0 Differentiation
@ Differentiability of functions
@ Rules of differentiation
@ Second and higher derivatives

e Mean Value Theorem and Taylor's Theorem
@ Mean value theorem
@ L'Hopital’s rule
@ Taylor's theorem
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Definition (Differentiability)
Let f(x) be a function. Denote

f h) —f
f'(a) = lim Hath) = f(a)
h—0
and we say that f(x) is differentiable at x = a if the above limit
exists. We say that f(x) is differentiable on (a, b) if f(x) is
differentiable at every point in (a, b).

The above limit can also be written as

f'(a) = lim 7'[()() — f(a)'

x—a X —a
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Theorem

If f(x) differentiable at x = a, then f(x) is continuous at x = a.

Differentiable at x = a = Continuous at x = a

Suppose f(x) is differentiable at x = a. Then

lim(f(x) —f(a)) = lim (M) (x—a)

xX—a xX—a X —a
= lim (M) lim(x — a)
X—a X —a X—>a
= f'(a)-0=0
Therefore f(x) is continuous at x = a. O

N,

Note that the converse of the above theorem does not hold. The function

f(x) = |x| is continuous but not differentiable at 0.
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. . Differentiability of functions
Differentiation Rules of differentiation

Second and higher derivatives

eh _ o0 eh 1
!/ — — i —
Q f(x) =% f1(0) = flyino e L
. In(T+h)—In1  In(1+h)

— . / — - = _ 7 =
Q f(x)=Inx: f'(1) = ilgno p ilgno ; 1.

.y . sinh—sin0 sin h
Q f(x) =sinx: f’(0) = ilgno — = l|1—>0 p =1L |
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Example

4x — 1, ifx<1
ax” + bx, if x>

Find the values of a, b if f(x) = { is differentiable at

x
Il
g =
)
—

Solution

Since f(x) is differentiable at x = 1, f(x) is continuous at x =1 and we have

lim f(x)=f(1) = lim (ax’+bx) =a+b=3.
x—1+ x—1t

Moreover, f(x) is differentiable at x = 1 and we have

lim f(1+h)—1(1) — im (4(1+h)71)73:4
h—0— h h—0— h
2
lim fl+h)—f(1) _ lim a(l+ h) —b(1+h)—3:2a+b
h—0t h h—0+ h
Therefore A= = =L
2a+b=4 b=2
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Definition (First derivative)

Let y = f(x) be a differentiable function on (a, b). The first
derivative of f(x) is the function on (a, b) defined by

dy — F(x) = lim f(x+ h) —f(x)

dx h—0 h

Theorem

Let f(x) and g(x) be differentiable functions and c be a real
number. Then

Q@ (f+g)(x)=f(x)+&'(x)
@ (cf)(x) = cf'(x)

A\
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

(1) ix" =nx"1 neZt, forxeR
dx
d

Q@ =& forxeR
dx

(3] iInx:1 forx >0
dx X
d

@ —cosx=—sinx forx €R
dx

©@ —sinx=cosx forx cR
dx
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Proof (dix” = nx"1)
X

Let y = x". For any x € R, we have

dy = lim M

dx h—0
— lim (X+h—X)((X+h)”_1_|_(X+h)n—2x+“.+xn_1)
N h—0 h

= lim((x+h)" T+ x+h"2x+---+x"1)
h—0

= nx"1

Note that the above proof is valid only when n € Z* is a positive
integer.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Proof (%ex = &)

Let y = €*. For any x € R, we have

(Alternative proof)

dy d x2 X X
—-— = 1+X+7+7+7+
dx dx

- 041 2x  3x?  4x°
R TR TR TR
X2 3
= 1+x+—+—+

3l
= eX

In general, differentiation cannot be applied term by term to infinite series. The

second proof is valid only after we prove that this can be done to power series.
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Differentiation Differentiability of functions

Rules of differentiation
Second and higher derivatives

Proof

d 1
(— Inx = 7) Let f(x) = Inx. For any x > 0, we have
dx X

dy i In(x + h) — Inx X In(1+£> 1
— = lim

dx  h—0 h

h—0 h x|

d
(d— cosx = —sin x) Let f(x) = cosx. For any x € R, we have
X

d —2si h i h
y . cos(x + h) — cos x . 2sin (X+§) sin (E) )

lﬁl l p = —sinx.
dx  h—0 h hs0

d
(d— sinx = cosx) Let f(x) = sinx. For any x € R, we have
X

b ain (h
dy . sin(x+h)—sinx _ 2c0s (X + E) sin (E)
— = lim = lim
dx  h—0 h h—0 h

= COSs X.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Let a > 0 be a positive real number. For x € R, we define

Differentiation

ax _ exlna.

Let a > 0 be a positive real number. We have

Q 7 =32 forany x,y € R
d

Q d—ax =a“Ina.
x

o Y — e(x+y)|na _ exlnaeylna — X

d d
Q@ —F=—e"" =" na=23"Ina
dx dx

O

v
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let f(x) = |x| for x € R. Show that f(x) is not differentiable at x = 0.

Observe that
lim f(h) = f(0) = lim —h =-1
h—0- h h—0— h
lim f(h) - £(0) = i h =1
h—0+ h h—0t h
Thus the limit i 7
- f(h) ~ £(0)
h—0 h
does not exist. Therefore f(x) is not differentiable at x = 0. O
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

Figure: f(x) = |x]|
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let f(x) = |x|x for x € R. Find f'(x).

When x < 0, f(x) = —x* and f'(x) = —2x. When x > 0, f(x) = x* and
f'(x) = 2x. When x = 0, we have
p— — 2 p—
lim 7“,7) f(0) = lim - =0 =0
h—0— h h—0—  h
— 2 —
lim M = lim h” =0 =0
h—0t h h—ot h
Thus f'(0) = 0. Therefore Cox, ifx<0
fiix) = <0, ifx=20
2x, ifx>0
= 2/x|.

