottom row are called basic
variables. The other variables at the leftmost columns and at the top row
are called independent/non-basic variables.

A pair of primal and dual problems may be expressed in basic form in
many different ways. The pivot operation changes one basic form of the
pair of primal and dual problems to another basic form of the same pair of
problems, and swaps one basic variable with one independent variable.

Theorem 3.3.2. The basic forms before and after a pivot operation are
equivalent.

Proof. The tableau before the pivot operation
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yl yj
xk a∗ b = −yn+k
xi c d = −yn+i

q q
xm+l xm+j

is equivalent to the system of equations{
axk + cxi = xm+l

bxk + dxi = xm+j
and

{
ayl + byj = −yn+k
cyl + dyj = −yn+i

⇔
{
−xm+l + cxi = −axk
bxk + dxi = xm+j

and

{
yn+k + byj = −ayl
cyl + dyj = −yn+i

⇔

{ 1

a
xm+l −

c

a
xi = xk

bxk + dxi = xm+j

and

{
1

a
yn+k +

b

a
yj = −yl

cyl + dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

(
1

a
xm+l −

c

a
xi

)
+ dxi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

c

(
1

a
yn+k +

b

a
yj

)
+ dyj = −yn+i

⇔


1

a
xm+l −

c

a
xi = xk

b

a
xm+l +

(
d− bc

a

)
xi = xm+j

and


1

a
yn+k +

b

a
yj = −yl

− c
a
yn+k +

(
d− bc

a

)
yj = −yn+i

which is equivalent to the tableau

yn+k yj
xm+l

1
a

b
a

= −yl
xi − c

a
d− bc

a
= −yn+i

q q
xk xm+j



Linear programming and minimax theorem 65

The above calculation shows that the constraints before and after a pivot
operation are equivalent, and the values of the objective functions f and
g for any given x1, · · · , xm, xm+1, · · · , xm+n and y1, · · · , yn, yn+1, · · · , yn+m
satisfying the constraints remain unchanged.

For each pair of basic forms, there associates a pair of basic solutions
which will be defined below. Note that the basic solutions are not really
solutions to the primal and dual problems because basic solutions are not
necessarily feasible.

Definition 3.3.3 (Basic solution). Suppose we have a pair of basic forms
represented by the tableau

y1 · · · yn −1
x1 a11 · · · a1n b1 = −yn+1
...

...
. . .

...
...

...
xm am1 · · · amn bm = −yn+m
−1 c1 · · · cn −d = f

q · · · q q
xm+1 · · · xm+n g

The basic solution to the basic form is

x1 = x2 = · · · = xm = 0, xm+1 = −c1, xm+2 = −c2, · · · , xm+n = −cn
y1 = y2 = · · · = yn = 0, yn+1 = b1, yn+2 = b2, · · · , yn+m = bm

The basic solutions are obtained by setting the independent variables, that
is the variables at the top and at the left, to be 0 and then solving for the
basic variables, that is the variables at the bottom and at the right, by the
constraints.

The basic solutions always satisfy the equalities in the constraints, but
they may not be feasible since some variables may have negative values.
However if both the dual and primal basic solutions are feasible, then they
must be optimal.

Theorem 3.3.4. Suppose we have a pair of basic forms.

1. The basic solution to the primal basic form is feasible if and only if
b1, b2, · · · , bm ≥ 0.



Linear programming and minimax theorem 66

2. The basic solution to the dual basic form is feasible if and only if
c1, c2, · · · , cn ≤ 0.

3. The pair of basic solutions are optimal if b1, · · · , bm ≥ 0 and c1, · · · , cn ≤
0.

Proof. Observe that the basic solutions always satisfy the equalities xA−c =
(xm+1, · · · , xm+n) and AyT − bT = −(yn+1, · · · , yn+m)T of the constraints.

1. The basic solution to the primal basic form is (y1, · · · , yn, yn+1, · · · , yn+m) =
(0, · · · , 0, b1, · · · , bm). Thus it is feasible if and only if all the variables
are non-negative which is equivalent to b1, b2, · · · , bm ≥ 0.

2. The basic solution to the dual basic form is (x1, · · · , xm, xm+1, · · · , xm+n) =
(0, · · · , 0,−c1, · · · ,−cn). Thus it is is feasible if and only if all the vari-
ables are non-negative which is equivalent to c1, c2, · · · , cn ≤ 0.

3. Suppose b1, b2, · · · , bm ≥ 0 and c1, c2, · · · , cn ≤ 0. For any feasi-
ble vectors (x1, · · · , xm, xm+1, · · · , xm+n) of the dual basic form and
(y1, · · · , yn, yn+1, · · · , yn+m) of the primal basic form, we have

f(y1, · · · , yn) = (c1, · · · , cn)(y1, · · · , yn)T + d

≤ (x1, · · · , xm)A(y1, · · · , yn)T + d

≤ (x1, · · · , xm)(b1, · · · , bm)T + d

= g(x1, · · · , xm)

On the other hand, the basic solutions (x1, · · · , xm,xm+1, · · · , xm+n)=
(0, · · · , 0,−c1, · · · ,−cn) and (y1, · · · , yn,yn+1, · · · , yn+m)= (0, · · · , 0,b1,
· · · , bm) are feasible and

f(0, · · · , 0) = d = g(0, · · · , 0)

Therefore f attains its maximin and g attains its minimum at the basic
solutions.

In practice, we do not write down the basic variables. We would swap the
variables at the left and at the top when preforming pivot operation. One
may find the basic and independent variables by referring to the following
table.
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Left Top

xi
xi is independent variable
yn+i is basic variable

xi is basic variable
yn+i is independent variable

yj
yj is basic variable
xm+j is independent variable

yj is independent variable
xm+j is basic variable

In other words, when we write down a tableau of the form

xi yl −1
yj A

bi
xk bk
−1 cj cl −d

the basic solution associated with it is

xi = −cj, xk = 0, xm+j = 0, xm+l = −cl
yj = bi, yl = 0, yn+i = 0, yn+k = bk

and the genuine tableau is

yn+i yl −1
xm+j A

bi = −yj
xk bk = −yn+k
−1 cj cl −d

q q
xi xm+l

Example 3.3.5. Solve the following primal problem.

max f = 6y1 + 4y2 + 5y3 + 150
subject to 2y1 + y2 + y3 ≤ 180

y1 + 2y2 + 3y3 ≤ 300
2y1 + 2y2 + y3 ≤ 240

Solution. Set up the tableau and perform pivot operations successively. The
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pivoting entries are marked with asterisks.

y1 y2 y3 −1
x1 2∗ 1 1 180
x2 1 2 3 300
x3 2 2 1 240
−1 6 4 5 −150

−→

x1 y2 y3 −1
y1

1
2

1
2

1
2

90
x2 −1

2
3
2

5
2

210
x3 −1 1∗ 0 60
−1 −3 1 2 −690

−→

x1 x3 y3 −1
y1 1 −1

2
1
2

60
x2 1 −3

2
5
2

∗
120

y2 −1 1 0 60
−1 −2 −1 2 −750

−→

x1 x3 x2 −1
y1

4
5
−1

5
−1

5
36

y3
2
5
−3

5
2
5

48
y2 −1 1∗ 0 60
−1 −14

5
1
5
−4

5
−846

−→

x1 y2 x2 −1
y1

3
5

1
5
−1

5
48

y3 −1
5

3
5

2
5

84
x3 −1 1 0 60
−1 −13

5
−1

5
−4

5
−858

The independent variables are y2, y4, y5 and the basic variables are y1, y3, y6.
The basic solution is

y2 = y4 = y5 = 0, y1 = 48, y3 = 84, y6 = 60

Thus an optimal vector for the primal problem is

(y1, y2, y3) = (48, 0, 84)

The maximum value of f is 858.
We may also write down an optimal solution to the dual problem. The

dual problem is

min g = 180x1 + 300x2 + 240x3 + 150
subject to 2x1 + x2 + 2x3 ≥ 6

x1 + 2x2 + 2x3 ≥ 4
x1 + 3x2 + x3 ≥ 5

From the last tableau, the independent variables are x3, x4, x6 and the basic
variables are x1, x2, x5. The basic solution is

x3 = x4 = x6 = 0, x1 =
13

5
, x2 =

4

5
, x5 =

1

5
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Therefore an optimal vector for the dual problem is

(x1, x2, x3) =

(
13

5
,
4

5
, 0

)
The minimum value of g is 858 which is equal to the maximum value of f .�

To use simplex method solving a game matrix, first we add a constant
k to every entry so that the entries are all non-negative and there is no
zero column. This is done to make sure that the value of the new matrix is
positive. Then we take b = (1, · · · , 1) ∈ Rm, c = (1, · · · , 1) ∈ Rn to set up
the initial tableau

y1 · · · yn
x1 a11 · · · a1n 1
...

...
. . .

...
...

xm am1 · · · amn 1
1 · · · 1 0

and apply the simplex algorithm. Then the value of the game matrix is

ν =
1

d
− k

where d is the maximum value of f or the minimum value of g, and k is the
constant which is added to the game matrix at the beginning. A maximin
strategy for the row player is

p =
1

d
x =

1

d
(x1, x2, · · · , xm)

and a minimax strategy for the column player is

q =
1

d
y =

1

d
(y1, x2, · · · , yn)

To avoid making mistakes, one may check that the following conditions must
be satisfied in every step.

1. The rightmost number in each row is always non-negative. This is
guaranteed by the choice of the pivoting entry.
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2. The value of the number in the lower right corner is always equal to
the sum of those entries in the lower row which associate with xi’s at
the top row (and similarly equal to the sum of those entries at the
rightmost column associate with yj’s at the leftmost column.)

3. The value of the number in the lower right corner never increases.

Finally, one may also check that the result should satisfy the following two
conditions.

1. Every entry of pA is larger than or equal to ν.

2. Every entry of AqT is less than or equal to ν.

Example 3.3.6. Solve the two-person zero sum game with game matrix(
−1 5 3 2
6 −1 0 4

)
Solution. Add k = 1 to each of the entries, we obtain the matrix(

0 6 4 3
7 0 1 5

)
Applying simplex algorithm, we have

y1 y2 y3 y4 −1
x1 0 6 4 3 1
x2 7∗ 0 1 5 1
−1 1 1 1 1 0

−→

x2 y2 y3 y4 −1
x1 0 6∗ 4 3 1
y1

1
7

0 1
7

5
7

1
7

−1 −1
7

1 6
7

2
7
−1

7

−→

x2 x1 y3 y4 −1

y2 0 1
6

2
3

∗ 1
2

1
6

y1
1
7

0 1
7

5
7

1
7

−1 −1
7
−1

6
4
21
− 3

14
−13

42

−→

x2 x1 y2 y4 −1
y3 0 1

4
3
2

3
4

1
4

y1 −1
7
− 1

28
− 3

14
17
28

3
28

−1 −1
7
− 3

14
−2

7
− 5

14
− 5

14

The independent variables are x3, x5, y2, y4, y5, y6 and the basic variables are
x1, x2, x4, x6, y1, y3. The basic solution is

x3 = x5 = 0, x1 =
3

14
, x2 =

1

7
, x4 =

2

7
, x6 =

5

14

y2 = y4 = y5 = y6 = 0, y1 =
3

28
, y3 =

1

4
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The optimal value is d =
5

14
. Therefore a maximin strategy for the row

player is

p =
1

d
(x1, x2) =

14

5

(
3

14
,
1

7

)
=

(
3

5
,
2

5

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3, y4) =

14

5

(
3

28
, 0,

1

4
, 0

)
=

(
3

10
, 0,

7

10
, 0

)
The value of the game is

ν =
1

d
− k =

14

5
− 1 =

9

5

�

Example 3.3.7. Solve the two-person zero sum game with game matrix

A =

 2 −1 6
0 1 −1
−2 2 1


Solution. Add 2 to each of the entries, we obtain the matrix 4 1 8

2 3 1
0 4 3


Applying simplex method, we have

y1 y2 y3 −1
x1 4∗ 1 8 1
x2 2 3 1 1
x3 0 4 3 1
−1 1 1 1 0

−→

x1 y2 y3 −1
y1

1
4

1
4

2 1
4

x2 −1
2

5
2

∗ −3 1
2

x3 0 4 3 1
−1 −1

4
3
4
−1 −1

4

−→

x1 x2 y3 −1
y1

3
10

− 1
10

23
10

1
5

y2 −1
5

2
5

−6
5

1
5

x3
4
5

−8
5

39
5

1
5

−1 − 1
10
− 3

10
− 1

10
−2

5
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The independent variables are x3, x4, x5, y3, y4, y5 and the basic variables are
x1, x2, x6, y1, y2, y6. The basic solution is

x3 = x4 = x5 = 0, x1 =
1

10
, x2 =

3

10
, x6 =

1

10

y3 = y4 = y5 = 0, y1 =
1

5
, y2 =

1

5
, y6 =

1

5

The optimal value is d =
2

5
. Therefore a maximin strategy for the row player

is

p =
1

d
(x1, x2, x3) =

5

2

(
1

10
,

3

10
, 0

)
=

(
1

4
,
3

4
, 0

)
A minimax strategy for the column player is

q =
1

d
(y1, y2, y3) =

5

2

(
1

5
,
1

5
, 0

)
=

(
1

2
,
1

2
, 0

)
The value of the game is

ν =
1

d
− k =

5

2
− 1 =

1

2

One may check the result by the following calculations

pA =

(
1

4
,
3

4
, 0

) 2 −1 6
0 1 −1
−2 2 1

 =

(
1

2
,
1

2
,
3

4

)

AqT =

 2 −1 6
0 1 −1
−2 2 1




1

2
1

2
0

 =


1

2
1

2
0


One sees that the row player may guarantee that his payoff is at least

1

2
by

using p =

(
1

4
,
3

4
, 0

)
and the column player may guarantee that the payoff

to the row player is at most
1

2
by using q =

(
1

2
,
1

2
, 0

)
. �
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3.4 Minimax theorem

In this section, we prove the minimax theorem (Theorem 2.1.10). The the-
orem was first published by John von Neumann in 1928. Another way to
state the minimax theorem is that the row value and the column value of a
matrix are always the same.

