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Definition (Differentiability)

Let f (x) be a function. Denote

f ′(a) = lim
h→0

f (a + h)− f (a)

h

and we say that f (x) is differentiable at x = a if the above limit
exists. We say that f (x) is differentiable on (a, b) if f (x) is
differentiable at every point in (a, b).

The above limit can also be written as

f ′(a) = lim
x→a

f (x)− f (a)

x − a
.
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Theorem

If f (x) differentiable at x = a, then f (x) is continuous at x = a.

Differentiable at x = a⇒ Continuous at x = a

Proof.

Suppose f (x) is differentiable at x = a. Then

lim
x→a

(f (x)− f (a)) = lim
x→a

(
f (x)− f (a)

x − a

)
(x − a)

= lim
x→a

(
f (x)− f (a)

x − a

)
lim
x→a

(x − a)

= f ′(a) · 0 = 0

Therefore f (x) is continuous at x = a.

Note that the converse of the above theorem does not hold. The function

f (x) = |x | is continuous but not differentiable at 0.
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Example

1 f (x) = ex : f ′(0) = lim
h→0

eh − e0

h
= lim

h→0

eh − 1

h
= 1.

2 f (x) = ln x : f ′(1) = lim
h→0

ln(1 + h)− ln 1

h
= lim

h→0

ln(1 + h)

h
= 1.

3 f (x) = sin x : f ′(0) = lim
h→0

sin h − sin 0

h
= lim

h→0

sin h

h
= 1.
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Example

Find the values of a, b if f (x) =

{
4x − 1, if x ≤ 1

ax2 + bx , if x > 1
is differentiable at

x = 1.

Solution

Since f (x) is differentiable at x = 1, f (x) is continuous at x = 1 and we have

lim
x→1+

f (x) = f (1)⇒ lim
x→1+

(ax2 + bx) = a + b = 3.

Moreover, f (x) is differentiable at x = 1 and we have

lim
h→0−

f (1 + h)− f (1)

h
= lim

h→0−

(4(1 + h)− 1)− 3

h
= 4

lim
h→0+

f (1 + h)− f (1)

h
= lim

h→0+

a(1 + h)2 − b(1 + h)− 3

h
= 2a + b

Therefore

{
a + b = 3

2a + b = 4
⇒

{
a = 1

b = 2
.
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Definition (First derivative)

Let y = f (x) be a differentiable function on (a, b). The first
derivative of f (x) is the function on (a, b) defined by

dy

dx
= f ′(x) = lim

h→0

f (x + h)− f (x)

h
.

Theorem

Let f (x) and g(x) be differentiable functions and c be a real
number. Then

1 (f + g)′(x) = f ′(x) + g ′(x)

2 (cf )′(x) = cf ′(x)
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Theorem

1
d

dx
xn = nxn−1, n ∈ Z+, for x ∈ R

2
d

dx
ex = ex for x ∈ R

3
d

dx
ln x =

1

x
for x > 0

4
d

dx
cos x = − sin x for x ∈ R

5
d

dx
sin x = cos x for x ∈ R

MATH1010 University Mathematics



Differentiation
Mean Value Theorem and Taylor’s Theorem

Differentiability of functions
Rules of differentiation
Second and higher derivatives

Proof (
d

dx
xn = nxn−1)

Let y = xn. For any x ∈ R, we have

dy

dx
= lim

h→0

(x + h)n − xn

h

= lim
h→0

(x + h − x)((x + h)n−1 + (x + h)n−2x + · · ·+ xn−1)

h

= lim
h→0

((x + h)n−1 + (x + h)n−2x + · · ·+ xn−1)

= nxn−1

Note that the above proof is valid only when n ∈ Z+ is a positive
integer.
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Proof (
d

dx
ex = ex )

Let y = ex . For any x ∈ R, we have

dy

dx
= lim

h→0

ex+h − ex

h
= lim

h→0

ex (eh − 1)

h
= ex .

(Alternative proof)

dy

dx
=

d

dx

(
1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)
= 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·

= 1 + x +
x2

2!
+

x3

3!
+ · · ·

= ex

In general, differentiation cannot be applied term by term to infinite series. The

second proof is valid only after we prove that this can be done to power series.
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Proof(
d

dx
ln x =

1

x

)
Let f (x) = ln x. For any x > 0, we have

dy

dx
= lim

h→0

ln(x + h)− ln x

h
= lim

h→0

ln
(

1 + h
x

)
h

=
1

x
.

(
d

dx
cos x = − sin x

)
Let f (x) = cos x. For any x ∈ R, we have

dy

dx
= lim

h→0

cos(x + h)− cos x

h
= lim

h→0

−2 sin
(

x + h
2

)
sin
(

h
2

)
h

= − sin x .

(
d

dx
sin x = cos x

)
Let f (x) = sin x. For any x ∈ R, we have

dy

dx
= lim

h→0

sin(x + h)− sin x

h
= lim

h→0

2 cos
(

x + h
2

)
sin
(

h
2

)
h

= cos x .
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Definition

Let a > 0 be a positive real number. For x ∈ R, we define

ax = ex ln a.

Theorem

Let a > 0 be a positive real number. We have

1 ax+y = ax ay for any x , y ∈ R

2
d

dx
ax = ax ln a.

Proof.

1 ax+y = e(x+y) ln a = ex ln aey ln a = ax ay

2
d

dx
ax =

d

dx
ex ln a = ex ln a ln a = ax ln a
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Example

Let f (x) = |x | for x ∈ R. Show that f (x) is not differentiable at x = 0.

Proof.

Observe that

lim
h→0−

f (h)− f (0)

h
= lim

h→0−

−h

h
= −1

lim
h→0+

f (h)− f (0)

h
= lim

h→0+

h

h
= 1

Thus the limit

lim
h→0

f (h)− f (0)

h

does not exist. Therefore f (x) is not differentiable at x = 0.
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Figure: f (x) = |x |
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Example

Let f (x) = |x |x for x ∈ R. Find f ′(x).

Solution

When x < 0, f (x) = −x2 and f ′(x) = −2x. When x > 0, f (x) = x2 and
f ′(x) = 2x. When x = 0, we have

lim
h→0−

f (h)− f (0)

h
= lim

h→0−

−h2 − 0

h
= 0

lim
h→0+

f (h)− f (0)

h
= lim

h→0+

h2 − 0

h
= 0

Thus f ′(0) = 0. Therefore

f ′(x) =


−2x , if x < 0

0, if x = 0

2x , if x > 0

= 2|x |.

Note that f ′(x) = 2|x | is continuous at x = 0.
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Figure: f (x) = |x |x
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Example

Let

f (x) =

x sin
1

x
, if x 6= 0

0, if x = 0
.