Note that f’(x) = 2|x| is continuous at x = 0.
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

s f(w) = [alo

x|

Figure: f(x) = |x|x
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let

@ Find f'(x) for x # 0.
© Determine whether f(x) is differentiable at x = 0.

v

1. When x #£ 0,
f'(x) = sin 1.1 cos —.
X X X
2. We have .
_ hsin L
lim Al — ) = lim S = lim sin 1
h—0 h h—0 h—0 h

does not exist. Therefore f(x) is not differentiable at x = 0.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

1
Figure: f(x) = xsin | —
X
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let

@ Find f'(x).
@ Determine whether f'(x) is continuous at x = 0.

1. When x # 0, we have

x2 X

1 1 1 1 1
f'(x) = 2xsin = + x? (cos> = 2xsin — — cos —.
X X X

MATH1010 University Mathematics



Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Solution
2. When x = 0, we have

iy _ o F(A)=F() _ . hsing 1
f(0) = lim ———~ = lim — = fl}mﬁsm e

h—0 h h—0

Since flirr}) h =0 and |sin ;| < 1 is bounded, we have f'(0) = 0. Therefore
—

.1 1 .
F(x) = 2xsm;—cos;, IfX;éO.
0, ifx=0

Observe that

X— X

lim f'(x) = lim <2xsin i 1)
x—0 0 X

does not exist. We conclude that f'(x) is not continuous at x = 0.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

1
Figure: f(x) = x?sin [ =
X
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Differentiation Dlﬂerentla_blllty o_f fl_mctlons
Rules of differentiation

Second and higher derivatives

f(x)is f(x)is f'(x) is
f(x) continuous differentiable continuous
at x=0 at x =10 at x =10
x| Yes No Not applicable
[x|x Yes Yes Yes
xsin (%), f(0)=0 Yes No Not applicable
. (1
x%sin <;> f(0)=0 Yes Yes No
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Differentiation Dlﬂerentla_blllty o_f fl_mctlons
Rules of differentiation

Second and higher derivatives

Example
The following diagram shows the relations between the existence of limit,
continuity and differentiability of a function at a point a. (Examples in the
bracket is for a = 0.)
- . sin x
Second differentiable (f(x) = ; £(0) =1)
X
I
Continuously differentiable (f(x) = |x|x)
I
Differentiable (f(x) = x*sin(x1); £(0) = 0)
I
Continuous (f(x) = |x])
v .
Limit exists (f(x) = SIZX; f(0) =0)
U’ X
Limit exists from both sides (f(x) = m; f(0) = 0)
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Different ty of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Theorem (Basic formulas for differentiation)

d

—x" = px"1

dx

d

—eX = ¢e¥ —Inx=—

dx dx

d . d :

— sin X = €oS X — CcOSX = —sinx
dx dx

— tanx = sec? x — cotx = —csc? x
dx dx

—secx —secxtanx — CsCX = — CSC x cot x
dx dx

— cosh x = sinh x — sinh x = cosh x
dx dx
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

Theorem (Product rule and quotient rule)

Let u and v be differentiable functions of x. Then

d dv du
—uv = uUu— +v—
dx dx dx
du V$ - U%
dxv v2

Let u = f(x) and v = g(x).

o (x+ h)g(x + h) — f(x)g(x)

—uv = i

dx h—0 h
— lim (f(x + h)g(x + h) — f(x + h)g(x) " f(x+ h)g(x) — f(x)g(x))
h—0 h h
. (x + h) — g(x) f(x + h) — f(x)
_ dv du
= ua + v;
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

f(x+h) _ f(x)
glxth)  g(x)

dx v h—0 h

o Flct ME() — F)E(x+ h)
h—0 hg(x)g(x + h)

oy (£ D) )0 _ Mgt ) F)s()
h—0 hg(x)g(x + h) hg(x)g(x + h)
. f(x+ h) — f(x) g(x+ h) — g(x)

= i (o0 gt o~ 0 S o)

_ vE—ug
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

Theorem (Chain rule)

Let y = f(u) be a function of u and u = g(x) be a function of x.
Suppose g(x) is differentiable at x = a and f(u) is differentiation at
u=g(a). Then f o g(x) = f(g(x)) is differentiable at x = a and

(fog)(a) = f'(g(a))g’(a).

In other words,
dy _dy du

dx  du dx’
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

(Fog)(a) — lim f(g(a+ h)f), — f(g(a))
o Fle(at k)~ f(g(a) | g(ath) -~ g(a)
h—o  g(a+h)—g(a) ho h
_ i f8(@) T K) — fg(a) | g(a+h) —g(a)
k—0 k h—0 h
= f'(g(a))g’(a)

The above proof is valid only if g(a + h) — g(a) # 0 whenever h is sufficiently
close to 0. This is true when g’(a) # 0 because of the following proposition.

Proposition

Suppose g(x) is a function such that g'(a) # 0. Then there exists 6 > 0 such
that if 0 < |h| < ¢, then

g(a+h) —g(a) #0.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

When g’(a) = 0, we need another proposition.

Proposition

Suppose f(u) is a function which is differentiable at u = b. Then there exists
0 >0 and M > 0 such that

|f(b+ h) — f(b)| < M|h| for any |h| < 4.

The proof of chain rule when g’(a) = 0 goes as follows. There exists § > 0
such that

If(g(a+ h)) — f(g(a))| < Mlg(a+ h) —g(a)] for any |h] <.