Definition 3.4.1 (Row and column values). Let A be an m× n matrix.

1. The row value of A is defined1 by

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

2. The column value of A is defined by

νc(A) = min
y∈Pn

max
x∈Pm

xAyT

The row value νr(A) of a game matrix A is the largest payoff of the
row player that he may guarantee himself. The column value νc(A) of A is
the least payoff that the column player may guarantee that the row player
cannot surpass. The strategies for the players to achieve these goals are
called maximin and minimax strategies.

Definition 3.4.2 (Maximin and minimax strategies). Let A be an m × n
matrix.

1. A maximin strategy is a strategy p ∈ Pm for the row player such
that

min
y∈Pn

pAyT = max
x∈Pm

min
y∈Pn

xAyT = νr(A)

2. A minimax strategy is a strategy q ∈ Pn for the column player such
that

max
x∈Pm

xAqT = min
y∈Pn

max
x∈Pm

xAyT = νc(A)

It can be seen readily that we always have νr(A) ≤ νc(A) for any matrix
A and we give a rigorous proof here.

1Note that since the payoff function π(x,y) = xAyT is continuous and the sets Pm,Pn

are compact, that is closed and bounded, the payoff function attains its maximum and
minimum by extreme value theorem.
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Theorem 3.4.3. For any m× n matrix A, we have

νr(A) ≤ νc(A)

Proof. Let p ∈ Pm be a maximin strategy for the row player and q ∈ Pn be
a minimax strategy for the column player. Then we have

νr(A) = max
x∈Pm

min
y∈Pn

xAyT

= min
y∈Pn

pAyT

≤ pAqT

≤ max
x∈Pm

xAqT

= min
y∈Pn

max
x∈Pm

xAyT

= νc(A)

Before we prove the minimax theorem, let’s study some properties of
convex sets.

Definition 3.4.4 (Convex set). A set C ⊂ Rn is said to be convex if

λx + (1− λ)y ∈ C for any x,y ∈ C, 0 ≤ λ ≤ 1

Geometrically, a set C ⊂ Rn is convex if the line segment joining any
two points in C is contained in C. It is easy to see from the definition that
intersection of convex sets is convex.

Definition 3.4.5 (Convex hull). The convex hull of a set {x1,x2, · · · ,xk}
of vectors in Rn is defined by

Conv({x1,x2, · · · ,xk})

= {x ∈ Rn : x =
k∑
i=1

λixi with λi ≥ 0 for all i and
k∑
i=1

λi = 1}
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The convex hull of a set of vectors can also be defined as the smallest
convex set which contains all vectors in the set.

To prove the minimax theorem, we prove a lemma concerning properties
of convex sets. Recall that the standard inner product and the norm on Rn

are defined as follows. For any x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈
Rn,

1. 〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn

2. ‖x‖ =
√
〈x,x〉 =

√
x21 + x22 + · · ·+ x2n

The following lemma says that we can always use a plane to separate the
origin and a closed convex set C not containing the origin. It is a special
case of the hyperplane separation theorem2.

Lemma 3.4.6. Let C ⊂ Rn be a closed convex set with 0 6∈ C. Then there
exists z ∈ C such that

〈z,y〉 > 0 for any y ∈ C
2The hyperplane separation theorem says that we can always use a hyperplane to

separate two given sets which are closed and convex, and at least one of them is bounded.
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Proof. Since C is closed, there exists z ∈ C such that

‖z‖ = min
y∈C
‖y‖

We are going to prove that 〈z,y〉 > 0 for any y ∈ C by contradiction.
Suppose there exists y ∈ C such that 〈z,y〉 ≤ 0. Let x ∈ Rn be a point
which lies on the straight line passing through z, y, and is orthogonal to
z−y. The point x lies on the line segment joining z, y, that is lying between
z and y, because 〈z,y〉 ≤ 0.

Since z,y ∈ C and C is convex, we have x ∈ C. (The expression for x is not
important in the proof but let’s include here for reference

x =
〈y − z,y〉
‖y − z‖2

z +
〈z− y, z〉
‖y − z‖2

y

Note that 〈y−z,y〉‖y−z‖2 ,
〈z−y,z〉
‖y−z‖2 ≥ 0 because 〈z,y〉 ≤ 0 and 〈y−z,y〉

‖y−z‖2 + 〈z−y,z〉
‖y−z‖2 = 1

which shows that x lies on the line segment joining z, y.)
Moreover, we have

‖z‖2 = ‖x + (z− x)‖2

= ‖x‖2 + ‖(z− x)‖2 (since x ⊥ z− x)

> ‖x‖2
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which contradicts that z is a point in C closest to the origin 0.

The following theorem says that for any matrix A, we have either νr(A) >
0 or νc(A) ≤ 0. The key of the proof is to consider the convex hull C
generated by the column vectors of A and the standard basis for Rm, and
study the two cases 0 6∈ C and 0 ∈ C.

Theorem 3.4.7. Let A be an m × n matrix. Then one of the following
statements holds.

1. There exists probability vector x ∈ Pm such that xA > 0, that is all
coordinates of xA are positive. In this case, νr(A) > 0.

2. There exists probability vector y ∈ Pn such that AyT ≤ 0, that is all
coordinates of AyT are non-positive. In this case, νc(A) ≤ 0.

Proof. For j = 1, 2, · · · , n, let

aj = (a1j, a2j, · · · , amj) ∈ Rm

In other words, aT1 , a
T
2 , · · · , aTn are the column vectors of A and we may write

A = [aT1 , a
T
2 , · · · , aTn ]. Let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})
be the convex hull of {a1, a2, · · · , an, e1, e2, · · · , em} where {e1, e2, · · · , em}
is the standard basis for Rm.
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We are going to prove that the two statements in the theorem correspond to
the two cases 0 6∈ C and 0 ∈ C.

Case 1. Suppose 0 6∈ C. Then by Lemma 3.4.6, there exists z =
(z1, z2, · · · , zm) ∈ Rm such that

〈z,y〉 > 0 for any y ∈ C

In particular, we have

〈z, ei〉 = zi > 0 for any i = 1, 2, · · · ,m

Then we may take

x =
z

z1 + z2 + · · ·+ zm
∈ Pm

and we have

〈x, aj〉 =
〈z, aj〉

z1 + z2 + · · ·+ zm
> 0 for any j = 1, 2, · · · , n

which means xA > 0. Let α > 0 be the smallest coordinate of the
vector xA and we have

νr(A) ≥ min
y∈Pn

xAyT ≥ α > 0

Case 2. Suppose 0 ∈ C. Then there exists λ1, λ2, · · · , λm+n with λi ≥ 0
for all i, and λ1 + λ2 + · · ·+ λm+n = 1 such that

λ1a1 + λ2a2 + · · ·+ λnan + λn+1e1 + λn+2e2 + · · ·+ λn+mem = 0

which implies

A (λ1, λ2, · · · , λn)T

= λ1a
T
1 + λ2a

T
2 + · · ·+ λna

T
n

= −(λn+1e
T
1 + λn+1e

T
2 + · · ·+ λn+meTm)

= − (λn+1, λn+2, · · · , λn+m)T

Since {e1, e2, · · · , em} are linearly independent, at least one of λ1, λ2, · · · , λn
is positive for otherwise all λ1, λ2, · · · , λm+n are zero which contradicts
λ1 + λ2 + · · ·+ λm+n = 1. Then we may take

y =
(λ1, λ2, · · · , λn)

λ1 + λ2 + · · ·+ λn
∈ Pn
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and we have

AyT = − 1

λ1 + λ2 + · · ·+ λn

 λn+1
...

λn+m

 ≤ 0

which implies
vc(A) ≤ max

x∈Pm
xAyT ≤ 0

Now we give the proof of the minimax theorem (Theorem 2.1.10) which
can be stated in the following form.

Theorem 3.4.8 (Minimax theorem). For any matrix A, the row value and
columns value of A are equal. In other words, we have

νr(A) = νc(A)

Proof. It has been proved that νr(A) ≤ νc(A) for any matrix A (Theorem
3.4.3). We are going to prove that νc(A) ≤ νr(A) by contradiction. Suppose
there exists matrix A such that νr(A) < νc(A). Let k be a real number such
that νr(A) < k < νc(A). Let A′ be the matrix obtained by subtracting every
entry of A by k. Then νr(A

′) = νr(A) − k < 0 and νc(A
′) = νc(A) − k > 0

which is impossible by applying Theorem 3.4.7 to A′. The contradiction
shows that νc(A) ≤ νr(A) for any matrix A and the proof of the minimax
theorem is complete.

Exercise 3

1. Solve the following primal problems. Then write down the dual prob-
lems and the solutions to the dual problems.

(a)
max f = 3y1 + 5y2 + 4y3 + 12

subject to 3y1 + 2y2 + 2y3 ≤ 15
4y2 + 5y3 ≤ 24

(b)
max f = 2y1 + 4y2 + 3y3 + y4

subject to 3y1 + y2 + y3 + 4y4 ≤ 12
y1 − 3y2 + 2y3 + 3y4 ≤ 7
2y1 + y2 + 3y3 − y4 ≤ 10
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2. Solve the zero sum games with the following game matrices, that is
find the value of the game, a maximin strategy for the row player and
a minimax strategy for the column player.

(a)

 2 −3 3
−2 3 1
1 1 5



(b)

 3 1 −5
−1 −2 6
−2 −1 3



(c)

 3 0 1
−1 2 −2
0 1 −1



(d)

 2 0 −2
−1 −3 3
−2 2 0



(e)


1 −1 1
−2 0 −1
1 −2 2
−1 1 −2



(f)


−3 2 0
1 −2 −1
−1 0 2
1 1 −3


3. Prove that if C1 and C2 are convex sets in Rn, then the following sets

are also convex.

(a) C1 ∩ C2

(b) C1 + C2 = {x1 + x2 : x1 ∈ C1,x2 ∈ C2}

4. Let A be an m × n matrix. Prove that the set of maximin strategies
for the row player of A is convex.

5. Let C be a convex set in Rn and x,y ∈ C. Let z ∈ Rn be a point on
the straight line joining x and y such that z is orthogonal to x− y.

(a) Find z in terms of x and y.

(b) Suppose 〈x,y〉 < 0. Prove that z ∈ C.

6. Let A be an m × n matrix with column vectors aT1 , a
T
2 , · · · , aTn . Let

νc(A) be the column value of A and let

C = Conv({a1, a2, · · · , an, e1, e2, · · · , em})

where {e1, e2, · · · , em} is the standard basis for Rm. Prove that if
νc(A) ≤ 0, then 0 ∈ C.



4 Bimatrix games

4.1 Bimatrix games

In this chapter, we study bimatrix game. A bimatrix game is a two-person
non-cooperative game with perfect information. In a bimatrix game, two
players, player I and player II, choose their strategies simultaneously. Then
the payoffs to the the players depend on the strategies used by the players.
Unlike zero sum game, we have no assumption on the sum of payoffs to the
players. A bimatrix game can be represented by two matrices, hence its
name.

Definition 4.1.1 (Bimatrix game). The normal form of a bimatrix game
is given by a pair of m × n matrices (A,B). The matrices A and B are
payoff matrices for the row player (player I) and the column player (player
II) respectively. Suppose the row player uses strategy x ∈ Pm and the column
player uses strategy y ∈ Pn. Then the payoff to the row player and column
player are given by the payoff functions

π(x,y) = xAyT

ρ(x,y) = xByT

respectively.

Definition 4.1.2. The safety level, or security level, of the row player
is

µ = max
x∈Pm

min
y∈Pn

xAyT = ν(A)

where ν(A) denotes the value of the matrix A when A is considered as the
game matrix of a two-person zero sum game. The safety level of the column
player is

ν = max
y∈Pn

min
x∈Pm

xByT = ν(BT )

where ν(BT ) is the value of the transpose BT of B.

Note that the value of a matrix is defined to be the maximum payoff that
the row payoff may guarantee himself. The safety level of the column player
of the bimatrix game (A,B) is the value νBT of the transpose BT of B, not
the value of B.
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Definition 4.1.3 (Nash equilibrium). Let (A,B) be a game bimatrix. We
say that a pair of strategies (p,q) is an equilibrium pair, or mixed Nash
equilibrium, or just Nash equilibrium, for (A,B) if

xAqT ≤ pAqT for any x ∈ Pm

and
pByT ≤ pBqT for any y ∈ Pn

Example 4.1.4 (Prisoner dilemma). Let

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
The strategy pair (p,q) = ((1, 0), (1, 0)) is a Nash equilibrium. The Nash

equilibrium is unique in this example. �

Example 4.1.5 (Dating game). Consider

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
It is not difficult to see that the strategy pairs (p,q) = ((1, 0), (1, 0))

and ((0, 1), (0, 1)) are Nash equilibria. The game has one more mixed Nash
equilibrium. To find it, suppose the row player uses strategy x = (x, 1− x),
where 0 < x < 1. Then

xB = (x, 1− x)

(
2 0
0 3

)
= (2x, 3− 3x)

It means that the payoff to the column player is 2x, or 3− 3x if the column
player constantly uses his 1st, or 2nd strategies respectively. Setting 2x =
3− 3x, we have x = 0.6 and

(0.6, 0.4)B = (0.6, 0.4)

(
2 0
0 3

)
= (1.2, 1.2)

Thus if the row player uses mixed strategy (0.6, 0.4), then the payoff to the
column player is always 1.2 no matter how the column player plays. Similarly
suppose the column player uses y = (y, 1− y), 0 ≤ y ≤ 1. Then

AyT =

(
4 0
0 1

)(
y

1− y

)
=

(
4y

1− y

)
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It means that the payoff to the row player is 4y, or 1 − y if the row player
constantly uses his 1st, or 2nd strategies respectively. Setting 4y = 1− y, we
have y = 0.2. Then (

4 0
0 1

)(
0.2
0.8

)
=

(
0.8
0.8

)
Thus if the column player uses mixed strategy (0.2, 0.8), then the payoff to
the row player is always 0.8 no matter how the row player plays. Therefore
the strategy pair (p,q) = ((0.6, 0.4), (0.2, 0.8)) is a Nash equilibrium. In
conclusion, the dating game has three Nash equilibria and we list them in
the following table.

