
MATH 2550 
Notes 1 

 
(Keywords: vectors in ℝ2 or ℝ3, equations of planes, lines, tangent line to curves, to surfaces, 

equation of tangent line to a curve, equation(s) of a surface, normal vector, partial derivative, definite 

integral & area “under 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)”, “area under 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) as an infinite sum, Riemann Sum, 𝑓𝑓(𝜉𝜉𝑖𝑖), 

Δ𝑥𝑥𝑖𝑖, line integral of a scalar field, line integral of a vector field, Green’s Theorem for a rectangle, 

Green’s Theorem in general, orientation of a curve.) 

 

This set of notes will be very concise. Try to make sure that you understand each and 
every of the above-mentioned keywords. 
 
 What is a line in ℝ2? Ans: Before answering it, we should ask ourselves: “what is 

the meaning of the question?”, or “what the person wants as answer(s)?” 
 Depending on how you “read” the question, there are various answers. 
 For us, one way to answer it is find way(s) to (specify the (equation) of (each 

point) on any (given) line in the plane) 
 More mathematically, one can say: “a (line) is a (collection) of (points) satisfying 

(some (special) forms of equations)”. 
 If you write it down in form of a mathematical (recipe), it is: 

A line in ℝ2 = {point in ℝ2: point satisfies some equations} 
 Note that this is the (grammar) for the (sentence) describing (mathematically) a 

(line) in ℝ2. (I repeat – it is of the form: (A line in ℝ2 = Right-hand side, which 
is enclosed by two curly brackets, i.e. { and }. And inside the curly brackets, the 
(grammar) is {object :  properties of the object}, where we (i) first put the 
(object), followed by (colon), then (ii) we put the (properties of the object).) 

 Now comes our example, i.e. a line. Following what we have written down in the 
previous bullet point, we have 

A line in ℝ2 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑠𝑠 𝑏𝑏𝑦𝑦 𝑝𝑝ℎ𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝} 
 
Remark: When we use the word (point), we mean (position vector) of a (point) 
on (the line). 
 
Question: What are the “properties satisfied by such a point? 
Answer: There are various ways to answer it. One way is to say that such a point 
(i) starts at some point (again position vector) and runs continuously (along) a 
certain (direction) [this one isn’t (position vector!) 
 



(Picture): 

 
 
At each (time) 𝑝𝑝, we get the (position) vector (i.e. the “yellow” vector) of a point, 
given by the symbol 𝑝𝑝 by means of the equation, 𝑝𝑝 = 𝑝𝑝0 + 𝑝𝑝 �⃗�𝑞 . Here �⃗�𝑞 (the 
“blue” vector is a (displacement) vector (* it isn’t (position) vector!*) 
 
So the grammar of this (equation) is:    
For a point on the line 

(position) vector = (starting point (position) vector) + (scaling) of 
(displacement) vector. 

 
In ordinary English, what the above says is just: “the position of any point of a 
line is (obtained by) (i) first specifying a certain position on the line, then (ii) 
follow a certain direction. 
 

 (Important Remark): We get (similar) equation for a line in the space, i.e. ℝ3. 
The only difference is that instead of 2 components, the vectors now has 3 

components, i.e. instead of 𝑥𝑥𝚤𝚤̂ + 𝑦𝑦𝚥𝚥,̂ we have 𝑥𝑥𝚤𝚤̂ + 𝑦𝑦𝚥𝚥̂ + 𝑧𝑧𝑘𝑘� . 

𝑝𝑝0 
𝑝𝑝 at the time 𝑝𝑝 = 1 

�⃗�𝑞 

𝑝𝑝0 
𝑝𝑝 at the time 𝑝𝑝 = 1.2 

1.2�⃗�𝑞 



 Remark: Other ways of describing a line. In school math, we have learned the 
following way of describing a line in ℝ2. 
 

A line in ℝ2 = {(𝑥𝑥,𝑦𝑦)𝑡𝑡:  𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐} 
 

Remark: The symbol 𝑝𝑝 means (𝑥𝑥,𝑦𝑦) should be written (vertically). The numbers 
𝑚𝑚 and 𝑐𝑐 are two constant numbers with special (geometric) meanings. 
 

 (Planes in ℝ3) Important Point. In principle, one can follow the method we used 
for describing a line in ℝ𝟐𝟐 to describe a plane in ℝ𝟑𝟑. 

 
The only change is (*) instead of (one) displacement vector, we have (two) 
displacement vectors. 
 