1 Find f ′(x) for x 6= 0.

2 Determine whether f (x) is differentiable at x = 0.

Solution

1. When x 6= 0,

f ′(x) = sin
1

x
− 1

x
cos

1

x
.

2. We have

lim
h→0

f (h)− f (0)

h
= lim

h→0

h sin 1
h

h
= lim

h→0
sin

1

h

does not exist. Therefore f (x) is not differentiable at x = 0.
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(
1

x

)
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Example

Let

f (x) =

x2 sin
1

x
, if x 6= 0

0, if x = 0
.

1 Find f ′(x).

2 Determine whether f ′(x) is continuous at x = 0.

Solution

1. When x 6= 0, we have

f ′(x) = 2x sin
1

x
+ x2

(
− 1

x2
cos

1

x

)
= 2x sin

1

x
− cos

1

x
.
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Solution

2. When x = 0, we have

f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

h2 sin 1
h

h
= lim

h→0
h sin

1

h
.

Since lim
h→0

h = 0 and | sin 1
h
| ≤ 1 is bounded, we have f ′(0) = 0. Therefore

f ′(x) =

2x sin
1

x
− cos

1

x
, if x 6= 0

0, if x = 0
.

Observe that

lim
x→0

f ′(x) = lim
x→0

(
2x sin

1

x
− cos

1

x

)
does not exist. We conclude that f ′(x) is not continuous at x = 0.
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Figure: f (x) = x2 sin

(
1

x

)
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Example

f (x)
f (x) is

continuous
at x = 0

f (x) is
differentiable

at x = 0

f ′(x) is
continuous
at x = 0

|x | Yes No Not applicable

|x |x Yes Yes Yes

x sin

(
1

x

)
; f (0) = 0 Yes No Not applicable

x2 sin

(
1

x

)
; f (0) = 0 Yes Yes No
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Example

The following diagram shows the relations between the existence of limit,
continuity and differentiability of a function at a point a. (Examples in the
bracket is for a = 0.)

Second differentiable (f (x) =
sin x

x
; f (0) = 1)

⇓
Continuously differentiable (f (x) = |x |x)

⇓
Differentiable (f (x) = x2 sin(x−1); f (0) = 0)

⇓
Continuous (f (x) = |x |)

⇓
Limit exists (f (x) =

sin x

x
; f (0) = 0)

⇓
Limit exists from both sides (f (x) =

x

|x | ; f (0) = 0)
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Theorem (Basic formulas for differentiation)

d

dx
xn = nxn−1

d

dx
ex = ex d

dx
ln x =

1

x
d

dx
sin x = cos x

d

dx
cos x = − sin x

d

dx
tan x = sec2 x

d

dx
cot x = − csc2 x

d

dx
sec x = sec x tan x

d

dx
csc x = − csc x cot x

d

dx
cosh x = sinh x

d

dx
sinh x = cosh x
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Theorem (Product rule and quotient rule)

Let u and v be differentiable functions of x. Then

d

dx
uv = u

dv

dx
+ v

du

dx

d

dx

u

v
=

v du
dx
− u dv

dx

v2

Proof

Let u = f (x) and v = g(x).

d

dx
uv = lim

h→0

f (x + h)g(x + h)− f (x)g(x)

h

= lim
h→0

(
f (x + h)g(x + h)− f (x + h)g(x)

h
+

f (x + h)g(x)− f (x)g(x)

h

)
= lim

h→0

(
f (x + h) ·

g(x + h)− g(x)

h
+ g(x) ·

f (x + h)− f (x)

h

)
= u

dv

dx
+ v

du

dx
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Proof.

d

dx

u

v
= lim

h→0

f (x+h)
g(x+h)

− f (x)
g(x)

h

= lim
h→0

f (x + h)g(x)− f (x)g(x + h)

hg(x)g(x + h)

= lim
h→0

(
f (x + h)g(x)− f (x)g(x)

hg(x)g(x + h)
− f (x)g(x + h)− f (x)g(x)

hg(x)g(x + h)

)
= lim

h→0

(
g(x) · f (x + h)− f (x)

hg(x)g(x + h)
− f (x) · g(x + h)− g(x)

hg(x)g(x + h)

)
=

v du
dx
− u dv

dx

v 2
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Theorem (Chain rule)

Let y = f (u) be a function of u and u = g(x) be a function of x.
Suppose g(x) is differentiable at x = a and f (u) is differentiation at
u = g(a). Then f ◦ g(x) = f (g(x)) is differentiable at x = a and

(f ◦ g)′(a) = f ′(g(a))g ′(a).

In other words,
dy

dx
=

dy

du
· du

dx
.
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Proof

(f ◦ g)′(a) = lim
h→0

f (g(a + h))− f (g(a))

h

= lim
h→0

f (g(a + h))− f (g(a))

g(a + h)− g(a)
lim
h→0

g(a + h)− g(a)

h

= lim
k→0

f (g(a) + k)− f (g(a))

k
lim
h→0

g(a + h)− g(a)

h

= f ′(g(a))g ′(a)

The above proof is valid only if g(a + h)− g(a) 6= 0 whenever h is sufficiently
close to 0. This is true when g ′(a) 6= 0 because of the following proposition.

Proposition

Suppose g(x) is a function such that g ′(a) 6= 0. Then there exists δ > 0 such
that if 0 < |h| < δ, then

g(a + h)− g(a) 6= 0.
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When g ′(a) = 0, we need another proposition.

Proposition

Suppose f (u) is a function which is differentiable at u = b. Then there exists
δ > 0 and M > 0 such that

|f (b + h)− f (b)| < M|h| for any |h| < δ.

The proof of chain rule when g ′(a) = 0 goes as follows. There exists δ > 0
such that

|f (g(a + h))− f (g(a))| < M|g(a + h)− g(a)| for any |h| < δ.