Nash equilibrium and the corresponding payoff pair
Row player’s strategy p Column player’s strategy q Payoff pair (π, ρ)

(1, 0) (1, 0) (4, 2)
(0, 1) (0, 1) (1, 3)

(0.6, 0.4) (0.2, 0.8) (0.8, 1.2)

�
Note that in the third Nash equilibrium of the above example, the strategy

for the row player p = (0.6, 0.4) is the minimax strategy for the column player
of BT , not the maximin strategy for the row player of A. That means what
the row player should do is to fix the payoff to its opponent (the column
player) to be 1.2 instead of guaranteeing the payoff to himself to be 0.8.
Similarly, the strategy for the column player q = (0.2, 0.8) in this Nash
equilibrium is the minimax strategy for the column player of A. So the
column player should use a strategy to fix the row player’s payoff instead of
guaranteeing his own payoff.

4.2 Nash’s theorem

One of the most fundamental works in game theory is the following theorem
of Nash which greatly extended the minimax theorem (Theorem 2.1.10).

Theorem 4.2.1 (Nash’s theorem). Every finite3 game with finite number of
players has at least one Nash equilibrium.

3A game is finite if the number of strategies of each player is finite.
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Nash invoked the following celebrated theorem in topology to prove his
theorem.

Theorem 4.2.2 (Brouwer’s fixed-point theorem). Let X be a topological
space which is homeomorphic to the closed unit ball Dn = {x ∈ Rn : ‖x‖ ≤
1}. Then any continuous map T : X → X has at least one fixed-point, that
is, there exists x ∈ X such that T (x) = x.

Remarks:

1. Two topological space X and Y are homeomorphic if there exists bi-
jective map ϕ : X → Y such that both ϕ and its inverse ϕ−1 are
continuous.

2. The set Pn = {(x1, x2, · · · , xn) ∈ Rn : x1, · · · , xn ≥ 0 and x1 + x2 +
· · ·+ xn = 1} of probability vectors in Rn is homeomorphic to Dn−1.
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Moreover Pm × Pn is homeomorphic to Dm+n−2.

The proof of the Brouwer’s fixed-point theorem is out of the propose and
scope of this notes. Now we give the proof of Nash’s theorem assuming the
Brouwer’s fixed-point theorem.

Proof of Nash’s theorem. For simplicity, we consider two-person game only.
The proof for the general case is similar. Let (A,B) be the game bimatrix
of a two-person game. Define T : Pm × Pn → Pm × Pn by

T (x,y) = (u,v) = ((u1, u2, · · · , um), (v1, v2, · · · , vn))
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where for k = 1, 2, · · · ,m and l = 1, 2, · · · , n,

uk =
xk + ck

1 +
m∑
i=1

ci

and vl =
yl + dl

1 +
n∑
j=1

dj

and

ck = max{ekAyT − xAyT , 0} and dl = max{xBeTl − xByT , 0}

Here ek, el are vectors in the standard bases in Rm, Rn respectively. Note
that u ∈ Pm and v ∈ Pn because

ck, dl ≥ 0

and

m∑
k=1

 xk + ck

1 +
m∑
i=1

ci

 =

m∑
k=1

xk +
m∑
k=1

ck

1 +
m∑
i=1

ci

=

1 +
m∑
k=1

ck

1 +
m∑
i=1

ci

= 1

n∑
l=1

 yl + dl

1 +
n∑
j=1

dj

 =

n∑
l=1

yl +
n∑
l=1

dl

1 +
n∑
j=1

dj

=

1 +
n∑
l=1

dl

1 +
n∑
j=1

dj

= 1

Now T is a continuous map from Pm × Pn to Pm × Pn. By Brouwer’s
fixed-point theorem (Theorem 4.2.2), there exists (p,q) ∈ Pm × Pn such
that

T (p,q) = (p,q)

The proof of Nash’s theorem is complete if we can prove that (p,q) is a Nash
equilibrium. Suppose on the contrary that (p,q) is not a Nash equilibrium.
Then either there exists r ∈ Pm such that rAqT > pAqT or there exists
s ∈ Pn such that pBsT > pBqT . Without loss of generality, we consider the
former case. Write r = (r1, r2, · · · , rm). Since

pAqT < rAqT =
m∑
k=1

rkekAqT
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and r is a probability vector, we see that there exists 1 ≤ k ≤ m such that

pAqT < ekAqT

It follows that
ck = max{ekAqT − pAqT , 0} > 0

and thus
m∑
i=1

ci > 0. On the other hand, since

pAqT =
m∑
i=1

pieiAqT

and p is a probability vector, there exists 1 ≤ r ≤ m such that pr > 0 and

erAqT ≤ pAqT

which implies, by the definition of cr, that cr = 0. Hence we have

pr + cr

1 +
m∑
i=1

ci

=
pr

1 +
m∑
i=1

ci

≤ pr
1 + ck

< pr

which contradicts that (p,q) is a fixed-point of T . Therefore (p,q) is a Nash
equilibrium and the proof of Nash’s theorem is complete. �

We have seen in the proof of Nash’s theorem that (p,q) is a Nash equilib-
rium if it is a fixed-point of T . As a matter of fact, the converse of this state-
ment is also true. For if (p,q) is a Nash equilibrium, then eiAqT ≤ pAqT

for any 1 ≤ i ≤ m. Thus ci = 0 for any 1 ≤ i ≤ m. Similarly dj = 0 for any
1 ≤ j ≤ n. Therefore T (p,q) = (p,q).

To find Nash equilibria of a 2 × 2 game bimatrix (A,B), we may let
x = (x, 1− x), y = (y, 1− y) and consider the payoff functions

π(x, y) = π(x,y) = xAyT

ρ(x, y) = ρ(x,y) = xByT

Define

P = {(x, y) : π(x, y) attains its maximum at x for fixed y.}
Q = {(x, y) : ρ(x, y) attains its maximum at y for fixed x.}

Then (x,y) is a Nash equilibrium if and only if (x, y) ∈ P ∩Q.
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Example 4.2.3 (Prisoner dilemma). Consider the prisoner dilemma (Ex-
ample 4.1.4) with bimatrix

(A,B) =

(
(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

)
The payoff to the row player is given by

π(x, y) = (x, 1− x)

(
−5 −1
−10 −2

)(
y

1− y

)
= (x, 1− x)

(
−4y − 1
−8y − 2

)
Since −8y − 2 < −4y − 1 for any 0 ≤ y ≤ 1, we have

P = {(1, y) : 0 ≤ y ≤ 1}

On the other hand,

ρ(x, y) = (x, 1− x)

(
−5 −10
−1 −2

)(
y

1− y

)
= (−4x− 1,−8x− 2)

(
y

1− y

)
Since −8x− 2 < −4x− 1 for any 0 ≤ x ≤ 1, we have

Q = {(x, 1) : 0 ≤ p ≤ 1}



Bimatrix games 89

Now
P ∩Q = {(1, 1)}

Therefore the game has a unique Nash equilibrium (p,q) = ((1, 0), (1, 0)).�

Example 4.2.4 (Dating game). Consider the dating game (Example 4.1.5)
with bimatrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We have

π(x, y) = (x, 1− x)

(
4 0
0 1

)(
y

1− y

)
= (x, 1− x)

(
4y

1− y

)
Now 

4y < 1− y if 0 ≤ y <
1

5

4y = 1− y if y =
1

5

4y > 1− y if
1

5
< y ≤ 1

Thus

P =

{
(x, y) :

(
x = 0 ∧ 0 ≤ y <

1

5

)
∨
(

0 ≤ x ≤ 1 ∧ y =
1

5

)
∨
(
x = 1 ∧ 1

5
< y ≤ 1

)}
On the other hand,

ρ(x, y) = (x, 1− x)

(
2 0
0 3

)(
y

1− y

)
= (2x, 3− 3x)

(
y

1− y

)
Now 

2x < 3− 3x if 0 ≤ x <
3

5

2x = 3− 3x if x =
3

5

2x > 3− 3x if
3

5
< x ≤ 1
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Thus

Q =

{
(x, y) :

(
0 ≤ x <

3

5
∧ y = 0

)
∨
(
x =

3

5
∧ 0 ≤ y ≤ 1

)
∨
(

3

5
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{
(0, 0), (1, 1),

(
3

5
,
1

5

)}
Therefore the game has three Nash equilibria which are listed together with
the associated payoff pairs in the following table.

p q (π, ρ)
(0, 1) (0, 1) (1, 3)
(1, 0) (1, 0) (4, 2)(
3

5
,
2

5

) (
1

5
,
4

5

) (
4

5
,
6

5

)
�

Definition 4.2.5. Let (A,B) be a game bimatrix.

1. We say that two Nash equilibria (p,q) and (p′,q′) are interchange-
able if (p′,q) and (p,q′) are also Nash equilibria.
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2. We say that two Nash equilibria (p,q) and (p′,q′) are equivalent if

π((p,q), ρ(p,q)) = π((p′,q′), ρ(p′,q′))

3. We say that a bimatrix game (A,B) is solvable in the Nash sense
if any two Nash equilibria are interchangeable and equivalent.

For the prisoner dilemma (Example 4.2.3), there is only one Nash equi-
librium. Thus the prisoner dilemma is solvable in the Nash sense. For the
dating game (Example 4.2.4), there are three Nash equilibria which are not
interchangeable. So the dating game is not solvable in the Nash sense.

Example 4.2.6. Solve the game bimatrix

(A,B) =

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
Solution. Consider

AyT =

(
1 5
4 3

)(
y

1− y

)
=

(
−4y + 5
y + 3

)
Now 

−4y + 5 > y + 3 if 0 ≤ y <
2

5

−4y + 5 = y + 3 if y =
2

5

−4y + 5 < y + 3 if
2

5
< y ≤ 1

We see that

P =

{
(x, y) :

(
x = 0 ∧ 2

5
< y ≤ 1

)
∨
(

0 ≤ x ≤ 1 ∧ y =
2

5

)
∨
(
x = 1 ∧ 0 ≤ y <

2

5

)}
On the other hand

xB = (x, 1− x)

(
4 1
2 3

)
= (2x+ 2,−2x+ 3)

and 
2x+ 2 < −2x+ 3 if 0 ≤ x <

1

4

2x+ 2 = −2x+ 3 if x =
1

4

2x+ 2 > −2x+ 3 if
1

4
< x ≤ 1
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We see that

Q =

{
(x, y) :

(
0 ≤ x <

1

4
∧ y = 0

)
∨
(
x =

1

4
∧ 0 ≤ y ≤ 1

)
∨
(

1

4
< x ≤ 1 ∧ y = 1

)}

Now

P ∩Q =

{(
1

4
,
2

5

)}
Therefore the game has Nash equilibrium

(p,q) =

((
1

4
,
3

4

)
,

(
2

5
,
3

5

))
and is solvable in the Nash sense since the Nash equilibrium is unique. �

4.3 Nash bargaining model

A bimatrix game can be played as a cooperative game with non-transferable
utility. This means the players may make agreements on what strategies
they are going to use. However they are not allowed to share the payoffs they
obtained in the game. In such a game, players may use joint strategies.

Definition 4.3.1. Let (A,B) be an m× n bimatrix of a two-person game.
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1. A joint strategy of (A,B) is an m× n matrix

P =

 p11 · · · p1n
...

. . .
...

pm1 · · · pmn


which satisfies

(i) pij ≥ 0 for any i = 1, 2, · · · ,m and j = 1, 2, · · · , n

(ii)
m∑
i=1

n∑
j=1

pij = 1

In other words, P is a joint strategy if it is a probability matrix. The
set of all m× n probability matrices is denoted by

Pm×n = {P = [pij] : pij ≥ 0 and
∑

pij = 1}

In particular, if p = (p1, · · · , pm) ∈ Pm and q = (q1, · · · , qn) ∈ Pn,
then

pTq =

 p1q1 · · · p1qn
...

. . .
...

pmq1 · · · pmqn

 ∈ Pm×n
is a joint strategy. In this case, the row player uses strategy p and the
column player uses strategy q independently. Not all joint strategies
are of this form. For example (

1
2

0
0 1

2

)
cannot be expressed as the form pTq. When this joint strategy is used,
the players may flip a coin and both use their first strategies if a ‘head’
is obtained and both use their second strategies if a ‘tail’ is obtained.

2. For joint strategy P = [pij] ∈ Pm×n, the payoff u to the row player and
the payoff v to the column player are given by the payoff pair

(u(P ), v(P )) =

(∑
i,j

aijpij,
∑
i,j

bijpij

)
=

∑
i,j

pij(aij, bij)
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3. The cooperative region of (A,B) is the set of all feasible payoff pairs

R = {(u(P ), v(P )) ∈ R2 : P ∈ Pm×n}

=

{
(u, v) ∈ R2 : (u, v) =

∑
i,j

pij(aij, bij) for some [pij] ∈ Pm×n
}

In other words, the cooperative region R is the convex hull of the set
of points {(aij, bij) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} in R2. Note that R is a
closed convex polygon in R2.