Therefore

i [ fleta+h) — flg(a)| “mM‘g(Hh)—g(a) %
h—0 h ~ h—0 h

which implies (f o g)'(a) = 0.
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

The chain rule is used in the following way. Suppose v is a
differentiable function of x. Then
dixu” = nu”fl%
d s
dx dx
—Inu = 1@
dx u dx
d . du
- cosu = —sin ua
. du
o sinu = cos ua
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

1. isin3’>< = 35in2xi sin x = 3sin® x cos x
dx dx v
d d evVX
2. —eV¥ = eV /x=
dx © ¢ dx\/; 2/x
L4 1 2.d. 2
" dx (Inx)? - (In x)3 dx ~ x(Inx)3
d 1 2sin 2x
4. = Incos2 = _sin2x)-2=— — _2tan2
i Incos 2x <:052)(( sin 2x) p— tan 2x

d 1 xsec /1 + x2
5. —tanvV1+x2 = sec®vV1+x2- - 2x =
dx 2v/1+ x2 V1+x2

d - : : : 1
6. —sec®v/sinx = 3sec?V/sin x(sec V/sin x tan v/sin x)

dx 24/sin x
3sec® v/sin x tan v/sin x cos x
24/sin x

- COS X
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

d . . .
7. d—cos“xsmx = cos* xcosx + 4 cos® x(— sin x) sin x
X
= cos® x — 4 cos® xsin x
g, g sec2x _ Inx(2sec2xtan 2x) — sec2x(2)
dx Inx (Inx)?2
_ sec2x(2xtan2xInx — 1)
N x(In x)?2
tan x anx (X sec® X — tanx
9.e ~x = @x (|————F—
X

/ 2(1y _ 2x

. In x In x 1+x(3) Inx(2q/1+xz)

10. sin | —— = cos
1+ 2 1+ x2

. 1+x2—x?Inx cos( In x )
X(1+X2)% V1+x?

MATH1010 University Mathematics



Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Definition (Implicit functions)

An implicit function is an equation of the form F(x,y) = 0. An implicit function may
not define a function. Sometimes it defines a function when the domain and range are
specified.

Theorem

Let F(x,y) = 0 be an implicit function. Then

OF  OFdy _

Ox @ dx
and we have
oF
& _ _ax
- OF
dx oy

Here % is called the partial derivative of F with respect to x which is the derivative

of F with respect to x while considering y as constant. Similarly the partial derivative
‘g—)": is the derivative of F with respect to y while considering x as constant.
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Differentiability of functions
Rules of differentiation

Differentiation

Second and higher derivatives

Example

|

Find d—y for the following implicit functions.
Ix

Q X —xy—x?=
Q@ cos(xe”) + x?tany =1

v

L2ax—(y+x/)=(y*+2xy) = 0
xy! +2xyy! = 2x—y—y?
Y = 2x —y — y?
X + 2xy
2. —sin(xe¥)(e” + xe’y’) + 2xtany + x®sec’yy’ = 0
x?sec? yy! — xe¥sin(xe¥)y’ = e’sin(xe¥) — 2xtany
, e¥sin(xe¥) — 2xtany

' T Psec y — xe¥ sin(xeY)
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

Theorem

Suppose f(y) is a differentiable function with f'(y) # 0 for any y. Then the inverse
function y = f=1(x) of f(y) is differentiable and

1
Y (X) = .
R )
In other words,
dy 1
e dx°
dx &

By chain rule, we have

F(F~(x))
FOENE)(x) = 1

(FY =

Il
X

_
F(F1(x))

O
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Differentiability of functions

Differentiation Rules of differentiation

Second and higher derivatives

Theorem

Q Forsin™:[-1,1] — [—g, g],

—sin x =

dx \/1—x2.

@ Forcos™! : [-1,1] — [0, 7],

1 1
—cos T X=——>—.
d V1—x?
© Fortan !:R — fg,g],
—tan 'x = ;
d 1+ x2
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

o
2 =il
y = sin " x
siny = Xx
dy
MO AR
cosy
dy 1
dx = cosy
1
= ———— (Note: cosy > 0 for _r <y< E)
1—sin’y 2 2
_ 1
V1—x2
The other parts can be proved similarly. O
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Differenti, y of functions
Rules of differentiation
Second and higher derivatives

Find % if y = x*.

Differentiation

Solution

There are 2 methods.
Method 1. Note that y = x* = e*"*. Thus

% =" (14 Inx) = x*(1+Inx).

Method 2. Taking logarithm on both sides, we have

Iny = xlInx

1

1dy = 1l4Inx

y dx

% = y(1+Inx)
= x*(1+Inx)

v
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let u and v be functions of x. Show that

! -1 !
—u' =u'Vvinu+u v

dx
We have
iuv ievln u
dx dx

!

, vu
u'v (lnu+ —
u

! -1 /
= u'Vihu+u' v

O

v
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Definition (Second and higher derivatives)

Let y = f(x) be a function. The second derivative of f(x) is the

function
Py _d (dy
dx®2  dx \dx /)’

The second derivative of y = f(x) is also denoted as f”(x) or y”. Let n
be a non-negative integer. The n-th derivative of y = f(x) is defined
inductively by

dny d dn—ly

= — >
dx" dx (dx”1 fornz1
d% _
w0 Y

The n-th derivative is also denoted as (") (x) or y("). Note that
fO(x) = f(x).
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

2
Find 4 for the following functions.
dx?

© vy = In(secx + tanx)
Q *—y’=1

1
1. yy = ————(secxtanx + sec®x)
sec x + tanx
= secx
y" = secxtanx
2. 2x—2yy/ = 0
/ X
y = -
Y !
no Y —xXy
yoo= 2
(%
_ r—x)
?
y
R
y3
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Theorem (Leinbiz's rule)

Let u and v be differentiable function of x. Then

() =3 <Z> =), )

k=0

where (]) = #Lk), is the binormial coefficient.

) = 40,0

@)V = 0,0 4 0,0

)2 = s 42,0, 0 0,0

() — u( VO 4 34,0 4 3,0,0 4 0,0

@)D = s 4 4,0 4 6,@,@ | 4,0,0 + FONC

(uv)(s) = O 45,90 1 10493 4 106@PvO) 4+ 5,0,® 4 0,6
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Differentia y of functions

Differentiation Rules of differentiation

Second and higher derivatives

We prove the Leibniz's rule by induction on n. When n =0,
(1)@ = uv = u@v® . Assume that for some nonnegative m,

(uv)(m) = Z <I:> y(m=R, (0

k=0
Then
(uv)(m+l)
d m
= a(uv)()
d i m\ (m—k) (k)
= u v
dx k=0 (k>

m
- 3 I:)(u(m_k“)v(k) + umH) (k)Y
k=0
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Here we use the convention (f’l) = (m’il) = 0 in the second last equality. This
completes the induction step and the proof of the Leibniz's rule. O
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Differentiation

Let y = x°e*. Find y ) where nis a nonnegative integer.