Therefore

lim
h→0

∣∣∣∣ f (g(a + h))− f (g(a))

h

∣∣∣∣ ≤ lim
h→0

M

∣∣∣∣g(a + h)− g(a)

h

∣∣∣∣ = 0

which implies (f ◦ g)′(a) = 0.
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Example

The chain rule is used in the following way. Suppose u is a
differentiable function of x . Then

d

dx
un = nun−1 du

dx
d

dx
eu = eu du

dx
d

dx
ln u =

1

u

du

dx
d

dx
cos u = − sin u

du

dx
d

dx
sin u = cos u

du

dx
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Example

1.
d

dx
sin3 x = 3 sin2 x

d

dx
sin x = 3 sin2 x cos x

2.
d

dx
e
√

x = e
√

x d

dx

√
x =

e
√

x

2
√

x

3.
d

dx

1

(ln x)2
= − 2

(ln x)3

d

dx
ln x = − 2

x(ln x)3

4.
d

dx
ln cos 2x =

1

cos 2x
(− sin 2x) · 2 = −2 sin 2x

cos 2x
= −2 tan 2x

5.
d

dx
tan
√

1 + x2 = sec2
√

1 + x2 · 1

2
√

1 + x2
· 2x =

x sec2
√

1 + x2

√
1 + x2

6.
d

dx
sec3
√

sin x = 3 sec2
√

sin x(sec
√

sin x tan
√

sin x)
1

2
√

sin x
· cos x

=
3 sec3

√
sin x tan

√
sin x cos x

2
√

sin x
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Example

7.
d

dx
cos4 x sin x = cos4 x cos x + 4 cos3 x(− sin x) sin x

= cos5 x − 4 cos3 x sin2 x

8.
d

dx

sec 2x

ln x
=

ln x(2 sec 2x tan 2x)− sec 2x( 1
x

)

(ln x)2

=
sec 2x(2x tan 2x ln x − 1)

x(ln x)2

9. e
tan x

x = e
tan x

x

(
x sec2 x − tan x

x2

)

10. sin

(
ln x√
1 + x2

)
= cos

(
ln x√
1 + x2

)
√

1 + x2( 1
x

)− ln x( 2x

2
√

1+x2
)

1 + x2


=

(
1 + x2 − x2 ln x

x(1 + x2)
3
2

)
cos

(
ln x√
1 + x2

)
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Definition (Implicit functions)

An implicit function is an equation of the form F (x , y) = 0. An implicit function may
not define a function. Sometimes it defines a function when the domain and range are
specified.

Theorem

Let F (x , y) = 0 be an implicit function. Then

∂F

∂x
+
∂F

∂y

dy

dx
= 0

and we have
dy

dx
= −

∂F
∂x
∂F
∂y

.

Here ∂F
∂x

is called the partial derivative of F with respect to x which is the derivative
of F with respect to x while considering y as constant. Similarly the partial derivative
∂F
∂y

is the derivative of F with respect to y while considering x as constant.
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Example

Find
dy

dx
for the following implicit functions.

1 x2 − xy − xy2 = 0

2 cos(xey ) + x2 tan y = 1

Solution

1. 2x − (y + xy ′)− (y2 + 2xyy ′) = 0
xy ′ + 2xyy ′ = 2x − y − y2

y ′ =
2x − y − y2

x + 2xy
2. − sin(xey )(ey + xey y ′) + 2x tan y + x2 sec2 yy ′ = 0

x2 sec2 yy ′ − xey sin(xey )y ′ = ey sin(xey )− 2x tan y

y ′ =
ey sin(xey )− 2x tan y

x2 sec2 y − xey sin(xey )
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Theorem

Suppose f (y) is a differentiable function with f ′(y) 6= 0 for any y. Then the inverse
function y = f −1(x) of f (y) is differentiable and

(f −1)′(x) =
1

f ′(f −1(x))
.

In other words,
dy

dx
=

1
dx
dy

.

Proof.

By chain rule, we have

f (f −1(x)) = x

f ′(f −1(x))(f −1)′(x) = 1

(f −1)′(x) =
1

f ′(f −1(x))
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Theorem

1 For sin−1 : [−1, 1]→ [−π
2
,
π

2
],

d

dx
sin−1 x =

1√
1− x2

.

2 For cos−1 : [−1, 1]→ [0, π],

d

dx
cos−1 x = − 1√

1− x2
.

3 For tan−1 : R→ [−π
2
,
π

2
],

d

dx
tan−1 x =

1

1 + x2
.
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Proof.

1

y = sin−1 x

sin y = x

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y
(Note: cos y ≥ 0 for −π

2
≤ y ≤ π

2
)

=
1√

1− x2

The other parts can be proved similarly.
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Example

Find
dy

dx
if y = xx .

Solution

There are 2 methods.
Method 1. Note that y = xx = ex ln x . Thus

dy

dx
= ex ln x (1 + ln x) = xx (1 + ln x).

Method 2. Taking logarithm on both sides, we have

ln y = x ln x

1

y

dy

dx
= 1 + ln x

dy

dx
= y(1 + ln x)

= xx (1 + ln x)

MATH1010 University Mathematics



Differentiation
Mean Value Theorem and Taylor’s Theorem

Differentiability of functions
Rules of differentiation
Second and higher derivatives

Example

Let u and v be functions of x . Show that

d

dx
uv = uv v ′ ln u + uv−1vu′.

Proof.

We have

d

dx
uv =

d

dx
ev ln u

= ev ln u

(
(v ′ ln u + v · u′

u

)
= uv v ′

(
ln u +

vu′

u

)
= uv v ′ ln u + uv−1vu′
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Definition (Second and higher derivatives)

Let y = f (x) be a function. The second derivative of f (x) is the
function

d2y

dx2
=

d

dx

(
dy

dx

)
.

The second derivative of y = f (x) is also denoted as f ′′(x) or y ′′. Let n
be a non-negative integer. The n-th derivative of y = f (x) is defined
inductively by

dny

dxn
=

d

dx

(
dn−1y

dxn−1

)
for n ≥ 1

d0y

dx0
= y

The n-th derivative is also denoted as f (n)(x) or y (n). Note that
f (0)(x) = f (x).
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Mean Value Theorem and Taylor’s Theorem

Differentiability of functions
Rules of differentiation
Second and higher derivatives

Example

Find
d2y

dx2
for the following functions.

1 y = ln(sec x + tan x)

2 x2 − y2 = 1

Solution

1. y ′ =
1

sec x + tan x
(sec x tan x + sec2 x)

= sec x
y ′′ = sec x tan x

2. 2x − 2yy ′ = 0

y ′ =
x

y

y ′′ =
y − xy ′

y2

=
y − x( x

y
)

y2

=
y2 − x2

y3
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Theorem (Leinbiz’s rule)

Let u and v be differentiable function of x. Then

(uv)(n) =
n∑

k=0

(
n

k

)
u(n−k)v (k)

where
(

n
k

)
= n!

k!(n−k)!
is the binormial coefficient.