The grammar is: 

 
 
Remarks:  
1. In the above diagram, 𝑝𝑝, 𝑝𝑝 are some (scaling) factors. 
2. The two (displacement) vectors have to be not on the same line (i.e. “non-

collinear”). 
3. You can read Kai Behrend’s notes, where there are more pictures on this! 

 
 
 

A plane in ℝ3 = {𝑝𝑝 ∶  𝑝𝑝 = 𝑝𝑝0 + 𝑝𝑝�⃗�𝑝 + 𝑝𝑝�⃗�𝑞     } 

(position) vector of any  

point on the plane 
(position) vector of one  

point on the plane 

(1st ) (displacement) vector 

 

(2nd ) (displacement) vector 

 



 (Normal vector & Plane) 
One drawback of the above paragraph is that (there are too many choices for the 
two (displacement) vectors. See the picture below)! 

 
Question: Can we get a simpler equation for a plane in ℝ3? 
 
Answer: Via normal vector. Though there are (many choices of) displacement 
vectors, the choices of (normal) vectors are small, i.e. either the “orange” one, 

 
the (prolongation) of it, or (reverse) of it (i.e. opposite direction). 
 

Notation: Let’s give the symbol 𝑁𝑁��⃗  to any of such normal vector (again it’s not a 
(position) vector!) 



Using this one can say: 
 

A plane in ℝ3 = {𝑝𝑝 ∶ (𝑝𝑝 − 𝑝𝑝0) ⋅ 𝑁𝑁��⃗ = 0} 
 
Remark: In plain English, this sentence is saying something like: “a plane in the 3D 

space is the (set) of all those points 𝑝𝑝  satisfying the equation (𝑝𝑝 − 𝑝𝑝0) ⋅ 𝑁𝑁��⃗ =
0.” 
 

 Other ways of talking about a plane in ℝ3. (i) A plane in ℝ3 = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑡𝑡:𝐴𝐴𝑥𝑥 +
𝐵𝐵𝑦𝑦 + 𝐶𝐶𝑧𝑧 = 0}, (ii) One can also make 𝑧𝑧 the (subject) of the equation and write: 
“A plane in ℝ3 = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑡𝑡: 𝑧𝑧 = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦}”.  (Remark: You need to check that 
“sometimes, you cannot make 𝑧𝑧 the (subject), when?). 

 
 Concluding Remarks: In the above, we described (i) how to describe a line in the 

plane, (ii) how to describe a plane in the 3D space, (iii) in both cases, we have the 
grammatical rule: “A (line/plane) in ℝ2 (respectively in ℝ3) = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∶

 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 𝑝𝑝𝑞𝑞𝑒𝑒𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑠𝑠 𝑏𝑏𝑦𝑦 𝑝𝑝ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 }. 
 

 If you think about the “Concluding Remarks” carefully, you will see that one can 
use the same “grammatical rule” to (describe) objects such as (curve) in ℝ2 
(respectively in ℝ3) or even (surface) in ℝ2 (respectively in ℝ3). 
The grammatical rule has to be of the form: 

A curve in ℝ2 (respectively in ℝ3) = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∶

 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 𝑝𝑝𝑞𝑞𝑒𝑒𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑠𝑠 𝑏𝑏𝑦𝑦 𝑝𝑝ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 }. 
 The only difference lies in the “word” equations. Let’s consider an example to see 

what we mean here. Example: We want to describe the “circle centered at the 
Origin and with radius 𝑅𝑅 in the plane (let’s call it 𝐾𝐾𝑅𝑅(𝑂𝑂)”. This is given by 
 

𝐾𝐾𝑅𝑅(𝑂𝑂) = {(𝑥𝑥, 𝑦𝑦)𝑡𝑡  ∶  𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 𝑝𝑝𝑞𝑞𝑒𝑒𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑠𝑠 𝑏𝑏𝑦𝑦 𝑥𝑥 𝑠𝑠𝑝𝑝𝑠𝑠 𝑦𝑦 }. 

More precisely, the (equation(s)) is: �(𝑥𝑥 − 0)2 + (𝑦𝑦 − 0)2 = 𝑅𝑅. Putting this 
back into the sentence above, we obtain 

𝐾𝐾𝑅𝑅(𝑂𝑂) = {(𝑥𝑥, 𝑦𝑦)𝑡𝑡  ∶   �(𝑥𝑥− 0)2 + (𝑦𝑦− 0)2 = 𝑅𝑅} 

 which after some simplification, takes the form 

𝐾𝐾𝑅𝑅(𝑂𝑂) = {(𝑥𝑥, 𝑦𝑦)𝑡𝑡  ∶   𝑥𝑥2 + 𝑦𝑦2 = 𝑅𝑅2} 
 
 Remark: The only difference between (curve/surface) and (line/plane) 

description is that the (equation(s)) may become (more complicated)! 