Solution

Let u= x* and v = €. Then u® = X2, u® = 2x, u® =2 and u¥) =0 for
k > 3. On the other hand, v¥) = 3Xe>* for any k > 0. Therefore by Leibniz's

rule, we have
<(’)’> FONGIN <;’> u -1 <’27> 4@, (=2

X (3n 3><)+n(2x)( n 1 3><)_|_ ( 1) (2)(3n—2e3><)

(3"x*+2-3"'nx +3"?(n* — n))e3x
= 3"72(9x° + 6nx 4+ n> — n)e*

y(n)
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Let f be a function on (a, b) and & € (a, b) such that

© r is differentiable at x = €.

@ Either f(x) < f(€) for any x € (a, b), or f(x) > f(§) for any x € (a, b).
Then £/(€) = 0.

Suppose f(x) < f(€) for any x € (a, b). The proof for the other case is more or less
the same. For any h < 0 with a < £+ h < &, we have f(§ + h) —f(§) <0and his

negative. Thus
FE+m—FE) .,
h =

Mean Value Theorem and Taylor’'s Theorem

= lim
h—0—

f'(€)

On the other hand, for any h > 0 with £ < £+ h < b, we have f(§ +h) — f(£) <0
and h is positive. Thus we have

Fe+h) —F(€) _

76 = iy, S <

Therefore f'(£) = 0. O
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Mean value theorem
. L’Hopital’s rule
Mean Value Theorem and Taylor’'s Theorem p‘
Taylor’s theorem

Theorem (Rolle’s theorem)

Suppose f(x) is a function which satisfies the following conditions.

© f(x) is continuous on |[a, b].

@ f(x) is differentiable on (a, b).

O f(a) =1f(b)
Then there exists & € (a, b) such that f'(§) = 0.

By extreme value theorem, there exist a < o, § < b such that

f(a) < f(x) < f(B) for any x € [a, b].

Since f(a) = f(b), at least one of «, 3 can be chosen in (a, b) and
we let it be £&. Then we have f'(£) = 0 since f(x) attains its
maximum or minimum at £.
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem 9
Taylor’s theorem

Theorem (Lagrange's mean value theorem)

Suppose f(x) is a function which satisfies the following conditions.
@ f(x) is continuous on [a, b].
@ f(x) is differentiable on (a, b).

Then there exists £ € (a, b) such that

f(b)—f(a)'
b—a

f(b) — f(a)
b—
there exists & € (a, b) such that

f'(€) =

Let g(x) = f(x) — (x — a). Since g(a) = g(b) = f(a), by Rolle’s theorem,

g®) =0

b—a
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem .
Taylor’s theorem

Exercise (True or False)

Suppose f(x) is a function which is differentiable on (a, b).

@ f(x) is constant on (a, b) if and only if f'(x) = 0 on (a, b).
Answer: T

@ f(x) is monotonic increasing on (a, b) if and only if f'(x) > 0 on (a, b).
Answer: T

@ If f(x) is strictly increasing on (a, b), then f'(x) > 0 on (a, b).
Answer: F

©Q Iff'(x) >0 on (a,b), then f(x) is strictly increasing on (a, b).
Answer: T

f'(x)>0
I

Strictly increasing

I

Monotonic increasing < f/'(x) >0
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Let f(x) be a function which is differentiable on (a, b). Then f(x) is monotonic
increasing if and only if f'(x) > 0 for any x € (a, b).

Suppose f(x) is monotonic increasing on (a, b). Then for any x € (a, b), we
have f(x + h) — f(x) > 0 for any h > 0 and thus

f(x+ h)— f(
h

Mean Value Theorem and Taylor’'s Theorem

f(x) = lim X >0

h—0t

On the other hand, suppose f'(x) > 0 for any x € (a,b). Then for any a < 3
in (a, b), by Lagrange’s mean value theorem, there exists £ € («, 3) such that

F(B) — f(a) = F(€)(B —a) > 0.

Therefore f(x) is monotonic increasing on (a, b).

f(x) is constant on (a, b) if and only if f'(x) = 0 for any x € (a, b).
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem 9
Taylor’s theorem

If f(x) is a differentiable function such that f'(x) > 0 for any x € (a, b),
then f(x) is strictly increasing.

Proof.

Suppose f’(x) > 0 for any x € (a, b). For any oo < 3 in (a, b), by
Lagrange's mean value theorem, there exists £ € («, 3) such that

F(B) — f(a) = F'(§)(B — @) > 0.

Therefore f(x) is strictly increasing on (a, b). O

The converse of the above theorem is false.

f(x) = x3 is strictly increasing on R but f/(0) = 0 is not positive.
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Mean value theorem
. L’Hopital’s rule
Mean Value Theorem and Taylor’'s Theorem p‘
Taylor’s theorem

Theorem (Cauchy’s mean value theorem)

Suppose f(x) and g(x) are functions which satisfies the following conditions.

© f(x),g(x) is continuous on [a, b].
@ f(x),g(x) is differentiable on (a, b).
© g'(x) #0 for any x € (a, b).

Then there exists £ € (a, b) such that

f'(€) _ f(b)—f(a)
g'(¢) &(b)—g(a)’

_ f(b) — f(a)
Let h(x) = £() = A= (6() — £(a))
Since h(a) = h(b) = f(a), by Rolle’s theorem, there exists £ € (a, b) such that
Iiey f(b) —f(a) , _
7O - LD = o
Fe) _ fb)—f(a)
g'(€) g(b) — g(a)
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Mean value theorem
. L’Hopital’s rule
Mean Value Theorem and Taylor’'s Theorem p,
Taylor’s theorem

Theorem (L'Hopital’s rule)
Let a € [—00,+00]. Suppose f and g are differentiable functions such that

(1) lim f(x) = Xlﬂ]ag(x) =0 (or £0).
@ 2/(x) #0 for any x # a (on a neighborhood of a).

f'/
im ) =
x—a g’(x)
f f
Then the limit of (x) at x = a exists and lim ﬂ =
g(x) x—a g(x)