4. The status quo point is the payoff pair (µ, ν) for the players as-
sociated to the solution of the game when (A,B) is considered as a
non-cooperative game. In other words, the status quo point is the pay-
offs that the players may expect if the negotiations break down. Unless
otherwise specified, we will take (µ, ν) = (ν(A), ν(BT )) to be the status
quo point where v(A) and ν(BT ) are the values of A and the transpose
BT of B respectively.
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5. We say that a payoff pair (u, v) is Pareto optimal if u′ ≥ u, v′ ≥ v
and (u′, v′) ∈ R implies (u′, v′) = (u, v) where R is the cooperative
region.

6. The bargaining set of (A,B) is the set of Pareto optimal payoff pairs
(u, v) ∈ R such that u ≥ µ and v ≥ ν where (µ, ν) is the status quo
point. In other words, the bargaining set is

{(u, v) ∈ R : u ≥ µ, v ≥ ν and (u, v) is Pareto optimal}
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When the status quo point is not Pareto optimal, the two players of the
game would have a tendency to cooperate. The bargaining problem is a
problem to understand how the players should cooperate in this situation.
Nash proposed that the solution to the bargaining problem is a function,
called the arbitration function, depending only on the cooperative region R
and the status quo point (µ, ν) ∈ R, which satisfies certain properties called
Nash bargaining axioms.

Definition 4.3.2 (Nash bargaining axioms). An arbitration function is
a function (α, β) = A(R, (µ, ν)) defined for a closed and bounded convex set
R ⊂ R2 (cooperative region) and a point (µ, ν) ∈ R (status quo point) such
that the following Nash bargaining axioms are satisfied.

1. (Individual rationality) α ≥ µ and β ≥ ν.

2. (Pareto optimality) For any (u, v) ∈ R, if u ≥ α and v ≥ ν, then
(u, v) = (α, β).

3. (Feasibility) (α, β) ∈ R.
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4. (Independence of irrelevant alternatives) If R′ ⊂ R, (µ, ν) ∈ R′ and
(α, β) = A(R, (µ, ν)) ∈ R′, then A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν)).

5. (Invariant under linear transformation) Let a, b, c, d ∈ R be any real
numbers with a, c > 0. Let R′ = {(au + b, cv + d) : (u, v) ∈ R} and
(µ′, ν ′) = (aµ+ b, cν + d). Then A(R′, (µ′, ν ′)) = (aα + b, cβ + d).

6. (Symmetry) Suppose R is symmetry, that is (u, v) ∈ R implies (v, u) ∈
R, and µ = ν. Then α = β.

Theorem 4.3.3 (Nash bargaining solution). There exists a unique arbitra-
tion function A(R, (µ, ν)) for closed and bounded convex setR and (µ, ν) ∈ R
which satisfies the Nash bargaining axioms.

Before proving Theorem 4.3.3, first we prove a lemma.

Lemma 4.3.4. Let R ⊂ R2 be any closed and bounded convex set and
(µ, ν) ∈ R. Let

K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}
Let g : K → R be the function defined by

g(u, v) = (u− µ)(v − ν) for (u, v) ∈ K

Suppose U = {(u, v) ∈ K : u > µ, v > ν} 6= ∅. Then there exists unique
(α, β) ∈ K such that

g(α, β) = max
(u,v)∈K

g(u, v)
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Proof. Since g is continuous and K is closed and bounded, g attains its
maximum at some point (α, β) ∈ K and let

M = max
(u,v)∈K

g(u, v)

be the maximum value of g on K. We are going to prove by contradiction
that the maximum point of g on K is unique. Suppose on the contrary that
there exists (α′, β′) ∈ K with (α′, β′) 6= (α, β) such that

g(α′, β′) = g(α, β) = M

Then either α′ > α and β′ < β, or α′ < α and β′ > β. In both case we have
(α− α′) (β′ − β) > 0. Observe that the mid-point (α+α

′

2
, β+β

′

2
) of (α, β) and

(α′, β′) lies in K since K is convex. On the other hand, the value of g at
(α+α

′

2
, β+β

′

2
) is

g

(
α + α′

2
,
β + β′

2

)
=

(
α + α′

2
− µ, β + β′

2
− ν
)

=
1

4
((α− µ) + (α′ − µ)) ((β − ν) + (β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)(β′ − ν)

+(α′ − µ)(β − ν) + (α′ − µ)(β′ − ν))

=
1

4
((α− µ)(β − ν) + (α− µ)((β′ − β) + (β − ν))

+(α′ − µ)((β − β′) + (β′ − ν)) + (α′ − µ)(β′ − ν))

=
1

4
(2(α− µ)(β − ν) + (α− µ)(β′ − β)

+(α′ − µ)(β − β′) + 2(α′ − µ)(β′ − ν))

=
1

4
(2g(α, β) + (α− α′)(β′ − β) + 2g(α′, β′))

=
1

4
(2M + (α− α′) (β′ − β) + 2M)

> M

This contradicts that the maximum value of g on K is M . Therefore g attains
its maximum at a unique point.
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Proof of existence of arbitration function. For any closed and bounded convex
set R and (µ, ν) ∈ R, let K = {(u, v) ∈ R : u ≥ µ, v ≥ ν}, U = {(u, v) ∈
R : u > µ, v > ν} and define (α, β) = A(R, (µ, ν)) as follows:

1. If U 6= ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of g(u, v) = (u− µ)(v − ν) in K, that is

g(α, β) = max
(u,v)∈K

g(u, v)

2. If U = ∅, then (α, β) = A(R, (µ, ν)) ∈ K is the unique maximum point
of u+ v on K, that is

α + β = max
(u,v)∈K

(u+ v)

We are going to prove that the function A(R, (µ, ν)) satisfies the Nash bar-
gaining axioms. We prove only for the first case U 6= ∅ and the second case
is obvious.

1. (Individual rationality) It follows by the definition that (α, β) ∈ K and
we have α ≥ µ and β ≥ ν.

2. (Pareto optimality) Suppose there exists (α′, β′) ∈ R such that α′ ≥ α
and β′ ≥ β. Then g(α′, β′) ≥ g(α, β) which implies that (α′, β′) =
(α, β) since the maximum point of g on K is unique.

3. (Feasibility) Since (α, β) ∈ K ⊂ R by definition, we have (α, β) ∈ R.

4. (Independence of irrelevant alternatives) Suppose R′ ⊂ R is a subset of
R which contains both (µ, ν) and (α, β). Since g attains its maximum
at (α, β) on K, it also attains its maximum at (α, β) on K ′ = K ∩R′.
Thus

A(R′, (µ, ν)) = (α, β) = A(R, (µ, ν))

5. (Invariant under linear transformation) Let a, b, c, d ∈ R with a, c > 0.
Let R′ = {(u′, v′) = (au + b, cv + d) : (u, v) ∈ R} and (µ′, ν ′) =
(aµ+ b, cν + d). Then

g′(u′, v′) = (u′ − µ′)(v′ − ν ′)
= ((au+ b)− (aµ+ b))((cv + d)− (cν + d))

= ac(u− µ)(v − ν)

= acg(u, v)
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Hence g′ attains its maximum at (α′, β′) = (aα + b, cβ + d) on K ′ =
{(u′, v′) = (au+ b, cv+ d) : (u, v) ∈ K} since g attains its maximum at
(α, β) on K. Therefore A(R′, (µ, ν)) = (α′, β′).

6. (Symmetry) Suppose R is symmetric and µ = ν. Then

g(u, v) = (u− µ)(v − µ) = g(v, u)

and (v, u) ∈ K if and only if (u, v) ∈ K. Thus if g attains its maximum
at (α, β) on K, then g also attains its maximum at (β, α) on K. By
uniqueness of maximum point of g on K, we see that (β, α) = (α, β)
which implies α = β.

�

Proof of uniqueness of arbitration function. Suppose A′(R, (µ, ν)) is another
arbitration function satisfying the Nash bargaining axioms. Let R be a
closed and bounded convex set and (µ, ν) ∈ R. By applying a linear trans-
formation, we may assume that (µ, ν) = (0, 0) and (α, β) = A(R, (0, 0)) =
(0, 0), (1, 0), (0, 1) or (1, 1). We are going to prove that A′(R, (0, 0)) = (α, β).

Case 1. (α, β) = (0, 0):

In this case K = {(0, 0)} and we have A′(R, (0, 0)) since (α, β) ∈ K.

Case 2. (α, β) = (1, 0) or (0, 1):

We consider the case for (α, β) = (1, 0) and the other case is similar.
By definition of (α, β), we must have K = {(u, 0) : 0 ≤ u ≤ 1}. By the
individual rationality, we have A′(R, (0, 0)) ∈ K. By Pareto optimality,
we have A′(R, (0, 0)) = (1, 0).

Case 3. (α, β) = (1, 1):

First we claim that u + v ≤ 2 for any (u, v) ∈ K. We prove the claim
by contradiction. Suppose there exists (u, v) ∈ K such that u+ v > 2.
Then for any 0 ≤ t ≤ 1, we have

t(u, v) + (1− t)(1, 1) = ((u− 1)t+ 1, (v − 1)t+ 1) ∈ K

since K is convex. Let g(t) be the value of g at the point t(u, v) + (1−
t)(1, 1) ∈ K lying on the line segment joining (1, 1) and (u, v).
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Then

g(t) = g(1 + (u− 1)t, 1 + (v − 1)t)

= ((u− 1)t+ 1)((v − 1)t+ 1)

= (u− 1)(v − 1)t2 + (u+ v − 2)t+ 1

We have
g′(t) = 2(u− 1)(v − 1)t+ u+ v − 2

which implies
g′(0) = u+ v − 2 > 0

It follows that there exists 0 < t ≤ 1 such that

g(t) > g(0) = g(1, 1)

which contradicts that g attains its maximum at (1, 1) on K. Hence we
proved the claim that u+ v ≤ 2 for any (u, v) ∈ K. Now let R′ be the
convex hull of {(u, v) : (u, v) ∈ R or (v, u) ∈ R}. Then u′ + v′ ≤ 2 for
any (u′, v′) ∈ R′ since u + v ≤ 2 for any (u, v) ∈ R. By symmetry, we
have A′(R′, (0, 0)) = (α′, α′) for some (α′, α′) ∈ R′. Now α′ ≤ 1 since
α′ + α′ ≤ 2. Since (1, 1) ∈ K ⊂ R′, we have A′(R′, (0, 0)) = (1, 1) by
Pareto optimality. Therefore A′(R, (0, 0)) = (1, 1) by independence of
irrelevant alternative.
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This completes the proof that A′(R, (µ, ν)) = A(R, (µ, ν)) for any closed and
bounded convex set R and any point (µ, ν) ∈ R. �

Example 4.3.5 (Dating game). Consider the dating game given by the bi-
matrix

(A,B) =

(
(4, 2) (0, 0)
(0, 0) (1, 3)

)
We use (µ, ν) = (ν(A), ν(BT )) = (4

5
, 6
5
) as the status quo point (see

Example 4.1.5). We need to find the payoff pair on

K =

{
(u, v) ∈ R : u ≥ 4

5
, v ≥ 6

5

}
so that the function

g(u, v) =

(
u− 4

5

)(
v − 4

5

)
attains its maximum. Now any payoff pair (u, v) along the line segment
joining (1, 3) and (4, 2) satisfies

v − 3 = −1

3
(u− 1)

v = −1

3
u+

10

3

Thus

g(u, v) =

(
u− 4

5

)(
v − 6

5

)
=

(
u− 4

5

)(
−1

3
u+

32

15

)
= −1

3
u2 +

12

5
u− 128

75

attains its maximum when

u =
18

5
and v =

32

15

Since this payoff pair lies on the line segment joining (1, 3) and (4, 2), the
arbitration pair of the game with status quo point (µ, ν) = (4

5
, 6
5
) is

(α, β) =

(
18

5
,
32

15

)
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�
To find the arbitration pair, one may use the fact that if g(u, v) = (u −

µ)(v−ν) attains it maximum at the point (α, β) over the line joining (u0, v0)
and (u1, v1), then the slope of the line joining (α, β) and (µ, ν) would be
equal to the negative of the slope of line joining (u0, v0) and (u1, v1). Using
this fact, one may see easily that (α, β) satisfies

β − v0 =
v1 − v0
u1 − u0

(α− u0)

β − ν = − v1 − v0
u1 − u0

(α− µ)

Hence if the payoff pair (α, β) obtained by solving the above system of equa-
tions lies on the line segment joining (u0, v0) and (u1, v1), which implies that
(α, β) lies on the bargaining set, then (α, β) is the arbitrary pair.

Example 4.3.6. Let

(A,B) =

(
(2, 6) (6, 2) (−1, 4)
(4, 3) (2, 7) (5, 5)

)
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The reader may check that the values of A, BT are 3.2, 4.5 respectively
and we use (µ, ν) = (3.2, 4.5) as the status quo point. We need to consider
two line segments.

1. The line segment joining (5, 5) and (6, 2):

The equation of the line segment is given by v = −3u+ 20. The value
of g(u, v) along the line segment is

g(u, v) = (u− 3.2)(v − 4.5)

= (u− 3.2)(−3u+ 15.5)

= −3u2 + 25.1u+ 49.6

which attain its maximum at (251
60
, 149

20
). Since this payoff pair lies out-

side the line segment joining (5, 5) and (6, 2) and thus lies outside K, we
know that the arbitration pair does not lie on the line segment joining
(5, 5) and (6, 2).

2. The line segment joining (2, 7) and (5, 5):

The slope of the line joining (2, 7) and (5, 5) is −2
3
. To find the max-

imum point of g(u, v) along the line joining (2, 7) and (5, 5), we may
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solve 
v − 7 = −2

3
(u− 2)

v − 4.5 =
2

3
(u− 3.2)

which gives (u, v) = (4.475, 5.35). Since this payoff pair lies on the line
segment joining (2, 7) and (5, 5), we conclude that the arbitration pair
is (α, β) = (4.475, 5.35).