 (Some Food for Thought):  
(Question 1) Write down what you think “Sphere of radius 𝑅𝑅 centered at the 
point (𝑠𝑠, 𝑏𝑏, 𝑐𝑐)𝑡𝑡 is,  
 
(Question 2) (Read the following lines first. After that you will be asked a 
question). **** There are at least two ways to write down (equation(s)) of a 
surface, i.e. (i) 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦), where the left-hand side is the (subject) 𝑧𝑧 and the 
right-hand side describe (how 𝑧𝑧 is related to the variables 𝑥𝑥 and 𝑦𝑦. (ii) On the 
other hand, one can (mix) the subject and the variables together to get one 
equation of the form 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 0. Now we no longer know which one of 𝑥𝑥,𝑦𝑦 
or 𝑧𝑧 is the subject.*** 
(Question): You are given an equation of the form 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0, where now 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑥𝑥
2

4
� + �𝑦𝑦

2

3
� + �𝑧𝑧

2

9
�. Rewrite it in the form 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) by finding 

out the function(s) on the right-hand side (which depends (only) on 𝑥𝑥 and 𝑦𝑦). 
 

 (A Remark & Gradient Vector) There are (names) for the two ways of describing a 
surface mentioned in the preceding paragraph: (i) if we write 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦), we 
say we are having a (non-parametric) form of a surface; (ii) if we write 
𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0, we say we are having an (implicit, i.e. “implied”) form of the 
surface. Actually, it means we can (if we want) make 𝑧𝑧 the subject, though it 
may be very complicated to do so. 
(Advantage of the form 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0. If we describe a surface this way, then 
we can immediately get information about normal vectors on the surface. Let us 
consider one very simple example. 
Example: The surface described by 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 9 = 0. I think you know that 
this is a sphere of radius 3 centered at the Origin. Suppose now you know the 

position of a point on this surface, e.g. the point �1,0,2√2�
t
, how can you 

compute the normal vector(s) to this surface at this point? The answer is given by 
the (Gradient Vector), which is given by 

�
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥
�
�1,0,2√2�

𝑡𝑡  ,
𝜕𝜕𝑔𝑔
𝜕𝜕𝑦𝑦
�
�1,0,2√2�

𝑡𝑡
,
𝜕𝜕𝑔𝑔
𝜕𝜕𝑧𝑧
�
�1,0,2√2�

𝑡𝑡   �
𝑡𝑡

 

, where ⋆⋆|∗ means the function ⋆⋆ is (computed/evaluate) at the point ∗ . 

Working this out, we see that (because 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 2𝑥𝑥, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 2𝑦𝑦, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 2𝑧𝑧) a normal 

vector is given by �2, 0, 4√2 �
𝑡𝑡
. 



(Conclusion) The (implicit) description of surface gives a very (convenient) means 
to compute (normal) vectors on the surface. 
 
Remarks  
(1) The above (way of finding normal vector on (implicitly defined surfaces)) also 

works for curves. 

(2) Since it is very inconvenient to write things like 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
�1,0,2√2�

𝑡𝑡 or 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
�1,0,2√2�

𝑡𝑡 

we introduce the notation 𝑔𝑔𝑥𝑥(1,0,2√2) and 𝑔𝑔𝑦𝑦(1,0,2√2) to mean the same 
things. 
 

Even in the case of curves in ℝ2, one has the choice between (i) letting 𝑧𝑧 to be 
subject and describe a curve by 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) or (ii) mixing everything and describe 
a curve by (implicit form) 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 0. 
 
Just as in our example to find (normal) vector(s) to the (sphere) 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 −
9 = 0, we can find (normal) vector(s) to the circle 𝑥𝑥2 + 𝑦𝑦2 − 9 = 0 at the 

point �1,2√2�
𝑡𝑡
 on it by (i) computing  

�
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥
�
�1,2√2�

𝑡𝑡  ,
𝜕𝜕𝑔𝑔
𝜕𝜕𝑦𝑦
�
�1,2√2�

𝑡𝑡
�
𝑡𝑡

 

to obtain the normal vector to be (complete it yourself!) 
 

 Remark: This way of computing normal using the Gradient Vector will be useful 
later, when we talk about (Divergence Theorem), which is a useful tool in Fluid 
Dynamics. 