Pt —

For any x # 0, by Cauchy’s mean value theorem, there exists § between a and x such
that

F1(&) _ F(x)—F(a) _ Fx)

g'(§) &(x)-gl@) &x)

Here we redefine f(a) = g(a) = 0, if necessary, so that f and g are continuous at a.
Note that £ — a as x — a. We have

09 _ o 719

x—vag(x)  x—ag/(€)
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Mean value theorem
L’Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem 0
Taylor’s theorem

. 0
Example (Indeterminate form of types — and E)
00

. sinX — X Cos X . xsinx 1
1. Ilm———— = |lm—— ==
x—0 X3 x—0 3X2 3
. X2 . 2x . 2x .
2. lim —— = lim &% = lim = lim — =2
x—0 In sec x x—0 XWX 0 tanx  x—0 sec? x
2
x 2
 In(14+ X3 . T3 . 1 . X
3. lim gt ) - ) = lim 2 = |im 3 lim
x—0 X — sinx x=01—cosx x—01-+4 x3x=01 — cosx
. 2x
= lim — =2
x—0 SIn X
43
4 In(1 + x*) i 18 i 43(1 4+ x) 5
. _— = im = lim ————= =
x—+oo In(1 + x?) x—too 2 x—too 2x(1 4 x*)
1+x
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem .
Taylor’s theorem

Example (Indeterminate form of types co — co and 0 - o)

_ 1 1 . x—1—Inx . 1-1%
5 lim ([ — — = lim ——— = lim —F———
x=>1\Inx x-—1 x=1 (x=1)Inx  x=122% 4 nx
i x—1 i 1 1
= |lim = lim ==
x=1x—1+xInx x=12+Inx 2
—il _1
. _ . tan " x . 7
6. lim cot3xtan ! x = lim = lim 1
x—0 x—0 tan 3x x—0 3 sec? 3x
. 1 1
= lim =
x—03(1 + x?)sec?3x 3
. . . Insinx —
7. lim xlInsinx = lim —— =1 T
x—0F x—0+ = x—=0t — =
X X
2
. —X°cosx
= im —————— =0
x—0t  sin X
. x+1 . In(x+1) —In(x -1
8. lim x|n< > = lim (x+1) i ( )
X—+00 X — 1 X—>—+00 =
X
I S 2
_ li x+1 x—1 _ . 2x _
= im ———— = lim ——————" =2
X—+00 -2 xX—+00 (X + 1)(X — 1)
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Mean value theorem
L’Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem 0
Taylor’s theorem

Example (Indeterminate form of types 0°, 1°° and oc®)

Evaluate the following limits.
o lim Xsinx

x—0F
1
I )
Qo Xm(cos X)x

Q lim (1+2x)7nx

X—>+00
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

. i . ; . . . In x
O In( lim x| = lim In(x*"*) = lim sinxInx = lim
x—07T x—0t x—0t x—0t CSC X
. 2
. S . —sin“x
= lim —*—— = |im ——— =
x—0t — €SC X cot x x—0t X COS X
Thus lim x¥"* = &% = 1.
x—0F
. 1 . 1 . Incosx . —tanx
Q In (hm(cosx)x?) = lim In(cos x)=2 = lim ——— = lim ———
x—0 x—0 x—0 X2 x—0 2x
I —sec?x 1
=\imm —— = ——=.
x—0 2 2
5 1 _1
Thus lim(cosx)x> = e 2.
x—0
. 3 . 3In(1 + 2x . 6x
Q In( lim (1+2x)hx | = lim Q: lim ——— =3.
X—>—+00 X—+00 In x x—+oo 1 4+ 2x
. 1
Thus lim (14 2x)3nx = €°.
x—~+00
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

The following shows some wrong use of L'Hopital rule.

Mean Value Theorem and Taylor’'s Theorem

. secx —1 . secxtanx . sec? xtan x + sec® x 1
Q lim ——— = lim = lim =-
x—0 e2x —1 x—0 2e2x x—0 4e2x 4
This is wrong because Iim0 e?X £ 0,+00. One cannot apply L'Hopital rule
X—r
. secxtanx . .
lim —————_ The correct solution is

x—0 262X

. secx—1 . secxtanx
lim = lim =0.
x—0 e2X — 1 x—0  2e2x
o | 5x — 2 cos? x . 5+ 2cosxsinx P 2(cos? x — sin? x) .
im ——— = |m ——M— = |im —M 7~ —
x—+400 3x + sin x x—+00 3 + sin X cos X x—+00  cos? x — sin? x

This is wrong because lim (5 + 2cosxsinx) and lim (3 + cosxsin x) do
x—++00 X—+00

. . . 5 4+ 2cos xsin x
not exist. One cannot apply L'Hopital rule to lim ——— . The
x—+00 3 + sin x cos x
correct solution is

2
572cosx 5

2
bx — 2 cos” x ~

T e o B e
x—+00  3x + sin‘ x

= IiT S a3
X—>+00 sin® x
P =
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Definition (Taylor polynomial)

Let f(x) be a function such that the n-th derivative exists at x = a. The
Taylor polynomial of degree n of f(x) at x = a is the polynomial

1" a : (3) a g (n) a .
pa(x) = F()+F (@) DD o E B oy T gy

v

The Taylor polynomial pn(x) of degree n of f(x) at x = a is the unique
polynomial such that

pf,k)(a) = f(k)(a) fork=0,1,2,...,n.
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Mean value theorem
. L'Hopital’s rule
Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example

Let f(x)=+v1+x=(1+ x)% The first four derivatives of f(x) are

F(x) = 1(1+x)*%; £FO)(x) = 12%33(1—&—x)7%
F1(x) = — 212(1_‘_)()—7 f(4)(x):_1 23 5(1+ x)~ :

The k-th derivative of f(x) at x =0is

K 1) 2k — 3 (=1)**1.1.3.5...(2k — 5)(2k — 3
o) = L Ck=31_ Y Rk _5)2k-5)