Example

(uv)(0) = u(0)v (0)

(uv)(1) = u(1)v (0) + u(0)v (1)

(uv)(2) = u(2)v (0) + 2u(1)v (1) + u(0)v (2)

(uv)(3) = u(3)v (0) + 3u(2)v (1) + 3u(1)v (2) + u(0)v (3)

(uv)(4) = u(4)v (0) + 4u(3)v (1) + 6u(2)v (2) + 4u(1)v (3) + u(0)v (4)

(uv)(5) = u(5)v (0) + 5u(4)v (1) + 10u(3)v (2) + 10u(2)v (3) + 5u(1)v (4) + u(0)v (5)
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Proof

We prove the Leibniz’s rule by induction on n. When n = 0,
(uv)(0) = uv = u(0)v (0). Assume that for some nonnegative m,

(uv)(m) =
m∑

k=0

(
m

k

)
u(m−k)v (k).

Then

(uv)(m+1)

=
d

dx
(uv)(m)

=
d

dx

m∑
k=0

(
m

k

)
u(m−k)v (k)

=
m∑

k=0

(
m

k

)
(u(m−k+1)v (k) + u(m−k)v (k+1))
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Differentiation
Mean Value Theorem and Taylor’s Theorem

Differentiability of functions
Rules of differentiation
Second and higher derivatives

Proof.

=
m∑

k=0

(
m

k

)
u(m−k+1)v (k) +

m∑
k=0

(
m

k

)
u(m−k)v (k+1)

=
m∑

k=0

(
m

k

)
u(m−k+1)v (k) +

m+1∑
k=1

(
m

k − 1

)
u(m−(k−1))v (k)

=
m∑

k=0

(
m

k

)
u(m−k+1)v (k) +

m+1∑
k=1

(
m

k − 1

)
u(m−k+1)v (k)

=
m+1∑
k=0

((
m

k

)
+

(
m

k − 1

))
u(m−k+1)v (k)

=
m+1∑
k=0

(
m + 1

k

)
u(m+1−k)v (k)

Here we use the convention
(

m
−1

)
=
(

m
m+1

)
= 0 in the second last equality. This

completes the induction step and the proof of the Leibniz’s rule.
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Differentiability of functions
Rules of differentiation
Second and higher derivatives

Example

Let y = x2e3x . Find y (n) where n is a nonnegative integer.

Solution

Let u = x2 and v = e3x . Then u(0) = x2, u(1) = 2x, u(2) = 2 and u(k) = 0 for
k ≥ 3. On the other hand, v (k) = 3k e3x for any k ≥ 0. Therefore by Leibniz’s
rule, we have

y (n) =

(
n

0

)
u(0)v (n) +

(
n

1

)
u(1)v (n−1) +

(
n

2

)
u(2)v (n−2)

= x2(3ne3x ) + n(2x)(3n−1e3x ) +
n(n − 1)

2!
(2)(3n−2e3x )

= (3nx2 + 2 · 3n−1nx + 3n−2(n2 − n))e3x

= 3n−2(9x2 + 6nx + n2 − n)e3x
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Mean value theorem
L’Hopital’s rule
Taylor’s theorem

Theorem

Let f be a function on (a, b) and ξ ∈ (a, b) such that

1 f is differentiable at x = ξ.

2 Either f (x) ≤ f (ξ) for any x ∈ (a, b), or f (x) ≥ f (ξ) for any x ∈ (a, b).

Then f ′(ξ) = 0.

Proof.

Suppose f (x) ≤ f (ξ) for any x ∈ (a, b). The proof for the other case is more or less
the same. For any h < 0 with a < ξ + h < ξ, we have f (ξ + h)− f (ξ) ≤ 0 and h is
negative. Thus

f ′(ξ) = lim
h→0−

f (ξ + h)− f (ξ)

h
≥ 0

On the other hand, for any h > 0 with ξ < ξ + h < b, we have f (ξ + h)− f (ξ) ≤ 0
and h is positive. Thus we have

f ′(ξ) = lim
h→0+

f (ξ + h)− f (ξ)

h
≤ 0

Therefore f ′(ξ) = 0.
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Theorem (Rolle’s theorem)

Suppose f (x) is a function which satisfies the following conditions.

1 f (x) is continuous on [a, b].

2 f (x) is differentiable on (a, b).

3 f (a) = f (b)

Then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof.

By extreme value theorem, there exist a ≤ α, β ≤ b such that

f (α) ≤ f (x) ≤ f (β) for any x ∈ [a, b].

Since f (a) = f (b), at least one of α, β can be chosen in (a, b) and
we let it be ξ. Then we have f ′(ξ) = 0 since f (x) attains its
maximum or minimum at ξ.
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Taylor’s theorem

Theorem (Lagrange’s mean value theorem)

Suppose f (x) is a function which satisfies the following conditions.

1 f (x) is continuous on [a, b].

2 f (x) is differentiable on (a, b).

Then there exists ξ ∈ (a, b) such that

f ′(ξ) =
f (b)− f (a)

b − a
.

Proof

Let g(x) = f (x)−
f (b)− f (a)

b − a
(x − a). Since g(a) = g(b) = f (a), by Rolle’s theorem,

there exists ξ ∈ (a, b) such that
g ′(ξ) = 0

f ′(ξ)−
f (b)− f (a)

b − a
= 0

f ′(ξ) =
f (b)− f (a)

b − a
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Exercise (True or False)

Suppose f (x) is a function which is differentiable on (a, b).

1 f (x) is constant on (a, b) if and only if f ′(x) = 0 on (a, b).
Answer: T

2 f (x) is monotonic increasing on (a, b) if and only if f ′(x) ≥ 0 on (a, b).
Answer: T

3 If f (x) is strictly increasing on (a, b), then f ′(x) > 0 on (a, b).
Answer: F

4 If f ′(x) > 0 on (a, b), then f (x) is strictly increasing on (a, b).
Answer: T

f ′(x) > 0
⇓

Strictly increasing
⇓

Monotonic increasing ⇔ f ′(x) ≥ 0
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Mean value theorem
L’Hopital’s rule
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Theorem

Let f (x) be a function which is differentiable on (a, b). Then f (x) is monotonic
increasing if and only if f ′(x) ≥ 0 for any x ∈ (a, b).

Proof

Suppose f (x) is monotonic increasing on (a, b). Then for any x ∈ (a, b), we
have f (x + h)− f (x) ≥ 0 for any h > 0 and thus

f ′(x) = lim
h→0+

f (x + h)− f (x)

h
≥ 0.

On the other hand, suppose f ′(x) ≥ 0 for any x ∈ (a, b). Then for any α < β
in (a, b), by Lagrange’s mean value theorem, there exists ξ ∈ (α, β) such that

f (β)− f (α) = f ′(ξ)(β − α) ≥ 0.

Therefore f (x) is monotonic increasing on (a, b).