�

Exercise 4

1. Find all Nash equilibria of the following bimatrix games. For each of
the Nash equilibrium, find the payoff pair.

(a)

(
(1, 4) (5, 1)
(4, 2) (3, 3)

)
(b)

(
(5, 2) (2, 0)
(1, 1) (3, 4)

) (c)

(
(1, 5) (2, 3)
(5, 2) (4, 2)

)
(d)

(
(−1, 0) (2, 1)
(4, 3) (−3,−1)

)
2. Find all Nash equilibria of the following bimatirx games

(a)

(
(4, 1) (2, 3) (3, 4)
(3, 2) (5, 5) (1, 2)

)

(b)

(
(1, 0) (4,−1) (5, 1)
(3, 2) (1, 1) (2,−1)

)
(c)

 (4, 6) (0, 3) (2,−1)
(2, 4) (6, 5) (−1, 1)
(5, 0) (1, 2) (4, 3)


(d)

 (3, 2) (4, 0) (7, 9)
(2, 6) (8, 4) (3, 5)
(5, 4) (5, 3) (4, 1)


3. The Brouwer’s fixed-point theorem states that every continuous map
f : X → X has a fixed-point if X is homeomorphic to a closed unit ball.
Find a map f : X → X which does not have any fixed-point for each of
the following topological spaces X. (It follows that the following spaces
are not homeomorphic to a closed unit ball.)

(a) X is the punched closed unit disc D2 \ {0} = {(x, y) ∈ R2 : 0 <
x2 + y2 ≤ 1}
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(b) X is the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
(c) X is the open unit disc B2 = {(x, y) ∈ R2 : x2 + y2 < 1}

4. For each of the following bimatrices (A,B), find the values νA and
νBT of A and BT respectively, and the Nash bargaining solution using
(µ, ν) = (νA, νBT ) as the status quo point.

(a)

(
(4,−4) (−1,−1)
(0, 1) (1, 0)

)
(b)

(
(3, 1) (1, 0)

(0,−1) (2, 3)

) (c)

(
(2, 2) (0, 1) (1,−1)
(4, 1) (−2, 1) (1, 3)

)
(d)

(
(6, 4) (0, 10) (4, 1)

(8,−2) (4, 1) (0, 1)

)
5. Two broadcasting companies, NTV and CTV, bid for the exclusive

broadcasting rights of an annual sports event. If both companies bid,
NTV will win the bidding with a profit of $20 (million) and CTV will
have no profit. If only NTV bids, there’ll be a profit of $50 (million).
If only CTV bids, there’ll be a profit of $40 (million). Find the Nash’s
solution to the bargaining problem.

6. Let R = {(u, v) : v ≥ 0 and u2 + v ≤ 4} ⊂ R2. Find the arbitration
pair A(R, (µ, ν)) using the following points as the status quo point
(µ, ν).

(a) (0, 0) (b) (0, 1)

7. Let R ⊂ R2 be a closed and bounded convex set, (µ, ν) ∈ R and
(α, β) = A(R, (µ, ν)) be the arbitration pair with α 6= µ. Suppose the
boundary ofR is given, locally at (α, β), by the graph of a differentiable
function f(x) with f(α) = β. Prove that f ′(α) is equal to the negative
of the slope of the line joining (µ, ν) and (α, β).

8. Suppose A is an n× n matrix such that the sum of entries in any row
of A is equal to a constant rn. Let (µ, ν) be the status quo point of
the bimatrix (A,AT ).

(a) Prove that there is a Nash equilibrium of (A,AT ) with (r, r) as
payoff pair.
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(b) Prove that the arbitration payoff pair of the bimatrix (A,AT ) is

(α, β) = (m,m) where m is the maximum entry of
A+ AT

2
. (Here

in finding the arbitration payoff pair of bimatix (A,B), the status
quo point is taken to be (µ, ν) = (v(A), v(BT )) where v is the
value of a matrix.)



5 Cooperative games

In a cooperative game, players can make binding agreements about which
strategies to play. In the last chapter, we studied Nash bargaining solution
for 2-person cooperative games with non-transferable utility. In this chapter,
we study n-person cooperative games with transferable utility. In such
a game, players may share their payoffs according to the agreements made
by the players in advance. However there is no universally accepted rules
to determine how the payoffs should be shared among the players. Different
solution concepts may be used in different situations. In this chapter, we are
going to study two solution concepts namely core and Shapley value.

5.1 Characteristic form and imputations

First we define the strategic form of a cooperative game.

Definition 5.1.1. Let A = {A1, A2, · · · , An} be the set of players. Let Xi,
i = 1, 2, · · · , n, be the set of strategies of player Ai ∈ A.

1. The strategic form of a game is a function

π = (π1, π2, · · · , πn) : X1 ×X2 × · · · ×Xn → Rn

2. A coalition is a subset S ⊂ A of the set of players. For each i =
1, 2, · · · , n, the set {Ai}, consists of one player, is a coalition. The
whole set A of all players is also a coalition which is called the grand
coalition.

3. Let S ⊂ A be a coalition. The counter coalition of S is the comple-
ment Sc = A \ S ⊂ A of S in A.

4. The characteristic function is the function ν : P(A) → R, where
P(A) is the power set of A, defined as follows. For any coalition S ⊂ A,
define ν(S) as the maximin total payoff to the players in S when the
game is considered as a 2-person non-cooperative game between S and
Sc. For a coalition with one single player S = {Ai}, Ai ∈ A, we will
use an abuse of notation and write ν(Ai) for ν({Ai}).

Example 5.1.2 (3-person constant sum game). Let A = {A1, A2, A3} be the
player set and Xi = {0, 1}, for i = 1, 2, 3, be the strategy set for Ai. Suppose
the payoffs to the players are given by the following table.
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Strategy Payoff vector
(0, 0, 0) (−2, 1, 2)
(0, 0, 1) (1, 1,−1)
(0, 1, 0) (0,−1, 2)
(0, 1, 1) (−1, 2, 0)
(1, 0, 0) (1,−1, 1)
(1, 0, 1) (0, 0, 1)
(1, 1, 0) (1, 0, 0)
(1, 1, 1) (1, 2,−2)

For coalition S = {A1, A2}, we compute ν(S) and ν(Sc) as follows. First
the game bimatrix for the 2-person game between S and Sc is

Strategy of A3

0 1

Strategy of {A1, A2}

(0, 0) (−1, 2) (2,−1)
(0, 1) (−1, 2) (1, 0)
(1, 0) (0, 1) (0, 1)
(1, 1) (1, 0) (3,−2)

The game has a saddle point with payoff pair (1, 0). Thus ν({A1, A2}) = 1
and ν({A3}) = 0. For S = {A1, A3}, the game bimatrix is

Strategy of A2

0 1

Strategy of {A1, A3}

(0, 0) (0, 1) (2,−1)
(0, 1) (0, 1) (−1, 2)
(1, 0) (2,−1) (1, 0)
(1, 1) (1, 0) (−1, 2)

Now the payoff matrix for the coalition S = {A1, A3} is
0 2
0 −1
2 1
1 −1


Observe that the sum of the payoffs to S and Sc is always equal to 1. The
non-cooperative game between S and Sc can be considered as a zero sum
game. The value of ν({A2, A3}) is equal to the value of the above game
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matrix which is equal to 4
3
. Moreover, ν({A1}) = −1

3
since the sum of the

payoffs to S and Sc is always equal to 1. The values of ν(S) for varies
coalitions S are given in the following table.

S ν(S)
∅ 0
{A1} 1

4

{A2} −1
3

{A3} 0
{A1, A2} 1
{A2, A3} 3

4

{A1, A3} 4
3

{A1, A2, A3} 1

�
Suppose S and T are two disjoint coalitions. The two coalitions can com-

bine and form a larger coalition S ∪ T which is called the union coalition.
We always have ν(S ∪ T ) ≥ ν(S) + ν(T ). This property is called superaddi-
tivity.

Theorem 5.1.3 (Superadditivity). Let ν be the characteristic function of
a game in strategic form. Then ν is superadditive. That is to say, if
S, T ⊂ A are two coalitions with S ∩ T = ∅, then

ν(S ∪ T ) ≥ ν(S) + ν(T )

In particular

ν(A) ≥
n∑
i=1

ν(Ai)

Proof. Let S and T be two coalitions with S ∩ T = ∅. Let p and q be the
maximin strategies for the coalitions S and T respectively. By combining
p and q which is a strategy of S ∪ T , the coalition S ∪ T may guarantee a
payoff of at least ν(S) + ν(T ). Therefore we have ν(S ∪ T ) ≥ ν(S) + ν(T ).
The second statement is a direct consequence of the first.

Definition 5.1.4 (Characteristic form). The characteristic form of a
game is an ordered pair (A, ν) where A is the set of player and ν : P(A)→ R,
where P(A) is the power set of A, is a function, such that
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1. ν(∅) = 0

2. (Superadditivity) If S, T ⊂ A are subset of A with S ∩ T = ∅, then

ν(S ∪ T ) ≥ ν(S) + ν(T )

The function ν is called the characteristic function of the game.

The players have a tendency to cooperate only when the game is essential.

Definition 5.1.5. We say that a game (A, ν) in characteristic form is es-
sential if

ν(A) >
n∑
i=1

ν(Ai)

Otherwise, it is said to be inessential.

If a game is essential, then the total payoff to all players when they
cooperate is larger than the sum of the payoffs to the players when they play
the game individually. This gives an incentive for the players to cooperate.
If a game is inessential, then no player can gain more by cooperation.

Theorem 5.1.6. If (A, ν) is inessential, then for any coalition S ⊂ A, we
have

ν(S) =
∑
Ai∈S

ν(Ai)

Proof. For any coalition S ⊂ A, by superadditivity, we have

ν(S) ≥
∑
Ai∈S

ν(Ai) and ν(Sc) ≥
∑
Aj∈Sc

ν(Aj)

Now if (A, ν) is inessential, then

ν(A) ≤
n∑
i=1

ν(Ai)

which implies, by superadditivity again,

ν(A) =
n∑
i=1

ν(Ai)
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Hence

ν(A) =
n∑
i=1

ν(Ai)

=
∑
Ai∈S

ν(Ai) +
∑
Aj∈Sc

ν(Aj)

≤ ν(S) + ν(Sc)

≤ ν(A)

Thus all inequalities above become equality and therefore

ν(S) =
∑
Ai∈S

ν(Ai)

In a cooperative game with transferable utility, the players may benefit
by forming the grand coalition A. The total amount received by the players
is ν(A). The problem is to agree on how this amount should be split among
the players. The first criterion is that each player should receive no less than
the amount before cooperation. We call a splitting of total payoffs to the
players an imputation if it satisfies this criterion.

Definition 5.1.7 (Imputation). Let ν : P(A)→ R be a characteristic func-
tion. A vector (x1, x2, · · · , xn) ∈ Rn is called an imputation for ν if

1. (Individual rationality) For any i = 1, 2, · · · , n, we have xi ≥ ν(Ai).

2. (Efficiency4)
n∑
i=1

xi = ν(A)

The set of imputations for ν is denoted by I(ν).

In an inessential game, no player may receive more by cooperation and
there is only one imputation for the game. For essential games, there are
infinitely many ways to split the payoffs which satisfy individual rationality.

Theorem 5.1.8. Let ν be a characteristic function and I(ν) be the set of
imputations.

4It is also called collective rationality.
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1. If ν is inessential, then I(ν) = {(ν(A1), ν(A2), · · · , ν(An))}.

2. If ν is essential, then I(ν) is an infinite set.

Proof. 1. If ν is inessential, then for any imputation (x1, x2, · · · , xn) ∈
I(ν), we have

ν(A) =
n∑
i=1

xi ≥
n∑
i=1

ν(Ai) = ν(A)

Thus xi = ν(Ai) for i = 1, 2, · · · , n and I(ν) = {(ν(A1), ν(A2), · · · , ν(An))}.

2. Suppose ν is essential. Let

β = ν(A)−
n∑
i=1

ν(Ai) > 0

Then there are infinitely many solutions to the equation
n∑
i=1

αi = β

for variables α1, α2, · · · , αn > 0 and each of the solutions gives an
imputation by putting xi = ν(Ai) + αi for i = 1, 2, · · · , n.

5.2 Core

The core of a cooperative game is the set of imputations that are not domi-
nated by other imputations through any coalition.

Definition 5.2.1. Let x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ I(ν) be
two imputations. We say that x is dominated by y through a coalition S ⊂ A
and write x ≺S y if

1. If Ai ∈ S, then xi < yi.

2.
∑
Ai∈S

yi ≤ ν(S)

We write x 6≺S y if x is not dominated by y through S.

Example 5.2.2. Consider the 3-person constant sum game (Example 5.1.2)
with characteristic function
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S ν(S)
∅ 0
{A1} 1

4

{A2} −1
3

{A3} 0
{A1, A2} 1
{A2, A3} 3

4

{A1, A3} 4
3

{A1, A2, A3} 1

We have (
1

3
,
1

3
,
1

3

)
≺{A1,A2}

(
1

2
,
1

2
, 0

)
(1, 0, 0) ≺{A2,A3}

(
1

3
,
1

3
,
1

3

)
(

1

3
,
1

3
,
1

3

)
≺{A2,A3}

(
1

4
,
3

8
,
3

8

)
�

For imputation x ∈ I(ν), if there exists imputation y ∈ I(ν) and coalition
S ⊂ A such that x 6≺S y, then there will be a tendency for coalition S to
form and upset the proposal x because such a coalition could guarantee each
of its members more than they could receive from x. Thus it reasonable to
require the splitting of payoff to the players to be an imputation which is not
dominated by any other imputation through any coalition.