Therefore the Taylor polynomial of f(x) of degree n at x =0 is

f/IO f(3)0 f(n)o n

pa(x) = £(0)+ f'(0)x + 2(1) 2+%X3+...+ nf ),
- 1,1 1, 1 1-35 1 (2n-3)! ,
= 1+2x—5.22x 5273)( +...+H.TX

_oqax X X s E)™M2e -3

2 8 16 128 27n!
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

1 ,’.2 ,’,3
=1 . .
J pa(x) t3- 3116
PI(L‘) =1+ 5
z Fo)=Vita
po(z) =1 v a2
, pg(:t):1v§7"§

Figure: Taylor polynomials for f(x) =1+ xatx=0
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example

Let f(x) = cosx. The n-th derivatives of f(x) is

d" (=¥ cosx, if n=2kiseven
cosx = . ) :
dx”" (=1)*sinx, if n=2k—1is odd

Thus
£ (0) = (1), if n=2kis ev.en
0, if n=2k—1is odd

Therefore the Taylor polynomial of f(x) of degree n =2k at x=0is

_ f7(0) 5, fM(0) 4, FO(0) 6 f(0) o4
Pa(x) = FO) + X =X g e
X2 X4 X6 (_1)kX2k
Sl ata ettt e
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

o pa(x) = ps(x)

ps(x) = pola) =1 =

40320

po(x) = pi(z) =1

pu(x) = pu(z)

@
2

po(z) = pa(x) =1

Figure: Taylor polynomials for f(x) = cosx at x =0
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example

|

We are going to find the Taylor polynomial of f(x) = = at x = 1. The k-th
X
derivatives of f(x) is
d“ 1 (=1)*k!
dxk x — xk+l
Thus
FR(1) = (—1) kL.

Therefore the Taylor polynomial of f(x) of degree nat x =1 is

1! (n)
pa(x) = 1)+ Q) (x—1)+ f2(!1)(x C1P 4o f(Tgll)(X 1y
= 1_(X_1)+2!(X2_!1)2_3!(X371)2+"'+W

1—(x—1)4+(x—1P°—(x—1>4--+(-1)"(x—1)"
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

> pox) =1—(z—1)+ (z—1)°

1
o fa) =~
z
o . \
pi@) =1- (@—1)
” pa(z) =1—(z—1)+(x—1)>— (x—1)°
06 0.4 02 - o 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 :

1
Figure: Taylor polynomials for f(x) = — at x =1
X
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example

We are going to find the Taylor polynomial of f(x) = (1 + x)® at x = 0, where
o € R. Then

£ (0) ala—1)(a—2)--(a—k+1)(1+x)* ¥
= ala—1)(a—2) - (a—k+1).

Therefore the Taylor polynomial of f(x) of degree n at x =0 is

pr(x) = f(0)+F(0)x+ f”(20!)x2 + f(3)§?)x3 T %
-~ 1+ax+0‘@“2;!1)x2+...+ a(a—l)(a—2)n-!--(a—n+1)x"
= () GGG

where

n n!

<a> :a(a—l)(a—2)~~~(a—n—|—1).
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

The following table shows the Taylor polynomials of degree n for (x) at x = 0.
f(x) Taylor polynomial
X 1 x* X8 x"
e +X+§+a+"'+ﬁ
2 4 6 k 2k
x* X' x (=1)*x _
COS X 17§+ﬂfa++w7n—2k
3 5 7 K 2k+1
. X X X (=1)*x _
sin x x—§+a—ﬁ+--~+m,n_2k+l
2 3 4 n+l n
x*  x°  x (1) x
iless) = o = et ———
1 1+x+x+x 4 4 x"
1—x
2 3 4 n+1 n
X X X 5x (=1)""(2n — 3)!x
/1 1422 42 22
L S B TR v 2nn!
1\.2 _ 5.3
(1+x)° 1+ax+a(azll)x C 1)3(|O‘ 2)x +~~-+<?:>x”
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L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

The following table shows the Taylor polynomials of degree n for f(x) at the
given center.
f(x) Taylor polynomial
(x—m)? _ (x=m)* (1) (x = m)*
COSX; X =T alx ol a0 qFeoer (2K)!
20, _ 5)\2 2(, _ o\n
e x=2 e2+ez(x_2)+M+...+M
2! n!
Lo 1 (k= 1)+ (= 1P = (x = 1) 4+ (=1)"(x = 1)"
X
24+ x" T 2 4 8 16 2l
1
3o X =1 1+2(x—1)+4(x -1 +8(x—1>+ - +2"(x —1)"
X x? x3 (2n — 3)!x"
V100—2x; x=0 10— — — —— — ——— — .-+ — ——
o 10~ 2000 200000 1027 1pl
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Theorem (Taylor's theorem)

Let f(x) be a function such that the n+ 1-th derivative exists. Let p,(x) be
the Taylor polynomial of degree n of f(x) at x = a. Then for any x, there
exists & between a and x such that

X _ X n+1(§)x n+1
fx) = ()+( )( a)

F(a) 1 F(a)(x — ) 4o 4 o 3)

n!

POy,

(xfa)Jr( 1)

Note: Taylor polynomial can be used to find the approximate value of a
function for a given value of x. The Taylor's theorem tell us the possible values
of the error, that is the difference between the approximated value p,(x) and

the actual value f(x).
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Proof (Taylor's theorem)

First, suppose f(k)(a) =0fork=0,1,2,...,n. Then py(x) =0 is the zero

polynomial. Let g(x) = (x — a)"*. Observe that g*)(a) = 0 for

k=0,1,2,...,n and g""V(x) = (n+ 1)!. Applying Cauchy’s mean value

theorem successively, there exists &1,&a,...,€ = Ent1 between a and x such that
fi(&) _ fx)—f(a _ f(x)

£@ ~ s00-s@ st (€

f"(&) (&) = f'(a) _ f(&) _ f(x)

g - ge)-g@ g@) gx (georal

e ) — ) _ FE) _ f(x)

= = = (n) m
FE) T g g™  gME) g0 & on[a,&))
UL n+1 (n+1)
f(x) = (€) g(x) = (£) (x —a)™™.

() =
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Mean value theorem

Mean Value Theorem and Taylor’'s Theorem : Hop:tal 3 @l
Taylor’s theorem

Proof (Taylor's theorem).