Corollary

f (x) is constant on (a, b) if and only if f ′(x) = 0 for any x ∈ (a, b).
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Mean value theorem
L’Hopital’s rule
Taylor’s theorem

Theorem

If f (x) is a differentiable function such that f ′(x) > 0 for any x ∈ (a, b),
then f (x) is strictly increasing.

Proof.

Suppose f ′(x) > 0 for any x ∈ (a, b). For any α < β in (a, b), by
Lagrange’s mean value theorem, there exists ξ ∈ (α, β) such that

f (β)− f (α) = f ′(ξ)(β − α) > 0.

Therefore f (x) is strictly increasing on (a, b).

The converse of the above theorem is false.

Example

f (x) = x3 is strictly increasing on R but f ′(0) = 0 is not positive.
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Theorem (Cauchy’s mean value theorem)

Suppose f (x) and g(x) are functions which satisfies the following conditions.

1 f (x), g(x) is continuous on [a, b].

2 f (x), g(x) is differentiable on (a, b).

3 g ′(x) 6= 0 for any x ∈ (a, b).

Then there exists ξ ∈ (a, b) such that

f ′(ξ)

g ′(ξ)
=

f (b)− f (a)

g(b)− g(a)
.

Proof

Let h(x) = f (x)−
f (b)− f (a)

g(b)− g(a)
(g(x)− g(a)).

Since h(a) = h(b) = f (a), by Rolle’s theorem, there exists ξ ∈ (a, b) such that

f ′(ξ)−
f (b)− f (a)

g(b)− g(a)
g ′(ξ) = 0

f ′(ξ)

g ′(ξ)
=

f (b)− f (a)

g(b)− g(a)
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Theorem (L’Hopital’s rule)

Let a ∈ [−∞,+∞]. Suppose f and g are differentiable functions such that

1 lim
x→a

f (x) = lim
x→a

g(x) = 0 (or ±∞).

2 g ′(x) 6= 0 for any x 6= a (on a neighborhood of a).

3 lim
x→a

f ′(x)

g ′(x)
= L.

Then the limit of
f (x)

g(x)
at x = a exists and lim

x→a

f (x)

g(x)
= L.

Proof

For any x 6= 0, by Cauchy’s mean value theorem, there exists ξ between a and x such
that

f ′(ξ)

g ′(ξ)
=

f (x)− f (a)

g(x)− g(a)
=

f (x)

g(x)
.

Here we redefine f (a) = g(a) = 0, if necessary, so that f and g are continuous at a.
Note that ξ → a as x → a. We have

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(ξ)

g ′(ξ)
= L.
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Example (Indeterminate form of types
0

0
and
∞
∞ )

1. lim
x→0

sin x − x cos x

x3
= lim

x→0

x sin x

3x2
=

1

3

2. lim
x→0

x2

ln sec x
= lim

x→0

2x
sec x tan x

sec x

= lim
x→0

2x

tan x
= lim

x→0

2

sec2 x
= 2

3. lim
x→0

ln(1 + x3)

x − sin x
= lim

x→0

x2

1+x3

1− cos x
= lim

x→0

1

1 + x3
lim
x→0

x2

1− cos x

= lim
x→0

2x

sin x
= 2

4. lim
x→+∞

ln(1 + x4)

ln(1 + x2)
= lim

x→+∞

4x3

1+x4

2x
1+x2

= lim
x→+∞

4x3(1 + x2)

2x(1 + x4)
= 2
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Example (Indeterminate form of types ∞−∞ and 0 · ∞)

5. lim
x→1

(
1

ln x
− 1

x − 1

)
= lim

x→1

x − 1− ln x

(x − 1) ln x
= lim

x→1

1− 1
x

x−1
x

+ ln x

= lim
x→1

x − 1

x − 1 + x ln x
= lim

x→1

1

2 + ln x
=

1

2

6. lim
x→0

cot 3x tan−1 x = lim
x→0

tan−1 x

tan 3x
= lim

x→0

1
1+x2

3 sec2 3x

= lim
x→0

1

3(1 + x2) sec2 3x
=

1

3

7. lim
x→0+

x ln sin x = lim
x→0+

ln sin x
1
x

= lim
x→0+

cos x
sin x

− 1
x2

= lim
x→0+

−x2 cos x

sin x
= 0

8. lim
x→+∞

x ln

(
x + 1

x − 1

)
= lim

x→+∞

ln(x + 1)− ln(x − 1)
1
x

= lim
x→+∞

1
x+1
− 1

x−1

− 1
x2

= lim
x→+∞

2x2

(x + 1)(x − 1)
= 2
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Example (Indeterminate form of types 00, 1∞ and ∞0)

Evaluate the following limits.

1 lim
x→0+

x sin x

2 lim
x→0

(cos x)
1

x2

3 lim
x→+∞

(1 + 2x)
1

3 ln x
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Solution

1 ln

(
lim

x→0+
x sin x

)
= lim

x→0+
ln(x sin x ) = lim

x→0+
sin x ln x = lim

x→0+

ln x

csc x

= lim
x→0+

1
x

− csc x cot x
= lim

x→0+

− sin2 x

x cos x
= 0.

Thus lim
x→0+

x sin x = e0 = 1.

2 ln
(

lim
x→0

(cos x)
1

x2

)
= lim

x→0
ln(cos x)

1
x2 = lim

x→0

ln cos x

x2
= lim

x→0

− tan x

2x

= lim
x→0

− sec2 x

2
= −1

2
.

Thus lim
x→0

(cos x)
1

x2 = e−
1
2 .

3 ln

(
lim

x→+∞
(1 + 2x)

3
ln x

)
= lim

x→+∞

3 ln(1 + 2x)

ln x
= lim

x→+∞

6x

1 + 2x
= 3.

Thus lim
x→+∞

(1 + 2x)
1

3 ln x = e3.
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Example

The following shows some wrong use of L’Hopital rule.

1 lim
x→0

sec x − 1

e2x − 1
= lim

x→0

sec x tan x

2e2x
= lim

x→0

sec2 x tan x + sec3 x

4e2x
=

1

4
This is wrong because lim

x→0
e2x 6= 0,±∞. One cannot apply L’Hopital rule

lim
x→0

sec x tan x

2e2x
. The correct solution is

lim
x→0

sec x − 1

e2x − 1
= lim

x→0

sec x tan x

2e2x
= 0.