 
 (Equation of Tangent Line) In School Calculus, you have learned what a derivative 

is.  
The (geometric) meaning of the (derivative) to a (curve) 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at the point 
𝑥𝑥 = 𝑐𝑐 is the (slope) of the (tangent line) to this curve at 𝑥𝑥 = 𝑐𝑐. 

 (How to write down the equation of the (tangent) line mentioned above?) 
Usually, in school calculus, you have to (i) use point-slope form of straight line, (ii) 
compute 𝑓𝑓′(𝑐𝑐), (iii) substitute into the point-slope form etc.. Cumbersome! 
(Any better way to do it?) Answer is as follows: 
 
(Equation wanted) is: 𝑦𝑦 = 𝑓𝑓(𝑐𝑐) + 𝑓𝑓′(𝑐𝑐)(𝑥𝑥 − 𝑐𝑐) 



 

 
 (Feature(s) of this equation) (1) 𝑦𝑦 is the subject, (2) the right-hand side has only 

1 variable, i.e. the variable 𝑥𝑥, (3) the (power) of this 𝑥𝑥 variable is 1. 
 (Extension of this Equation) In a very very similar way, we can easily write down 

and (remember) the “equation of tangent plane to the surface 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) at 
the point 𝑥𝑥 = 𝑠𝑠,𝑦𝑦 = 𝑏𝑏”. It is given by 

𝑧𝑧 = 𝑓𝑓(𝑠𝑠, 𝑏𝑏) + 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏)(𝑥𝑥 − 𝑠𝑠) + 𝑓𝑓𝑦𝑦(𝑠𝑠, 𝑏𝑏)(𝑦𝑦 − 𝑏𝑏) 

 
(An Example) Let’s consider the surface given by 𝑧𝑧 = sin(𝑥𝑥𝑦𝑦). Find the equation 

of the tangent plane to this surface at 𝑥𝑥 = 1
4

,𝑦𝑦 = 𝜋𝜋.  

(Answer): 𝑓𝑓 �1
4

,𝜋𝜋� = sin �𝜋𝜋
4
� = 1 /√2  Also, we have 

𝑓𝑓𝑥𝑥 = 𝑦𝑦 cos(𝑥𝑥𝑦𝑦), 𝑓𝑓𝑦𝑦 = 𝑥𝑥 cos(𝑥𝑥,𝑦𝑦), so we obtain 𝑓𝑓𝑥𝑥 �
1
4

,𝜋𝜋� = 𝜋𝜋 cos �𝜋𝜋
4
� = 𝜋𝜋/√2. 

Also, we have 𝑓𝑓𝑦𝑦 �
1
2

,𝜋𝜋� = �1
4
� cos �𝜋𝜋

2
� = 1

4√2
, so the equation of the tangent 

plane is 𝑧𝑧 = 1
√2

+ � 𝜋𝜋
√2
� �𝑥𝑥 − 1

4
� + � 1

4√2
� (𝑦𝑦 − 𝜋𝜋). 

 
Of course, you can further simplify the right-hand side. 
 

𝑦𝑦 = 𝑓𝑓(𝑐𝑐) + 𝑓𝑓′(𝑐𝑐)(𝑥𝑥 − 𝑐𝑐) 

the height, i.e. 𝑦𝑦,  

where the tangent line starts 

the width of the right-angled triangle  

formed by the tangent line 

𝑐𝑐 𝑥𝑥 

the slope of the tangent line 



 (Further Explanation of the Tangent Plane equation) Recall the equation, which is  
𝑧𝑧 = 𝑓𝑓(𝑠𝑠, 𝑏𝑏) + 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏)(𝑥𝑥 − 𝑠𝑠) + 𝑓𝑓𝑦𝑦(𝑠𝑠, 𝑏𝑏)(𝑦𝑦 − 𝑏𝑏) 

Features: The terms 𝑓𝑓(𝑠𝑠, 𝑏𝑏),  
                 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏) and 𝑓𝑓𝑦𝑦(𝑠𝑠, 𝑏𝑏) are “numbers”. 