For the general case, let

h(x) = F(x) — pa(x):
Then h¥)(a) =0 for k =0,1,2,...,n and K" (x) = F("D(x). Applying the
first part of the proof to h(x), there exists & between a and x such that

h" D (€)

h(x) = ) (x —a)™!
(n+1)
f(x)—pa(x) = Enfg')(x _ a)”“
as desired. D/
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example

Let f(x) = cos x.
The Taylor polynomial of degree 5 for f(x) at x =0 is

X2 X
=1——+4+ —.
Pe(x) 2"
For any |x| < 1.5, we have
f© 1.5°
| cosx — ps(x)| = | 6'(§)| (1.5)° < 675' < 0.01583

The Taylor polynomial of degree 11 for f(x) at x =0 is

X2 X4 X6 X8 XlO

pu(x) 2 T 24 720 T 40320 ~ 3628800

For any |x| < 1.5, we have

f(12) 1. 12 B
| cos x — pu(x)| = % (1.5)" < % <271x107".
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Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

210

3628800

Figure: Taylor polynomials for f(x) = cos x
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Mean value theorem
L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

The following table shows the value of p,(x), the actual error which is difference
| cos x — pn(x)| and the largest possible error Lﬂ for x =15 and x = 3.
(n+1)!

n x =15 Error Largest x=3 Error Largest
1 1 0.9292628 1.125 1 1.98999 4.5
3 —0.125 0.19574 0.21094 —3.5 2.51001 3.375
5 0.0859372 0.01521 0.01583 —0.125 0.86499 | 1.0125
7 | 0.0701172 | 6.21 x 10~* | 6.36 x 10~ | —1.1375 | 0.14751 | 0.16273
9 0.0707528 | 1.57 x 10~> | 1.59 x 10~> | —0.97478 | 0.01522 | 0.01628
11 | 0.0707369 | 2.68 x 10~ 7 | 2.71 x 10~7 | —0.99105 | 0.00106 | 0.00111
cos | 0.0707372 —0.98999
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Example
_ (=) (n—1)!

Let f(x) = In(1 . Then (" == _—* fi > 1.
et f(x) =In(1+ x). Then f\"(x) 5 or n >
The Taylor polynomial of degree n of f(x) is
X X X x"
(X)) =x— —+ 2 2 (=)
pn(x) = x >tz -7t +(-1)

Note that f(1) = In2. By Taylor's theorem, there exists 0 < & < 1 such that

FE) 1 1
htl)! (i + DI+ “n+l

|In2 = py(1)] =

When n = 10,000, we have |In2 — pioooo(1)] < L As a matter of fact,

10001°
1 1 1 1
N=1-4+-—>4+...———— =~ 0. 1
P1oo00(1) 2+3 4+ i 0.69309718
In2 =~ 0.69314718
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Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

2 3 4 n
F00 = (14 x); pn) = x = %5 + 75 = G o (1)
For x = 2, by Taylor's theorem, there exists 0 < £ < 2 such that the error is
(n+1) n+1
E,=|In3—p,(2)] = 1F77(0)] o P — 2—
(n+1)! (n+1)(1+ &

2n+

Note that )3n+1 <E < . The table below shows the least possible,
largest p055|ble and actual values of the error E, for various n.

n pn(2) Least Actual  Largest
5 5.06667 0.01463 3.96805 10.6667
10 —64.8254 0.00105 65.924 186.18
15 142442 952x107° 142333 4096

20 —34359.7 9.55x107° 34360.8 99864.4

The actual value is (2) = In(3) &~ 1.09861. One can never get a good
approximation of In3 from p,(2) because p,(2) is divergent as n — oo.
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Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

p3(z) =z

wl
|

flz) =In(1+ =)

T . s E
4 5

Figure: Taylor polynomials for f(x) = In(1 + x)
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Definition (Taylor series)

Let f(x) be an infinitely differentiable function. The Taylor series
of f(x) at x = a is the infinite power series

f3)(a)

T(x) = f(a)+ f'(a)(x —a) + fﬂz(!a) (x—a) + 5 (x—a)>+- -
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L'Hopital’s rule
Taylor’s theorem

Mean Value Theorem and Taylor’'s Theorem

The following table shows the Taylor series for f(x) at the given center.
f(x) Taylor series
X2 3
e x=0 1—|—x—|——+§+
2 4 6
cosx; x=0 1_%+L_%+
3 _\5
sinx: x=m —(x—7'r)+(X3!7r) _(X5!7r) dcoo
(x=17  (x=1) (x—1)°
Inx; x=1 —1)— _
nx; x (x—1) > 4 5 2
x  x° x3 5x*
V1 i x=0 14+=-"—+—_-—
X t2 st 28T
1 =0 1_§+3i_5i+35x4_63x5
Vitx T 2 8 16 ' 128 256
_ 2 _ _ 3
(1+x)% x=0 1+ax+a(a2|1)x +a(a 1)3(|a 2)x 4.
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Taylor’s theorem

f(x) Taylor series

Mean Value Theorem and Taylor’'s Theorem

e, S X—k
&
%) (_1)kx2k
COS X;
= (2k)!
. oo ( l)kX2k+1
sin x; _
EO (2k +1)!
oo [ 1\k+1 k
(1 4x); 3 EN X
=1 k
1 =,
1—x' ,(2::0)(
5 2 /e - ala—1)(a—=2)---(a—k+1)
(1+x)% Z:O(k)xk7 (%) = P
%) _l)kx2k+1
t 1 . (7
X Y okt
(2k)!X2k+1

E
L

x

8

=0 4K (k")?(2k + 1)
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Mean value theorem
L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Suppose T(x) is the Taylor series of f(x) at x = 0. Then for any positive
integer k, the Taylor series for f(x*) at x = 0 is T(x*).

f(x) Taylor series at x =0

1 2, 4 .6
1 x?  3x* X8 35x8

I+ >+ =+ + +o-

V1—x? 2 8 16 128
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Mean Value Theorem and Taylor’'s Theorem : Hop:tal 3 @l
Taylor’s theorem