2 lim
x→+∞

5x − 2 cos2 x

3x + sin2 x
= lim

x→+∞

5 + 2 cos x sin x

3 + sin x cos x
= lim

x→+∞

2(cos2 x − sin2 x)

cos2 x − sin2 x
= 2

This is wrong because lim
x→+∞

(5 + 2 cos x sin x) and lim
x→+∞

(3 + cos x sin x) do

not exist. One cannot apply L’Hopital rule to lim
x→+∞

5 + 2 cos x sin x

3 + sin x cos x
. The

correct solution is

lim
x→+∞

5x − 2 cos2 x

3x + sin2 x
= lim

x→+∞

5− 2 cos2 x
x

3 + sin2 x
x

=
5

3
.
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Definition (Taylor polynomial)

Let f (x) be a function such that the n-th derivative exists at x = a. The
Taylor polynomial of degree n of f (x) at x = a is the polynomial

pn(x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · ·+ f (n)(a)

n!
(x−a)n.

Theorem

The Taylor polynomial pn(x) of degree n of f (x) at x = a is the unique
polynomial such that

p(k)
n (a) = f (k)(a) for k = 0, 1, 2, . . . , n.
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Example

Let f (x) =
√

1 + x = (1 + x)
1
2 . The first four derivatives of f (x) are

f ′(x) =
1

2
(1 + x)−

1
2 ; f (3)(x) =

1 · 3
23

(1 + x)−
5
2

f ′′(x) = − 1

22
(1 + x)−

3
2 ; f (4)(x) = −1 · 3 · 5

24
(1 + x)−

7
2

The k-th derivative of f (x) at x = 0 is

f (k)(0) =
(−1)k+1(2k − 3)!!

2k
=

(−1)k+1 · 1 · 3 · 5 · · · (2k − 5)(2k − 3)

2k
.

Therefore the Taylor polynomial of f (x) of degree n at x = 0 is

pn(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

= 1 +
1

2
x − 1

2!
· 1

22
x2 +

1

3!
· 1 · 3

23
x3 + · · ·+ 1

n!
· (2n − 3)!!

2n
xn

= 1 +
x

2
− x2

8
+

x3

16
− 5x4

128
+ · · ·+ (−1)n+1(2n − 3)!!xn

2nn!
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Figure: Taylor polynomials for f (x) =
√

1 + x at x = 0
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Example

Let f (x) = cos x . The n-th derivatives of f (x) is

dn

dxn
cos x =

{
(−1)k cos x , if n = 2k is even

(−1)k sin x , if n = 2k − 1 is odd

Thus

f (n)(0) =

{
(−1)k , if n = 2k is even

0, if n = 2k − 1 is odd

Therefore the Taylor polynomial of f (x) of degree n = 2k at x = 0 is

p2k (x) = f (0) +
f ′′(0)

2!
x2 +

f (4)(0)

4!
x4 +

f (6)(0)

6!
x6 + · · ·+ f (2k)(0)

(2k)!
x2k

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)k x2k

(2k)!
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Figure: Taylor polynomials for f (x) = cos x at x = 0

MATH1010 University Mathematics



Differentiation
Mean Value Theorem and Taylor’s Theorem

Mean value theorem
L’Hopital’s rule
Taylor’s theorem

Example

We are going to find the Taylor polynomial of f (x) =
1

x
at x = 1. The k-th

derivatives of f (x) is
dk

dxk

1

x
=

(−1)k k!

xk+1
.

Thus
f (k)(1) = (−1)k k!.

Therefore the Taylor polynomial of f (x) of degree n at x = 1 is

pn(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 + · · ·+ f (n)(1)

(n)!
(x − 1)n

= 1− (x − 1) +
2!(x − 1)2

2!
− 3!(x − 1)2

3!
+ · · ·+ (−1)nn!(x − 1)n

n!

= 1− (x − 1) + (x − 1)2 − (x − 1)3 + · · ·+ (−1)n(x − 1)n
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Figure: Taylor polynomials for f (x) =
1

x
at x = 1
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Example

We are going to find the Taylor polynomial of f (x) = (1 + x)α at x = 0, where
α ∈ R. Then

f (k)(0) = α(α− 1)(α− 2) · · · (α− k + 1)(1 + x)α−k |x=0

= α(α− 1)(α− 2) · · · (α− k + 1).

Therefore the Taylor polynomial of f (x) of degree n at x = 0 is

pn(x) = f (0) + f ′(0)x +
f ′′(0)x2

2!
+

f (3)(0)x3

3!
+ · · ·+ f (n)(0)xn

(n)!

= 1 + αx +
α(α− 1)x2

2!
+ · · ·+ α(α− 1)(α− 2) · · · (α− n + 1)xn

n!

=

(
α

0

)
+

(
α

1

)
x +

(
α

2

)
x2 + · · ·+

(
α

n

)
xn

where (
α

n

)
=
α(α− 1)(α− 2) · · · (α− n + 1)

n!
.

MATH1010 University Mathematics



Differentiation
Mean Value Theorem and Taylor’s Theorem

Mean value theorem
L’Hopital’s rule
Taylor’s theorem

Example

The following table shows the Taylor polynomials of degree n for f (x) at x = 0.

f (x) Taylor polynomial

ex 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!

cos x 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)k x2k

(2k)!
, n = 2k

sin x x − x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)k x2k+1

(2k + 1)!
, n = 2k + 1

ln(1 + x) x − x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1xn

n

1

1− x
1 + x + x2 + x3 + · · ·+ xn

√
1 + x 1 +

x

2
− x2

8
+

x3

16
− 5x4

128
+ · · ·+ (−1)n+1(2n − 3)!!xn

2nn!

(1 + x)α 1 + αx +
α(α− 1)x2

2!
+
α(α− 1)(α− 2)x3

3!
+ · · ·+

(
α

n

)
xn
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Example

The following table shows the Taylor polynomials of degree n for f (x) at the
given center.

f (x) Taylor polynomial

cos x ; x = π −1 +
(x − π)2

2!
− (x − π)4

4!
+ · · ·+ (−1)k+1(x − π)2k

(2k)!

ex ; x = 2 e2 + e2(x − 2) +
e2(x − 2)2

2!
+ · · ·+ e2(x − 2)n

n!

1

x
; x = 1 1− (x − 1) + (x − 1)2 − (x − 1)3 + · · ·+ (−1)n(x − 1)n

1

2 + x
; x = 0

1

2
− x

4
+

x2

8
− x3

16
+ · · ·+ (−1)nxn

2n+1

1

3− 2x
; x = 1 1 + 2(x − 1) + 4(x − 1)2 + 8(x − 1)3 + · · ·+ 2n(x − 1)n

√
100− 2x ; x = 0 10− x

10
− x2

2000
− x3

200000
− · · · − (2n − 3)!!xn

102n−1n!
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Theorem (Taylor’s theorem)

Let f (x) be a function such that the n + 1-th derivative exists. Let pn(x) be
the Taylor polynomial of degree n of f (x) at x = a. Then for any x, there
exists ξ between a and x such that

f (x) = pn(x) +
f (n+1)(ξ)

(n + 1)!
(x − a)n+1

= f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n +

f (n+1)(ξ)

(n + 1)!
(x − a)n+1.