 
So, the equation is of the form 𝑧𝑧 = 𝐴𝐴 + 𝐵𝐵(𝑥𝑥 − 𝑠𝑠) + 𝐶𝐶(𝑦𝑦 − 𝑏𝑏). Here we have 
used the following symbols, i.e. 𝐴𝐴 = 𝑓𝑓(𝑠𝑠, 𝑏𝑏),𝐵𝐵 = 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏),𝐶𝐶 = 𝑓𝑓𝑦𝑦(𝑠𝑠, 𝑏𝑏). What 

do you notice? (Answer): The tangent plane equation is of the form 
𝑧𝑧 = 𝑝𝑝𝑒𝑒𝑚𝑚𝑏𝑏𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑚𝑚𝑏𝑏𝑝𝑝𝑝𝑝 × (𝑥𝑥 − 𝑠𝑠) + 𝑝𝑝𝑒𝑒𝑚𝑚𝑏𝑏𝑝𝑝𝑝𝑝 × (𝑦𝑦 − 𝑏𝑏) 

This means the left-hand side is the “subject”. On the right-hand side we (again) 
have only “numbers” and “𝑥𝑥1, 𝑦𝑦1” terms.  
 
(The terms 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏) and 𝑓𝑓𝑦𝑦(𝑠𝑠, 𝑏𝑏)). These terms means (geometrically) the 

(slope) of the (tangent line) to the (curve) 𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑏𝑏) at the point 𝑥𝑥 = 𝑠𝑠,𝑦𝑦 =
𝑏𝑏 & the slope of the curve 𝑧𝑧 = 𝑓𝑓(𝑠𝑠,𝑦𝑦) at the point 𝑥𝑥 = 𝑠𝑠,𝑦𝑦 = 𝑏𝑏.) 
 

 
 

 (Remarks) (1) 𝑓𝑓𝑥𝑥(𝑠𝑠, 𝑏𝑏) is the slope of the “orange” colored straight line. 
(2) The drawing of the (tangent line) to the (curve) 𝑧𝑧 = 𝑓𝑓(𝑠𝑠,𝑦𝑦) is omitted. 
(3) The two (non-collinear) straight line form a plane, which is the (tangent) 

plane we wanted. 
 

 The definite integral ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠𝑥𝑥𝑏𝑏
𝑎𝑎 . This (number) is the “area (under) the (curve) 

𝑦𝑦 − 𝑠𝑠𝑥𝑥𝑝𝑝𝑝𝑝 



𝑦𝑦 = 𝑓𝑓(𝑥𝑥), where 𝑠𝑠 ≤ 𝑥𝑥 ≤ 𝑏𝑏.” This number can be (calculated) via 
(approximation) by (putting) more and more rectangles under the curve. This 

method is called Riemann-sum method. The number ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠𝑥𝑥𝑏𝑏
𝑎𝑎  is the (limiting 

value) of ∑ 𝑓𝑓(𝜉𝜉𝑖𝑖)Δ𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  , when 𝑝𝑝 → ∞. 

 
 (Remarks) (1) In the above paragraph, the number 𝜉𝜉𝑖𝑖 (pronounced “ksi” “ai”) is 

any (convenient, or simple-to-calculate) point satisfying 𝑥𝑥𝑖𝑖−1 ≤ 𝜉𝜉𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖. 
(2) The symbol Δ𝑥𝑥𝑖𝑖 is the just the (width) of the subinterval [𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖]. 
(3) This sum and its (limiting value) are usually quite difficult to calculate, that’s 

why in school calculus, we didn’t use this method to find 

� 𝑓𝑓(𝑥𝑥)𝑠𝑠𝑥𝑥.
𝑏𝑏

𝑎𝑎
 

 (Line Integral of a Scalar Field over a curve 𝐶𝐶) The idea is to do something similar 
to 

� 𝑓𝑓(𝑥𝑥)𝑠𝑠𝑥𝑥
𝑏𝑏

𝑎𝑎
 

bearing in mind, however, that now the (domain of integration) is no longer a 
(straight) line interval such as [𝑠𝑠, 𝑏𝑏], but a curve 𝐶𝐶. 
(How to define it?) The steps are: (1) suppose the function we want to (integrate) 
over the curve 𝐶𝐶 is given the symbol 𝑔𝑔. Then we first (restrict) 𝑔𝑔 to (sit) on 
the curve 𝐶𝐶. (That is, we write 𝑔𝑔(𝑥𝑥,𝑓𝑓(𝑥𝑥))). 
(2) Next, we find a (representation) of the curve. This is done in the following 

way. Think of the curve 𝐶𝐶 as given by a (function) such as 𝑦𝑦 = 𝑓𝑓(𝑥𝑥),𝑠𝑠 ≤
𝑥𝑥 ≤ 𝑏𝑏. 