Theorem

Suppose the Taylor series for f(x) at x =0 is
T(x) = Zakxk — a0+ a1x 4+ ax® - azxS ...
k=0
Then the Taylor series for f'(x) is

T/(X) = Z kakail = a1 + 2axx + 383X2 4 434X3 qpcoo g
k=1
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L'Hopital’s rule

Mean Value Theorem and Taylor’'s Theorem ,
Taylor’s theorem

Find the Taylor series of the following functions.
1
O arxp
Q tanlx )
Q Let F(x)=— 1 so that F'(x) = 1 The Taylor series for F(x)
T 14x o (1+x)? Y
atx=01Is
T(x)=—-14+x—x>+x>—x*+....
1
Therefore the Taylor series for F'(x) = A1 x7 is
T'(x)=1-2x+3x" —4x> +---
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2. Suppose the Taylor series for f(x) =tan"'x at x =0 is

T(x) = ap + aix + ax? + azx® + anxt - -

which

Now comparing T'(x) with the Taylor series for f'(x) = 7 —:x2

takes the form
11— +x*—xf 4.,

we obtain the values of a1, a>, as,... and get
3 5 7
X X X
T(x) = X X
()=a+x—Z+F-=+
Since ap = T(0) = f(0) =0, we have
3 5 7
X X X
T(x)=x—" 4+ — 2 4.
(x) =x 3 IF 5 7 i
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Suppose the Taylor series for f(x) and g(x) at x =0 are

S(x) = > ax=atax+ax’ +ax’ 4,
k=0
oo

T(x) = Zbkxk:bo—|—b1x+b2x2+b3x3+... ,
k=0

respectively. Then the Taylor series for f(x)g(x) at x =0 is

Z (Z akb,,_k> Xn
n=0 k=0

= agho + (aob1 + a1bo)x + (aobs + a1by + azbo)x* + - - -
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The coefficient of x” of the Taylor series of f(x)g(x) at x=0is

p : B o (Leibniz's formula)
=0

_ N n! f(0)g"4(0)
- kZ:O ki(n— k)l nl

~ f9(0) £“7(0)
kI (n—k)!

k=0

n
= E akbn—k
k=0
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@ The Taylor series for ™ In(1 + x) is

1+4X+16x2+64x3+ X_f+i3_i4+
2! 3! 2 "3 4

1 , (1 1 3
(3 (o ()

_ e 1
B 2 3

Mean Value Theorem and Taylor’'s Theorem

tan~ ! x
The Taylor series for —— is
(2 y T2

MATH1010 University Mathematics



Mean value theorem
L'Hopital’s rule
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For any power series

Mean Value Theorem and Taylor’'s Theorem

5(x):Za,,x":ao+alx+agx2+a3x3+--- )
n=0

there exists R € [0, +o0] called radius of convergence such that

© S(x) is absolutely convergent for any |x| < R and divergent for any
|x| > R. For |x| = R, S(x) may or may not be convergent.

@ When S(x) is considered as a function of x, it is differentiable on
(=R, R) and its derivative is

(oo}
S'(x) = Z na,x""' = a; + 2ayx + 3a3x® + 4asx> + - .
n=1

Caution! There exists R such that the Taylor series T(x) is convergent when
|x| < R. Although in most examples, T(x) converges to f(x) when it is

convergent, there are examples that T(x) does not converge to f(x).
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The following table shows the convergence of Taylor series of various functions.

f(x) T(x) R x=—R x=R
x2 X3
ex 14+ x+ o + el + .- +o0o Not Applicable Not Applicable
A
cos x 1—x2+ TR + - +o0o  Not Applicable Not Applicable
x3 x.5 x.7
sin x X — Tl + T 4+ +o0o0  Not Applicable Not Applicable
2 3 4
In(1 + x) xfx?Jr%fXIJr--- 1 Divergent In2
x X2 x3 5x%
1 1+—-——+———+--. 1 0 2
Tty T T et V2
1
T2 1—x24x*—x54... 1 Divergent Divergent
¢ i x3 n 2x> i 17x7 T Di . Di .
an x X+ —=—+—=+— - ivergen ivergen
3 15 315 2 & &
tan™! x X—X—3+X—5—X—7+ 1 T T
3 5 7 4 4
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Let T(x) be the Taylor series of a function f(x) at x = a. Does T(x) always
converge to f(x) at the points where T(x) is convergent?

v

No. There exists function f(x) with Taylor series T (x) at x = a such that

@ T(x) is convergent for any real number x € R, and

@ T(x) does not converge to f(x) for any x # a.
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e, ifx#£0
0, ifx=0"
Then the Taylor series for f(x) at x =0 is T(x) = 0.

f(x) =

Note. It is obvious that f(x) # 0 when x # 0. Therefore T(x) # f(x) for any
x # 0.
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Proof.

We claim that for any nonnegative integer n, we have

Pa(x) -1 |
f-(n)(x): 3 e 2, |fx750

0, if x=0

x

for some polynomial P,(x). In particular, f(")(O) =0 forany n=0,1,2,--- which
implies that T(x) = 0. We prove that claim by induction on n. When n =0,
£(O(x) = f(x) and there is nothing to prove. Suppose the claim is true for n = k.
Then when x # 0,

) _ KP4+ 2) =3l IP, 1 3P, —3kAP + 2P 1
= <6k e = 3(k+1) e -

>

We may take Py = X3P,’< — 3kx?2Py + 2P). On the other hand,

F(K)(h) — F)(0 Pe(h) 1 y3*Py(L)
FUHD (0) — [im () © _ i Pulh) 35 _ Yo
h—0 h h—0 h3k y—+oo ey
This completes the induction step and the proof of the claim O
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2
flx) = Fe=
2
—6x2 4 4
f(x) = 6X76+e7x%
X
4 2
f(3)(x) _ 24X —396X +8e_;1§
X
6 4 2
f(4)(X) _ —120x +300X127144X +16e,%2
X
8 6 4 2
f(5)(x) _ 720x° — 2640x° + 2040x* — 480x —|—326_%2

15
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