Note: Taylor polynomial can be used to find the approximate value of a

function for a given value of x . The Taylor’s theorem tell us the possible values

of the error, that is the difference between the approximated value pn(x) and

the actual value f (x).
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Proof (Taylor’s theorem)

First, suppose f (k)(a) = 0 for k = 0, 1, 2, . . . , n. Then pn(x) = 0 is the zero
polynomial. Let g(x) = (x − a)n+1. Observe that g (k)(a) = 0 for
k = 0, 1, 2, . . . , n and g (n+1)(x) = (n + 1)!. Applying Cauchy’s mean value
theorem successively, there exists ξ1, ξ2, . . . , ξ = ξn+1 between a and x such that

f ′(ξ1)

g ′(ξ)
=

f (x)− f (a)

g(x)− g(a)
=

f (x)

g(x)
(f , g on [a, x ])

f ′′(ξ2)

g ′′(ξ2)
=

f ′(ξ1)− f ′(a)

g ′(ξ1)− g ′(a)
=

f ′(ξ1)

g ′(ξ1)
=

f (x)

g(x)
(f ′, g ′ on [a, ξ1])

...

f (n+1)(ξ)

g (n+1)(ξ)
=

f (n)(ξn)− f (n)(a)

g (n)(ξn)− g (n)(a)
=

f (n)(ξn)

g (n)(ξn)
=

f (x)

g(x)
(f (n), g (n) on [a, ξn])

Thus

f (x) =
f (n+1)(ξ)

g (n+1)(ξ)
g(x) =

f (n+1)(ξ)

(n + 1)!
(x − a)n+1.
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Proof (Taylor’s theorem).

For the general case, let
h(x) = f (x)− pn(x).

Then h(k)(a) = 0 for k = 0, 1, 2, . . . , n and h(n+1)(x) = f (n+1)(x). Applying the
first part of the proof to h(x), there exists ξ between a and x such that

h(x) =
h(n+1)(ξ)

(n + 1)!
(x − a)n+1

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1

as desired.
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Example

Let f (x) = cos x .
The Taylor polynomial of degree 5 for f (x) at x = 0 is

p5(x) = 1− x2

2
+

x4

24
.

For any |x | ≤ 1.5, we have

| cos x − p5(x)| =
|f (6)(ξ)|

6!
(1.5)6 ≤ 1.56

6!
< 0.01583

The Taylor polynomial of degree 11 for f (x) at x = 0 is

p11(x) = 1− x2

2
+

x4

24
− x6

720
+

x8

40320
− x10

3628800
.

For any |x | ≤ 1.5, we have

| cos x − p11(x)| =
|f (12)(ξ)|

12!
(1.5)12 ≤ 1.512

12!
< 2.71× 10−7.
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Figure: Taylor polynomials for f (x) = cos x
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Example

The following table shows the value of pn(x), the actual error which is difference

| cos x − pn(x)| and the largest possible error
xn+1

(n + 1)!
for x = 1.5 and x = 3.

n x = 1.5 Error Largest x = 3 Error Largest

1 1 0.9292628 1.125 1 1.98999 4.5

3 −0.125 0.19574 0.21094 −3.5 2.51001 3.375

5 0.0859372 0.01521 0.01583 −0.125 0.86499 1.0125

7 0.0701172 6.21× 10−4 6.36× 10−4 −1.1375 0.14751 0.16273

9 0.0707528 1.57× 10−5 1.59× 10−5 −0.97478 0.01522 0.01628

11 0.0707369 2.68× 10−7 2.71× 10−7 −0.99105 0.00106 0.00111

cos 0.0707372 −0.98999
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Example

Let f (x) = ln(1 + x). Then f (n)(x) =
(−1)n+1(n − 1)!

(1 + x)n
for n ≥ 1.

The Taylor polynomial of degree n of f (x) is

pn(x) = x − x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1 xn

n
.

Note that f (1) = ln 2. By Taylor’s theorem, there exists 0 < ξ < 1 such that

| ln 2− pn(1)| =
|f (n+1)(ξ)|
(n + 1)!

=
1

(n + 1)(1 + ξ)n+1
<

1

n + 1
.

When n = 10, 000, we have | ln 2− p10000(1)| < 1

10001
. As a matter of fact,

p10000(1) = 1− 1

2
+

1

3
− 1

4
+ · · · − 1

10000
≈ 0.69309718

ln 2 ≈ 0.69314718
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Example

f (x) = ln(1 + x); pn(x) = x − x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n+1 xn

n
.

For x = 2, by Taylor’s theorem, there exists 0 < ξ < 2 such that the error is

En = | ln 3− pn(2)| =
|f (n+1)(ξ)|
(n + 1)!

· 2n+1 =
2n+1

(n + 1)(1 + ξ)n+1
.

Note that 2n+1

(n+1)3n+1 < En <
2n+1

n+1
. The table below shows the least possible,

largest possible and actual values of the error En for various n.

n pn(2) Least Actual Largest
5 5.06667 0.01463 3.96805 10.6667

10 −64.8254 0.00105 65.924 186.18
15 1424.42 9.52× 10−5 1423.33 4096
20 −34359.7 9.55× 10−6 34360.8 99864.4

The actual value is f (2) = ln(3) ≈ 1.09861. One can never get a good
approximation of ln 3 from pn(2) because pn(2) is divergent as n→∞.
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Figure: Taylor polynomials for f (x) = ln(1 + x)
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Definition (Taylor series)

Let f (x) be an infinitely differentiable function. The Taylor series
of f (x) at x = a is the infinite power series

T (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 +

f (3)(a)

3!
(x−a)3 + · · · .
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Example

The following table shows the Taylor series for f (x) at the given center.

f (x) Taylor series

ex ; x = 0 1 + x +
x2

2!
+

x3

3!
+ · · ·

cos x ; x = 0 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sin x ; x = π −(x − π) +
(x − π)3

3!
− (x − π)5

5!
+ · · ·

ln x ; x = 1 (x − 1)− (x − 1)2

2
+

(x − 1)3

3
− (x − 1)4

4
+ · · ·

√
1 + x ; x = 0 1 +

x

2
− x2

8
+

x3

16
− 5x4

128
+ · · ·

1√
1 + x

; x = 0 1− x

2
+

3x2

8
− 5x3

16
+

35x4

128
− 63x5

256
+ · · ·

(1 + x)α; x = 0 1 + αx +
α(α− 1)x2

2!
+
α(α− 1)(α− 2)x3

3!
+ · · ·
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Example

f (x) Taylor series

ex ;
∞∑

k=0

xk

k!

cos x ;
∞∑

k=0

(−1)k x2k

(2k)!

sin x ;
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

ln(1 + x);
∞∑

k=1

(−1)k+1xk

k

1

1− x
;

∞∑
k=0

xk

(1 + x)α;
∞∑

k=0

(
α
k

)
xk ,

(
α
k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!

tan−1 x ;
∞∑

k=0

(−1)k x2k+1

2k + 1

sin−1 x ;
∞∑

k=0

(2k)!x2k+1

4k (k!)2(2k + 1)
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Theorem

Suppose T (x) is the Taylor series of f (x) at x = 0. Then for any positive
integer k, the Taylor series for f (xk ) at x = 0 is T (xk ).