Definition 5.2.3 (Core). The core C(ν) of a characteristic function is the
set of all imputations that are not dominated by any other imputation through
any coalition, that is

C(ν) = {x ∈ I(ν) : x 6≺S y for any y ∈ I(ν) and S ⊂ A}

There is an easy way to check whether an imputation lies in the core.

Theorem 5.2.4. Let x = (x1, x2, · · · , xn) ∈ I(ν) be an imputation. Then
x ∈ C(ν) if and only if ∑

Ai∈S

xi ≥ ν(S)

for any coalition S ⊂ A.
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Proof. Suppose x = (x1, x2, · · · , xn) ∈ I(ν) does not lie in the core C(ν).
Then there exists imputation y ∈ I(ν) and coalition S ⊂ A such that xi < yi
for any Ai ∈ S and

∑
Ai∈S yi ≤ ν(S). Thus we have∑

Ai∈S

xi <
∑
Ai∈S

yi ≤ ν(S)

On the other hand, suppose x = (x1, x2, · · · , xn) ∈ I(ν) is an imputation
such that ∑

Ai∈S

xi < ν(S)

for some coalition S. Then S 6= A and since∑
Ai∈S

xi +
∑
Aj∈Sc

xj =
n∑
i=1

xi = ν(A) ≥ ν(S) + ν(Sc) >
∑
Ai∈S

xi +
∑
Aj∈Sc

ν(Aj)

by superadditivity, there exists Ak ∈ Sc such that xk > ν(Ak). Define

yi =


xi + α

|S| for Ai ∈ S
xk − α for i = k

xi for Ai ∈ Sc and i 6= k

where

α = min

{
xk − ν(Ak), ν(S)−

∑
Ai∈S

xi

}
> 0

By taking y = (y1, y2, · · · , yn), we have x ≺S y. Therefore x does not lie in
the core C(ν) and the proof of the theorem is complete.

Theorem 5.2.5. The core C(ν) is a convex set if it is not empty.

Proof. Let x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) ∈ C(ν) be two imputa-
tions in the core. Then for any coalition S, we have∑

Ai∈S

xi,
∑
Ai∈S

yi ≥ ν(S)

by Theorem 5.2.4. Now for any real number 0 ≤ λ ≤ 1, we have∑
Ai∈S

(λxi + (1− λ)yi) ≥ ν(S)

which implies λx + (1− λ)y ∈ C(ν). Therefore C(ν) is convex.
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Example 5.2.6 (3-person constant sum game). Let ν be the characteristic
function of the 3-person constant sum game (Example 5.2.2). Find the core
C(ν) of ν.

Solution. For any imputation x = (x1, x2, x3) ∈ I(ν), we have x ∈ C(ν) if
and only if 

x1 ≥
1

4
, x2 ≥ −

1

3
, x3 ≥ 0

x1 + x2 ≥ 1, x2 + x3 ≥
3

4
, x1 + x3 ≥

4

3
x1 + x2 + x3 = ν(A) = 1

First of all, we have

x3 = (x1 + x2 + x3)− (x1 + x2) ≤ 1− 1 = 0

which implies x3 = 0. Then

x1 + x2 = (x1 + x3) + (x2 + x3) ≥
4

3
+

3

4
> 1

which leads to a contradiction. Therefore C(ν) = ∅. �

Example 5.2.7. Suppose ν(A1) = ν(A2) = ν(A3) = 0 and

S ν(S)
{A1, A2} 1

3

{A1, A3} 1
2

{A2, A3} 1
4

{A1, A2, A3} 1

Find the core C(ν) of ν.

Solution. Let x = (x1, x2, x3) ∈ I(ν) be an imputation. Then x ∈ C(ν) if
and only if 

x1, x2, x3 ≥ 0

x1 + x2 ≥
1

3
, x1 + x3 ≥

1

2
, x2 + x3 ≥

1

4
x1 + x2 + x3 = ν(A) = 1

Now
0 ≤ x1 = 1− x2 − x3 ≤ 1− 1

4
= 3

4

0 ≤ x2 = 1− x1 − x3 ≤ 1− 1
2

= 1
2

0 ≤ x3 = 1− x1 − x2 ≤ 1− 1
3

= 2
3
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The above system of inequalities is equivalent to
0 ≤ x1 ≤ 3

4

0 ≤ x2 ≤ 1
2

0 ≤ x3 ≤ 2
3

x1 + x2 + x3 = ν(A) = 1

We may consider x1 and x2 as independent variables and x3 = 1 − x1 − x2
depends on x1, x2. Then x1 and x2 satisfy the constraints

0 ≤ x1 ≤ 3
4

0 ≤ x2 ≤ 1
2

1

3
≤ x1 + x2 ≤ 1

We may represent the core on the x1 − x2 plane

�
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Example 5.2.8 (Used car game). A man named Andy has an old car he
wishes to sell. He no longer drives it, and it is worth nothing to him unless
he can sell it. Two people are interested in buying it, Ben and Carl. Bill
values the car at $500 and Carl thinks it is worth $700. The game consists of
each of the prospective buyers bidding on the car, and Andy either accepting
one of the bids (presumably the higher one), or rejecting both of them. Find
the core of the game and represent it on the x1 − x2 plane.

Solution. If there is no deal, no player gets anything and we have ν(A1) =
ν(A2) = ν(A3) = 0. The characteristic values of other coalitions are listed
below.

S ν(S)
{A1, A2} 500
{A1, A3} 700
{A2, A3} 0
{A1, A2, A3} 700

Let x = (x1, x2, x3) ∈ I(ν) be an imputation. Then x ∈ C(ν) if and only if
x1, x2, x3 ≥ 0

x1 + x2 ≥ 500, x1 + x3 ≥ 700, x2 + x3 ≥ 0

x1 + x2 + x3 = 700

Observe that

0 ≤ x2 = (x1 + x2 + x3)− (x1 + x3) ≤ 700− 700 = 0
0 ≤ x3 = (x1 + x2 + x3)− (x1 + x2) ≤ 700− 500 = 200
x1 = x1 + x2 ≥ 500
x1 ≤ x1 + x2 + x3 ≤ 700

The above system of inequalities is equivalent to
500 ≤ x1 ≤ 700

x2 = 0

x3 = 700− x1

The core of the used car game is shown in the following figure.
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�

Example 5.2.9 (Mayor and council). In a city, there is a Mayor and a city
council with 7 members. A bill can be passed to a law if either

1. the majority of the council members passes it and the Mayor signs it,
or

2. the Mayor vetoes it but at least 6 council members vote to override the
veto.

Find the core of the game.

Solution. Let A = {M, 1, 2, 3, 4, 5, 6, 7} be the set of players. Then

• ν(S) = 1 if

1. S contains the mayor and at least 4 council members, or

2. S contains at least 6 council members.

• ν(S) = 0 otherwise.
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Then x = (xM , x1, · · · , x7) ∈ I(ν) if and only if{
xM , x1, x2, · · · , x7 ≥ 0

xM + x1 + x2 + · · ·+ x7 = 1

Suppose x ∈ C(ν). Then for any k = 1, 2, · · · , 7,∑
i 6=k

xi ≥ 1

which implies x1 + x2 + · · ·+ x7 ≥ 1 and

xM = xM + x1 + x2 · · ·+ x7 − (x1 + x2 + · · ·+ x7) ≤ 1− 1 = 0

Moreover for any k = 1, 2, · · · , 7,

xk = (x1 + x2 + · · ·+ x7)−
∑
i 6=k

xi ≤ 1− 1 = 0

which contradicts xM + x1 + x2 + · · ·+ x7 = 1. Therefore C(ν) = ∅. �

Definition 5.2.10. A characteristic function ν is constant sum if

ν(S) + ν(Sc) = ν(A)

for any coalition S ⊂ A.

Theorem 5.2.11. If ν is both essential and constant sum, then C(ν) = ∅.

Proof. Suppose ν is constant sum and its core C(ν) is nonempty. It suffices
to show that ν is inessential. To this end, let x = (x1, x2, · · · , xn) ∈ C(ν) be
an imputation lying in the core. Then for any k = 1, 2, · · · , n, we have

xk ≥ ν(Ak) and
∑
i 6=k

xi ≥ ν({Ak}c)

Thus by Theorem 5.2.4, we have

ν(A) = ν(Ak) + ν({Ak}c) ≤ xk +
∑
i 6=k

xi = ν(A)

It follows that xk = ν(Ak) and we have

n∑
k=1

ν(Ak) = ν(A)

which means ν is inessential and the proof of the theorem is complete.
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Definition 5.2.12. Two characteristic functions µ and ν are strategically
equivalent if there exists real numbers k > 0 and c1, c2, · · · , cn such that for
any coalition S ⊂ A,

µ(S) = kν(S) +
∑
Ai∈S

ci

It is obvious that being strategically equivalent is an equivalence relation.
Two games share very similar properties when their characteristic functions
are strategically equivalent.

Theorem 5.2.13. Suppose µ and ν are strategically equivalent characteristic
functions. Let k > 0, c1, c2, · · · , cn be real numbers such that

µ(S) = kν(S) +
∑
Ai∈S

ci

Write c = (c1, c2, · · · , cn). We have

1. µ is essential if and only if ν is essential.

2. I(µ) = {y : y = kx + c for some x ∈ I(ν)}

3. C(µ) = {y : y = kx + c for some x ∈ C(ν)}

Definition 5.2.14 ((0, 1) reduced form). We say that a characteristic func-
tion µ is a (0, 1) reduced form if

1. µ(Ai) = 0 for any i = 1, 2, · · · , n

2. µ(A) = 1

Every inessential game is strategically equivalent to a trivial game. Every
essential game is strategically equivalent to a unique (0, 1) reduced form.

Theorem 5.2.15. Let ν be a characteristic function.

1. If ν is inessential, then ν is strategically equivalent to the zero game,
that is, a game with characteristic function identically equal to zero.

2. If ν is essential, then ν is strategically equivalent to a unique game in
(0, 1) reduced form.

Proof. Let ν be a characteristic function.
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1. Suppose ν is inessential. By Theorem 5.1.6, for any coalition S ⊂ A,

ν(S) =
∑
Ai∈S

ν(Ai)

Taking k = 1 and ci = −ν(Ai) for i = 1, 2, · · · , n, we have ν is strate-
gically equivalent to the characteristic function

µ(S) = ν(S)−
∑
Ai∈S

ν(Ai)

and µ(S) = 0 for any coalition S which means µ is the trivial game.

2. Suppose ν is essential. Taking

k =
1

ν(A)−
n∑
j=1

ν(Aj)
and ci =

−ν(Ai)

ν(A)−
n∑
j=1

ν(Aj)
for i = 1, 2, · · · , n

ν is strategically equivalent to the characteristic function

µ(S) =

ν(S)−
∑
Ai∈S

ν(Ai)

ν(A)−
n∑
j=1

ν(Aj)

for S ⊂ A. Now µ(A) = 1 and µ(Ai) = 0 for any i = 1, 2, · · · , n.
Therefore ν is strategically equivalent to the (0, 1) reduced form µ.
Suppose µ′ is another (0, 1) reduced form strategically equivalent to ν.
Then µ′ is strategically equivalent to µ. Thus there exists constants
k > 0 and c1, c2, · · · , cn such that

µ′(S) = kµ(S) +
∑
Ai∈S

ci

for any coalition S. Taking S = {Ai}, i = 1, 2, · · · , n, we have c1 = c2 =
· · · = cn = 0 since µ′({Ai}) = µ({Ai}) = 0. Moreover taking S = A,
we have µ′(A) = kµ(A) which implies k = 1 since µ′(A) = µ(A) = 1.
Therefore µ′ = µ and the (0, 1) reduced form of ν is unique.
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Suppose ν is the characteristic function of a 3-person game and µ is the
(0, 1) reduced form of ν. Then an imputation (y1, y2, y3) ∈ I(µ) of µ lies in
the core of µ if and only if

0 ≤ y1 ≤ 1− µ({A2, A3})
0 ≤ y2 ≤ 1− µ({A1, A3})
0 ≤ y3 ≤ 1− µ({A1, A2})
y1 + y2 + y3 = 1

and on the x1 − x2 plane, it can be represented by the region
0 ≤ y1 ≤ 1− µ({A2, A3})
0 ≤ y2 ≤ 1− µ({A1, A3})
µ({A1, A2}) ≤ y1 + y2 ≤ 1

Example 5.2.16 (3-person constant sum game). Let ν be the characteristic
function of the 3-person constant sum game (Example 5.1.2 and Example
5.2.2). Let µ be the (0, 1) reduced form of ν. Find µ and its core C(µ).
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Solution. First we have

µ(A1) = µ(A2) = µ(A3) = 0

and
µ(A) = 1

Next we calculate

k =
1

ν(A)− (ν(A1) + ν(A2) + ν(A3))
=

1

1− (1
4

+ (−1
3
) + 0)

=
12

13

and we have

µ({A1, A2}) = k(ν({A1, A2})− (ν(A1) + ν(A2)))

=
12

13

(
1−

(
1

4
− 1

3

))
= 1

µ({A1, A3}) = k(ν({A1, A3})− (ν(A1) + ν(A3)))

=
12

13

(
4

3
−
(

1

4
+ 0

))
= 1

µ({A2, A3}) = k(ν({A2, A3})− (ν(A2) + ν(A3)))

=
12

13

(
3

4
−
(
−1

3
+ 0

))
= 1

Now an imputation (y1, y2, y3) ∈ I(µ) lies in the core C(µ) of µ if and only if
0 ≤ y1 ≤ 1− µ({A2, A3}) = 0

0 ≤ y2 ≤ 1− µ({A1, A3}) = 0

0 ≤ y3 ≤ 1− µ({A1, A2}) = 0

y1 + y2 + y3 = 1

which has no solution. Thus C(µ) = ∅. (Note that C(ν) is also empty.) �

Example 5.2.17 (Used car game). Let ν be the characteristic function of
the used car game (Example 5.2.8). Let µ be the (0, 1) reduced form of ν.
Find µ and the core C(ν) of ν.
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Solution. First we have

µ(A1) = µ(A2) = µ(A3) = 0 and µ(A) = 1

Now

k =
1

ν(A)− (ν(A1) + ν(A2) + ν(A3))
=

1

700

and we have

µ({A1, A2}) = k(ν({A1, A2})− (ν(A1) + ν(A2)))

=
500− 0

700

=
5

7
µ({A1, A3}) = k(ν({A1, A3})− (ν(A1) + ν(A3)))

=
700− 0

700
= 1

µ({A2, A3}) = k(ν({A2, A3})− (ν(A2) + ν(A3)))

=
0− 0

700
= 0

Now an imputation (y1, y2, y3) ∈ I(µ) lies in the core C(µ) of µ if and only if
0 ≤ y1 ≤ 1− µ({A2, A3}) = 1− 0 = 1

0 ≤ y2 ≤ 1− µ({A1, A3}) = 1− 1 = 0

0 ≤ y3 ≤ 1− µ({A1, A2}) = 1− 5

7
=

2

7
y1 + y2 + y3 = 1

which is equivalent to 
5

7
≤ y1 ≤ 1

y2 = 0

y3 = 1− y1
�
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5.3 Shapley value

In the last section, we studied cores of characteristic functions. The core has
a disadvantage that it may be empty and usually contains an infinite number
of elements when it is nonempty. In this section, we study another solution
concept called Shapley value which always exists and is unique.