(3) Then we decompose the interval [𝑠𝑠, 𝑏𝑏] by considering the subintervals 
[𝑠𝑠, 𝑥𝑥1], [𝑥𝑥1, 𝑥𝑥2],⋯ , [𝑥𝑥𝑛𝑛−1, 𝑏𝑏]. 

(4) Each of these subintervals corresponds to part of the curve. By Pythagoras’ 
Theorem, these pieces of the curve have lengths (approximately) equal to the 

numbers �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2 , where 𝑝𝑝 runs from 1 to 𝑝𝑝. 
(5) Introducing the (symbols) Δ𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 ,   Δ𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1, we obtain 

�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2 =  �(Δ𝑥𝑥𝑖𝑖)2 + (Δ𝑦𝑦𝑖𝑖)2 which we denote by 
another (symbol) Δ𝑝𝑝𝑖𝑖. Therefore, we have Δ𝑝𝑝𝑖𝑖 = �(Δ𝑥𝑥𝑖𝑖)2 + (Δ𝑦𝑦𝑖𝑖)2. 

(6) Next, we consider the sum ∑ 𝑔𝑔(𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 𝑝𝑝ℎ𝑝𝑝 𝑐𝑐𝑒𝑒𝑝𝑝𝑐𝑐𝑝𝑝) ⋅ Δ𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1  

(7) More precisely, we consider (any convenient) point 𝜉𝜉𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖] and the 
corresponding sum ∑ 𝑔𝑔(𝜉𝜉𝑖𝑖,𝑓𝑓(𝜉𝜉𝑖𝑖)) ⋅ Δ𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 . 
(8) Now, we should notice that the expressionΔ𝑝𝑝𝑖𝑖 = �(Δ𝑥𝑥𝑖𝑖)2 + (Δ𝑦𝑦𝑖𝑖)2 can be 



simplified to the formΔ𝑝𝑝𝑖𝑖 = ��Δ𝑥𝑥𝑖𝑖
Δ𝑥𝑥𝑖𝑖
�
2

+ �Δ𝑦𝑦𝑖𝑖
Δ𝑥𝑥𝑖𝑖
�
2

= �1 + �Δ𝑦𝑦𝑖𝑖
Δ𝑥𝑥𝑖𝑖
�
2

 Δ𝑥𝑥𝑖𝑖  . 

(9) Now go back to (7) and let 𝑝𝑝 → ∞, then we see that the (limiting value) of 

the sum ∑ 𝑔𝑔(𝜉𝜉𝑖𝑖,𝑓𝑓(𝜉𝜉𝑖𝑖)) ⋅ Δ𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 = ∑ 𝑔𝑔(𝜉𝜉𝑖𝑖,𝑓𝑓(𝜉𝜉𝑖𝑖)) ⋅ �1 + �Δ𝑦𝑦𝑖𝑖

Δ𝑥𝑥𝑖𝑖
�
2

𝑛𝑛
𝑖𝑖=1 Δ𝑥𝑥𝑖𝑖  is the 

integral ∫ 𝑔𝑔�𝑥𝑥,𝑓𝑓(𝑥𝑥)��1 + (𝑦𝑦′)2𝑏𝑏
𝑎𝑎 𝑠𝑠𝑥𝑥. This integral is called the (line integral 

of scalar field 𝑔𝑔 over the curve 𝐶𝐶.) 
 
 
 (A Special Case) If the function 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 1 for each 𝑥𝑥 and 𝑦𝑦, then the integral 

in the previous paragraph takes the form 

� �1 + (𝑦𝑦′)2𝑠𝑠𝑥𝑥
𝑏𝑏

𝑎𝑎
 

This is just the (length) of the curve 𝐶𝐶. 
 

 (Question:) What happens if we (represents/parametrize) the curve using a 
(parameter)? That is, we write each point of the curves in the form 𝑥𝑥 =
𝑥𝑥(𝑝𝑝),𝑦𝑦 = 𝑦𝑦(𝑝𝑝), where 𝑝𝑝 ∈ [𝑠𝑠, 𝑏𝑏] ? 
(Answer) In this case, the line integral mentioned above takes the form  

� 𝑔𝑔�𝑥𝑥(𝑝𝑝),𝑦𝑦(𝑝𝑝)��(𝑠𝑠𝑥𝑥/𝑠𝑠𝑝𝑝)2 + (𝑠𝑠𝑦𝑦/𝑠𝑠𝑝𝑝)2 𝑠𝑠𝑝𝑝
𝑡𝑡=𝑏𝑏

𝑡𝑡=𝑎𝑎
 

The argument which leads to this expression is similar to the before. 