Definition 5.3.1 (Shapley value). Let ν be a characteristic function. The
Shapley value of the player Ak, k = 1, 2, · · · , n, is defined as

φk =
∑

S∈P(A)\{∅}

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ak}))

The vector φ = (φ1, φ2, · · · , φn) is called the Shapley vector of ν.

The Shapley value of a player can be interpreted in the following way.
Suppose we form the grand coalition A by entering the players one after
another. As player Ak enters the coalition, he receives the amount by which
his entry inceases the value of the coalition he enters. This amount is equal
to δk(S) = ν(S)− ν(S \ {Ak}) where S is the coalition after Ak has entered.
The amount a player receives depends on the order in which the players are
entered. The Shapley value φk is the average amount that Ak receives over
all orders of entering of players in forming the grand coalition.

Let S be a coalition which contains player Ak. There are (|S|−1)! number
of ways for other players in S to enter the coalition before Ak. Then player
Ak enters the coalition to form the coalition S and there are (n−|S|)! number
of ways for the remaining players to enter to form the grand coalition. Thus
among all n! permutations of players in forming the grand coalition, there are
(n− |S|)!(|S| − 1)! of which the coalition S would form at the moment that
player Ak enters into the coalition and Ak would receive ν(S)− ν(S \ {Ak}).
Therefore the average amount that Ak receives is given by the formula in
Definition 5.3.1. This also shows the following alternative formula for the
Shapley values.

Theorem 5.3.2. The Shapley value of the player Ak is given by

φk =
1

n!

∑
σ∈Sn

(ν(Sσk )− ν(Sσk \ {Ak}))

where Sn is the set of all permutations of 1, 2, · · · , n, and Sσk = {Aσ(1), Aσ(2),
· · · , Aσ(i)} where i is determined by σ(i) = k. In other words, Sσk is the set
of players in A which precede Ak in permutation σ, including Ak.
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Remarks:

1. The quantity δk(S) = ν(S) − ν(S \ {Ak}) is the amount the player
Ak contributes to the coalition S. In particular δk(S) = 0 if Ak 6∈ S.
Therefore to find φk, we only need to sum over S with Ak ∈ S.

2. The formula for φk can also be written as

φk =
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ak})− ν(S))

3. Suppose n = 3 and ν(Ak) = 0 for k = 1, 2, 3. To find the Shapley
value φ1 of A1, we need to calculate, for each permutation of players,
the value of δ1(S) where S is the coalition right after the joining of A1.
The values of δ1(S) for the permutations of players are shown in the
following table.

Permutation S S \ {A1} δ1(S)
123 {A1} ∅ 0
132 {A1} ∅ 0
213 {A1, A2} {A2} ν({A1, A2})
231 {A1, A2, A3} {A2, A3} ν({A1, A2, A3})− ν({A2, A3})
312 {A1, A3} {A3} ν({A1, A3})
321 {A1, A2, A3} {A2, A3} ν({A1, A2, A3})− ν({A2, A3})

The Shapley value φ1 of A1 is the average value in the last column.
Thus we have

φ1 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A1, A3})− 2ν({A2, A3})

6

We have similar formula for φ2 and φ3.

Now we prove that the Shapley vector is always an imputation.

Theorem 5.3.3. Let ν be a characteristic function and φ = (φ1, φ2, · · · , φn)
be the Shapley vector of ν. Then φ ∈ I(ν). In other words, we always have

1. φi ≥ ν(Ai) for any i = 1, 2, · · · , n

2.
n∑
i=1

φi = ν(A)
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Proof. 1. For any Ai and any coalition S ⊂ A with Ai ∈ S, we have

ν(Ai) + ν(S \ {Ai}) ≤ ν(S)

by supperadditivity. Therefore

φi =
∑
S ⊂ A
Ai ∈ S

(|S| − 1)!(n− |S|)!
n!

(ν(S)− ν(S \ {Ai}))

≥
∑
S ⊂ A
Ai ∈ S

(|S| − 1)!(n− |S|)!
n!

ν(Ai)

= ν(Ai)

2.
n∑
i=1

φi =
n∑
i=1

∑
S ⊂ A
Ai ∈ S

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ai}))

=
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
(ν(S)− ν(S \ {Ai}))

=
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
S⊂A

∑
Ai∈S

(n− |S|)!(|S| − 1)!

n!
ν(S \ {Ai})

=
∑
S⊂A
|S|(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
T⊂A

∑
Aj 6∈T

(n− |T | − 1)!|T |!
n!

ν(T )

=
∑
S⊂A
|S|(n− |S|)!(|S| − 1)!

n!
ν(S)

−
∑
T⊂A

(n− |T |)(n− |T | − 1)!|T |!
n!

ν(T )

=
∑
S⊂A

(n− |S|)!|S|!
n!

ν(S)

−
∑

T ⊂ A
T 6= A

(n− |T |)!|T |!
n!

ν(T )

= ν(A)
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Example 5.3.4 (3-person constant sum game). Let ν be the characteris-
tic function of the 3-person constant sum game (Example 5.2.2). Find the
Shapley value of each player.

Solution. To find the Shapley value φ1 of A1, observe that the coalitions
containing A1 are {A1}, {A1, A2}, {A1, A3} and {A1, A2, A3}. Thus

φ1

=
(3− 1)!(1− 1)!

3!
(ν(A1)− ν(∅)) +

(3− 2)!(2− 1)!

3!
(ν({A1, A2})− ν(A2))

+
(3− 2)!(2− 1)!

3!
(ν({A1, A3})− ν(A3))

+
(3− 3)!(3− 1)!

3!
(ν({A1, A2, A3})− ν({A2, A3}))

=
2

6

(
1

4

)
+

1

6

(
1−

(
−1

3

))
+

1

6

(
4

3
− 0

)
+

2

6

(
1− 3

4

)
=

11

18

Similarly, we have

φ2 =
1

36
and φ3 =

13

36
�

Example 5.3.5 (Used car game). Let ν be the characteristic function of the
used car game (Example 5.2.8). Find the Shapley values of the players.

Solution. Since ν(A1) = ν(A2) = ν(A3) = 0, we may use the formula

φ1 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A1, A3})− 2ν({A2, A3})

6

=
2(700) + 500 + 700− 2(0)

6

=
1300

3

φ2 =
2ν({A1, A2, A3}) + ν({A1, A2}) + ν({A2, A3})− 2ν({A1, A3})

6

=
2(700) + 500 + 0− 2(700)

6

=
250

3



Cooperative games 130

φ3 =
2ν({A1, A2, A3}) + ν({A1, A3}) + ν({A2, A3})− 2ν({A1, A2})

6

=
2(700) + 700 + 0− 2(500)

6

=
550

3

Hence the Shapley vector is φ = (1300
3
, 250

3
, 550

3
). �

Example 5.3.6 (Mayor and council). Let ν be the characteristic function of
the Mayor and council game (Example 5.2.9). Find the Shapley values of the
players.

Solution. Recall that

1. ν(S) = 1 if M ∈ S and |S \ {M}| ≥ 4, or |S| ≥ 6.

2. ν(S) = 0 otherwise.

Thus we have

φM =

(
7

4

)
(8− 5)!(5− 1)!

8!
(1) +

(
7

5

)
(8− 6)!(6− 1)!

8!
(1) =

1

4

By symmetry, for each i = 1, 2, · · · , 7, we have

φi =
1

7

(
1− 1

4

)
=

3

28

�

Example 5.3.7 (Voting game). In a council there are 100 members. The
red, blue, green, white parties has 40, 30, 25, 5 members in the council. For
a resolution to pass, it is necessary to have more than 50 affirmative votes.
The set of players is A = {R,B,G,W}. For any coalition S ⊂ A, define

1. ν(S) = 1 if the total votes of S is larger than 50.

2. ν(S) = 0 otherwise.

Find the Shapley values of the players.
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Solution. We have ν(R) = ν(B) = ν(G) = ν(W ) = 0 and
ν({R,B} = ν({R,G} = ν({B,G} = 1

ν({R,W} = ν({B,W} = ν({G,W} = 0

ν(S) = 1 for any S with |S| ≥ 3

Thus

φR = 2

(
(4− 1)!(2− 1)!

4!

)
(1− 0) + 2

(
(4− 3)!(3− 1)!

4!

)
(1− 0)

=
1

3

Similarly, we have

φB = φG =
1

3
φW = 1− (φR + φB + φG) = 0

�
The Shapley value can be defined using the axiomatic approach as follows.

The Shapley vector is the unique allocation of payoffs which satisfies the 4
properties listed in the following theorem. The efficiency property requires
that φ allocates the total worth of the grand coalition ν(A). The symmetry
property asks φ to allocate same payoff to players with identical contributions
to coalitions. The null player properties says that players who contribute
nothing to every coalition should receive nothing. The linearity properties
looks very natural mathematically but there is no good reason to impose
such condition in the sense of fairness.

Theorem 5.3.8 (Axioms for Shapley values). The Shapley vector φ(ν) =
(φ1, · · · , φn) is the unique payoff allocation which satisfies the following ax-
ioms for Shapley values.

1. (Efficiency)
n∑
i=1

φi = ν(A)

2. (Symmetry) If Ai, Aj ∈ A satisfy ν(S ∪ {Ai}) = ν(S ∪ {Aj}) for any
coalition S not containing Ai and Aj, then φi = φj.

3. (Null player) If ν(S ∪ {Ai}) = ν(S) for any coalition S, then φi = 0.
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4. (Linearity) Let µ and ν be two characteristic functions and a, b be two
real numbers. Then

φ(aµ+ bν) = aφ(µ) + bφ(ν)

Proof. First we prove that φ(ν) satisfies the 4 axioms for Shapley values.

1. It has been proved in Theorem 5.3.3.

2. Suppose ν(S ∪ {Ai}) = ν(S ∪ {Aj}) for any coalition S not containing
Ai and Aj. For any coalition S ⊂ A, denote by S ′ the coalition obtained
by replacing Ai by Aj if Ai ∈ S and replacing Aj by Ai if Aj ∈ S. Note
that |S ′| = |S|. We are going to prove that for any coalition S, we have

ν(S ∪ {Ai}) = ν(S ′ ∪ {Aj})

First if Aj ∈ S, then S ∪ {Ai} = S ′ ∪ {Aj} and thus ν(S ∪ {Ai}) =
ν(S ′ ∪ {Aj}). On the other hand, if Aj 6∈ S, then S \ {Ai} = S ′ \ {Aj}
and we also have

ν(S ∪ {Ai}) = ν((S \ {Ai}) ∪ {Ai})
= ν((S ′ \ {Aj}) ∪ {Ai})
= ν((S ′ \ {Aj}) ∪ {Aj})
= ν(S ′ ∪ {Aj})

Thus we proved that ν(S ∪ {Ai}) = ν(S ′ ∪ {Aj}) for any coalition S.
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Therefore

φi

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ai})− ν(S))

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S ∪ {Ai})−
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S)

=
∑

S∈P(A)\{A}

(n− |S ′| − 1)!|S ′|!
n!

ν(S ′ ∪ {Aj})−
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

ν(S)

=
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

ν(T ∪ {Aj})−
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

ν(T )

=
∑

T∈P(A)\{A}

(n− |T | − 1)!|T |!
n!

(ν(T ∪ {Aj})− ν(T ))

= φj

3. Suppose ν(S ∪ {Ai}) = ν(S) for any coalition S. Then

φi =
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(ν(S ∪ {Ai})− ν(S))

= 0

4. Let µ and ν be two characteristic functions and a, b be two real numbers.
Then

φi(aµ+ bν)

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

((aµ+ bν)(S ∪ {Ai})− (aµ+ bν)(S))

=
∑

S∈P(A)\{A}

(n− |S| − 1)!|S|!
n!

(a(µ(S ∪ {Ai})− µ(S)) + b(ν(S ∪ {Ai})− ν(S)))

= aφi(µ) + bφi(ν)

Next we prove the uniqueness. Suppose φ satisfies the four axioms for Shapley
values. For each non-empty coalition S ⊂ A, S 6= ∅, define a characteristic



Cooperative games 134

function νS by

νS(T ) =

{
1 if S ⊂ T

0 otherwise

Observe that if Ai 6∈ S, then νS(T ∪ {Ai}) = νS(T ) for any T ⊂ A. Thus Ai
is a null player of νS and we have

φi(νS) = 0 if Ai 6∈ S

by the axiom for null player. By symmetry, we have φi(νS) = φj(νS) when-
ever Ai, Aj ∈ S which implies, by efficiency, that

φi(νS) =
1

|S|
if Ai ∈ S

In conclusion we have

φi(νS) =


1

|S|
if Ai ∈ S

0 if Ai 6∈ S

To prove uniqueness, it suffices to prove that any characteristic function ν
can be written uniquely as

ν =
∑

S∈P(A)\{∅}

cSνS

for some constants cS, S ∈ P(A) \ {∅}. Then

φ(ν) =
∑

S∈P(A)\{∅}

cSφ(νS)

is uniquely determined. We are going to determined cS by induction on |S|.
Suppose |S| = 1, that is S = {Ai} for some i = 1, 2, · · · , n. Now for any
coalition T ⊂ A, if T = {Ai}, then T ⊂ S and νT (S) = νT (Ai) = 1. On the
other hand, if T 6= {Ai}, then νT (S) = 0. Thus for S = {Ai}, we have

νT (S) = νT (Ai) =

{
1 if T = {Ai}
0 if T 6= {Ai}
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Hence we must have

ν(Ai) =
∑

T∈P(A)\{∅}

cTνT (Ai) = c{Ai}

and thus
c{Ai} = ν(Ai)

for i = 1, 2, · · · , n. Suppose cS is determined for each ∅ 6= S ⊂ A with
0 < |S| < k. Now fix S ⊂ A with |S| = k. Recall that for any coalition
T ⊂ A, we have νT (S) = 1 if T ⊂ S and νT (S) = 0 if T is not a subset of S.
Thus we have

ν(S) =
∑

T∈P(A)\{∅}

cTνT (S) =
∑
∅6=T⊂S

cT = cS +
∑
∅6=T(S

cT

and hence
cS = ν(S)−

∑
∅6=T(S

cT

is determined because all cT had been determined for any ∅ 6= T ( S. Hence
we proved that any characteristic function ν can be written uniquely as

ν =
∑

S∈P(A)\{∅}

cSνS

and the proof of the theorem is complete.

In Section 5.2, we introduced the core of a cooperative game. One may
ask whether the Shapley vector always lies in the core whenever the core is
not empty. The answer is negative. We need an extra condition for it to be
true.

Definition 5.3.9 (Convex game). We say that a characteristic function ν
is convex if for any S, T ⊂ A, we have

ν(S ∪ T ) ≥ ν(S) + ν(T )− ν(S ∩ T )

Suppose S and T are two coalitions with T ⊂ S. The contribution of
S \ T to the coalition S is ν(S)− ν(T ). In a convex game, this contribution
of S \ T cannot be larger if the coalition T gets smaller. More precisely, we
have
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Theorem 5.3.10. Suppose ν is a convex game. For any coalitions R, S, T
with R ⊂ T ⊂ S, we have

ν(S)− ν(T ) ≥ ν(S \R)− ν(T \R)

Proof. Consider S = (S \R) ∪ T . By convexity of ν, we have

ν(S) = ν((S \R) ∪ T )

≥ ν(S \R) + ν(T )− ν((S \R) ∩ T )

= ν(S \R) + ν(T )− ν(T \R)

Now we can prove

Theorem 5.3.11. The Shapley vector of a convex game always lies in the
core. In particular, the core of a convex game is not empty.

Proof. Let ν be a convex game with player set A = {1, 2, · · · , n} and φ
be the Shapley vector of ν. For any permutation σ ∈ Sn, define φσ =
(φσ1 , φ

σ
2 , · · · , φσn) ∈ Rn with

φσk = ν(Sσk )− ν(Sσk \ {k})

where Sσk = {σ(1), σ(2), · · · , σ(i)} and i is the integer determined by σ(i) =
k. We have seen (Theorem 5.3.2) that

φ =
1

n!

∑
σ∈Sn

φσ

Since the core C(ν) is convex, it suffices to prove that φσ ∈ C(ν) for any
σ ∈ Sn. Without loss of generality, we may assume that σ is the identity,
that is, σ(k) = k for any k =, 1, 2, · · · , n. In this case, for any coalition
S = {s1 < s2 < · · · < sm} ⊂ A and si ∈ S, i = 1, 2, · · · ,m, we have
Sσsi = {1, 2, · · · , si} and

φσsi = ν(Sσsi)− ν(Sσsi \ {si})
= ν({1, 2, · · · , si})− ν({1, 2, · · · , si − 1})
≥ ν({s1, s2, · · · , si})− ν({s1, s2, · · · , si−1})
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where in the last line, we removed those elements not in S in both sets and
the inequality follows from Theorem 5.3.10. Thus∑

si∈S

φσsi =
∑
si∈S

(ν(Sσk )− ν(Sσk \ {k}))

≥
∑
si∈S

(ν({s1, s2, · · · , si})− ν({s1, s2, · · · , si−1}))

= ν({s1, s2, · · · , sm})− ν(∅)
= ν(S)

Hence we have φσ ∈ C(ν) by Theorem 5.2.4. Therefore φ = 1
n!

∑
σ∈Sn

φσ ∈
C(ν) since C(ν) is a convex set.

As a matter of fact, Shapley proved that if ν is convex, then C(ν) is
a convex polyhedron of dimension n − 1 with 2n − 2 faces and n! vertices
located exactly at φσ’s, σ ∈ Sn. Therefore the Shapley vector φ is precisely
the center of mass of the vertices of the core when ν is convex.

Exercise 5

1. Let A = {A1, A2, A3} be the player set and Xi = {0, 1}, for i = 1, 2, 3,
be the strategy set for Ai. Suppose the payoffs to the players are given
by the following table.

Strategy Payoff vector
(0, 0, 0) (−2, 3, 5)
(0, 0, 1) (1,−2, 7)
(0, 1, 0) (1, 5, 0)
(0, 1, 1) (10,−3,−1)
(1, 0, 0) (−1, 0, 7)
(1, 0, 1) (−4, 4, 6)
(1, 1, 0) (12,−4,−2)
(1, 1, 1) (−1, 5, 2)

(a) Find the characteristic function of the game.

(b) Show that the core of the game is empty.
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2. Consider a three-person game with characteristic function

ν({1}) = 27

ν({2}) = 8

ν({3}) = 18

ν({1, 2}) = 36

ν({1, 3}) = 50

ν({2, 3}) = 27

ν({1, 2, 3}) = 60

Find the core of the game and draw the region representing the core
on the x1 − x2 plane.

3. Let ν be the characteristic function defined by ν({1}) = 3, ν({2}) =
4, ν({3}) = 6, ν({1, 2}) = 9, ν({1, 3}) = 12, ν({2, 3}) = 15, ν({1, 2, 3}) =
20.

(a) Let µ be the (0, 1) reduced form of ν. Find µ({1, 2}), µ({1, 3}), µ({2, 3}).
(b) Find the core of ν and draw the region representing the core on

the x1 − x2 plane.

(c) Find the Shapley values of the players.

4. Three towns A,B,C are considering whether to built a joint water dis-
tribution system. The costs of the construction works are listed in the
following table

Coalition Cost(in million dollars)
{A} 11
{B} 7
{C} 8
{A,B} 15
{A,C} 14
{B,C} 13
{A,B,C} 20

For any coalition S ⊂ {A,B,C}, define ν(S) to be the amount saved
if they build the system together. Find the Shapley values of A,B,C
and the amount that each of them should pay if they cooperate.
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5. Players 1, 2, 3 and 4 have 45, 25, 15, and 15 votes respectively. In order
to pass a certain resolution, 51 votes are required. For any coalition S,
define ν(S) = 1 if S can pass a certain resolution. Otherwise ν(S) = 0.
Find the Shapley values of the players.

6. Players 1, 2, 3 and 4 have 40, 30, 20, and 10 shares if stocks respectively.
In order to pass a certain decision, 50 shares are required. For any
coalition S, define ν(S) = 1 if S can pass a certain decision. Otherwise
ν(S) = 0. Find the Shapley values of the players.

7. Consider the following market game. Each of the 5 players starts with
one glove. Two of them have a right-handed glove and three of them
have a left-handed glove. At the end of the game, an assembled pair is
worth $1 to whoever holds it. Find the Shapley value of the players.

8. Let A = {1, 2, 3} be the set of players and ν be a game in characteristic
form with

ν({1}) = −a
ν({2}) = −b
ν({3}) = −c

ν({2, 3}) = a

ν({1, 3}) = b

ν({1, 2}) = c

ν({1, 2, 3}) = 1

where 0 ≤ a, b, c ≤ 1.

(a) Let µ be the (0, 1) reduced form of ν. Find µ({1, 2}), µ({1, 3}), µ({2, 3})
in terms of a, b, c.

(b) Suppose a + b + c = 2. Find an imputation x of ν which lies in
the core C(ν) in terms of a, b, c and prove that C(ν) = {x}.

9. Aaron (A), Benny (B) and Carol (C) each has to buy a book on Game
Theory. The list price of the book is $200. Alan has a discount card
which allow him to buy two books for $360, and three books for $480.
Benny has a coupon which allows him to have 20% off for the whole
bill. The discount card and coupon can be used at the same time. Let
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ν(S) be the amount that a coalition S ⊂ {A,B,C} may save by buying
the books together comparing with buying them separately.

(a) Find ν({A,B}), ν({B,C}), ν({A,C}) and ν({A,B,C})
(b) Find µ({A,B}) where µ is the (0, 1) reduced form of ν.

(c) Find the core of ν and draw the region representing the core on
the x1 − x2 plane.

10. Let a > 0 be a positive real number. Let f : [0, a] → R be a differen-
tiable function such that f(u) ≥ 0 for any u ∈ [0, a] and f(a) = 0. It
is given that the set R = {(u, v) ∈ R2 : 0 ≤ u ≤ a, 0 ≤ v ≤ f(u)} is
convex. Suppose (µ, ν) ∈ R and (α, β) = A(R, (µ, ν)), where A is the
arbitration function.

(a) Show that f ′(α) = −β − ν
α− µ

.

(b) Let R = {(u, v) ∈ R2 : 0 ≤ v ≤ 14 + 5u − u2}. Find (α, β) =
A(R, (0, 6)).

11. Let A = {1, 2, · · · , N}. Prove that for any i ∈ A∑
{i}⊂S⊂A

(N − |S|)!(|S| − 1)! = N !

12. Consider an airport game which is a cost allocation problem. Let N =
{1, 2, · · · , n} be the set of players. For each i = 1, 2, · · · , n, player
i requires an airfield that costs ci to build. To accommodate all the
players, the field will be built at a cost of max1≤i≤n ci. Suppose all
the costs are distinct and c1 < c2 < · · · < cn. Take the characteristic
function of the game to be

ν(S) = −max
i∈S

ci

For each k = 1, 2, · · · , n, let Rk = {k, k + 1, · · · , n} and define

νk(S) =

{
−(ck − ck−1) if S ∩Rk 6= ∅
0 if S ∩Rk = ∅

(a) Show that ν =
n∑
k=1

νk
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(b) Show that for each k = 1, 2, · · · , n, if i 6∈ Rk, then player i is a
null player of νk.

(c) Show that for each k = 1, 2, · · · , n, if i, j ∈ Rk, then player i and
player j are symmetric players of νk.

(d) Find the Shapley value φk(ν) of player k, k = 1, 2, · · · , n, of the
airport game ν.

13. Let A = {1, 2, . . . , n} and ν : P(A)→ R be the characteristic function
defined by

ν(S) = |S|
∑
i∈S

i

where |S| denotes the number of elements in S. Let φk(ν) be the
Shapley value of k ∈ A in the game (A, ν).

(a) Show that ν is superadditive.

(b) For each i = 1, 2, . . . , n, let νi : P(A) → R be the characteristic
function defined by

νi(S) =

{
0, if i 6∈ S
i|S|, if i ∈ S

.

Let φk(νi) be the Shapley value of k ∈ A in the game (A, νi).

(i) Show that φk(νk) =
k(n+ 1)

2
.

(ii) Find φk(νi) for i 6= k.

(c) Using the results in (b), or otherwise, find φk(ν) in terms of k and
n.

14. In a game there are three boxes, Bronze Box, Silver Box and Gold Box.
Ada puts $1,001 into the boxes in any way she likes. The money in
Bronze Box will be doubled, the money in Silver Box will be tripled
and the money in Gold Box will become 4 times the original amount.
Then Bella, without knowing how Ada puts the money, chooses one of
the boxes and gets the money inside. Ada will get the money inside
the other two boxes.

(a) How should Ada split the money so that the payoff of Bella are
the same no matter what strategy Bella uses.
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(b) Find the strategy of Bella in the Nash’s equilibrium.

(c) Find the expected payoffs of Ada and Bella in the Nash’s equilib-
rium.

(d) Suppose Ada and Bella decided to cooperate. Using Nash’s solu-
tion to the bargaining problem and the answer in (c) as the status
quo point, determine how much Ada and Bella should get from
the boxes.

15. In a money sharing game, three players Alex, Beatrice and Christine
put money into a Magic Box. Alex may put from $0 to $8, Beatrice
may put from $0 to $20 and Christine may put from $0 to $50. After
they put the money, the amount in the Magic Box will be doubled.
Then the money in the Magic Box will be evenly distributed to the
three players.

(a) Find the amount that Alex, Beatrice and Christine should put in
the Nash equilibrium.

(b) Find the maximum total profit that Alex and Beatrice may guar-
antee themselves if they choose to cooperate.

(c) The three players decide to cooperate. Use Shapley value to find
a suitable way to split the money in the Magic Box at the end of
the game.
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