Example

f (x) Taylor series at x = 0

1

1 + x2
1− x2 + x4 − x6 + · · ·

1√
1− x2

1 +
x2

2
+

3x4

8
+

5x6

16
+

35x8

128
+ · · ·

sin x2

x2
1− x4

3!
+

x8

5!
− x12

7!
+ · · ·
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Theorem

Suppose the Taylor series for f (x) at x = 0 is

T (x) =
∞∑

k=0

ak xk = a0 + a1x + a2x2 + a3x3 + · · · .

Then the Taylor series for f ′(x) is

T ′(x) =
∞∑

k=1

kak xk−1 = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · .

MATH1010 University Mathematics



Differentiation
Mean Value Theorem and Taylor’s Theorem

Mean value theorem
L’Hopital’s rule
Taylor’s theorem

Example

Find the Taylor series of the following functions.

1
1

(1 + x)2

2 tan−1 x

Solution

1 Let F (x) = − 1

1 + x
so that F ′(x) =

1

(1 + x)2
. The Taylor series for F (x)

at x = 0 is
T (x) = −1 + x − x2 + x3 − x4 + · · · .

Therefore the Taylor series for F ′(x) =
1

(1 + x)2
is

T ′(x) = 1− 2x + 3x2 − 4x3 + · · · .
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Solution

2. Suppose the Taylor series for f (x) = tan−1 x at x = 0 is

T (x) = a0 + a1x + a2x2 + a3x3 + a4x4 · · · .

Now comparing T ′(x) with the Taylor series for f ′(x) =
1

1 + x2
which

takes the form
1− x2 + x4 − x6 + · · · ,

we obtain the values of a1, a2, a3, . . . and get

T (x) = a0 + x − x3

3
+

x5

5
− x7

7
+ · · · .

Since a0 = T (0) = f (0) = 0, we have

T (x) = x − x3

3
+

x5

5
− x7

7
+ · · · .
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Theorem

Suppose the Taylor series for f (x) and g(x) at x = 0 are

S(x) =
∞∑

k=0

ak xk = a0 + a1x + a2x2 + a3x3 + · · · ,

T (x) =
∞∑

k=0

bk xk = b0 + b1x + b2x2 + b3x3 + · · · ,

respectively. Then the Taylor series for f (x)g(x) at x = 0 is

∞∑
n=0

(
n∑

k=0

ak bn−k

)
xn

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · ·
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Proof.

The coefficient of xn of the Taylor series of f (x)g(x) at x = 0 is

(fg)(n)(0)

n!
=

n∑
k=0

(
n

k

)
f (k)(0)g (n−k)(0)

n!
(Leibniz’s formula)

=
n∑

k=0

n!

k!(n − k)!
· f (k)(0)g (n−k)(0)

n!

=
n∑

k=0

f (k)(0)

k!
· g (n−k)(0)

(n − k)!

=
n∑

k=0

ak bn−k
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Example

1 The Taylor series for e4x ln(1 + x) is(
1 + 4x +

16x2

2!
+

64x3

3!
+ · · ·

)(
x − x2

2
+

x3

3
− x4

4
+ · · ·

)
= x +

(
−1

2
+ 4

)
x2 +

(
1

3
+ 4 ·

(
−1

2

)
+ 8

)
x3 + · · ·

= x +
7x2

2
+

19x3

3
+ · · ·

2 The Taylor series for
tan−1 x√

1− x2
is

(
x − x3

3
+

x5

5
+ · · ·

)(
1 +

x2

2
+

3x4

8
+ · · ·

)
= x +

(
1

2
− 1

3

)
x3 +

(
3

4
− 1

3
· 1

2
+

1

5

)
x5 + · · ·

= x +
x3

6
+

49x5

120
+ · · ·
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Theorem

For any power series

S(x) =
∞∑

n=0

anxn = a0 + a1x + a2x2 + a3x3 + · · · ,

there exists R ∈ [0,+∞] called radius of convergence such that

1 S(x) is absolutely convergent for any |x | < R and divergent for any
|x | > R. For |x | = R, S(x) may or may not be convergent.

2 When S(x) is considered as a function of x, it is differentiable on
(−R,R) and its derivative is

S ′(x) =
∞∑

n=1

nanxn−1 = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · .

Caution! There exists R such that the Taylor series T (x) is convergent when

|x | < R. Although in most examples, T (x) converges to f (x) when it is

convergent, there are examples that T (x) does not converge to f (x).
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Example

The following table shows the convergence of Taylor series of various functions.

f (x) T (x) R x = −R x = R

ex 1 + x +
x2

2!
+

x3

3!
+ · · · +∞ Not Applicable Not Applicable

cos x 1− x2 +
x4

4!
−

x6

6!
+ · · · +∞ Not Applicable Not Applicable

sin x x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · +∞ Not Applicable Not Applicable

ln(1 + x) x −
x2

2
+

x3

3
−

x4

4
+ · · · 1 Divergent ln 2

√
1 + x 1 +

x

2
−

x2

8
+

x3

16
−

5x4

128
+ · · · 1 0

√
2

1

1 + x2
1− x2 + x4 − x6 + · · · 1 Divergent Divergent

tan x x +
x3

3
+

2x5

15
+

17x7

315
+ · · ·

π

2
Divergent Divergent

tan−1 x x −
x3

3
+

x5

5
−

x7

7
+ · · · 1 −

π

4

π

4
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Question

Let T (x) be the Taylor series of a function f (x) at x = a. Does T (x) always
converge to f (x) at the points where T (x) is convergent?

Answer

No. There exists function f (x) with Taylor series T (x) at x = a such that

1 T (x) is convergent for any real number x ∈ R, and

2 T (x) does not converge to f (x) for any x 6= a.
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Theorem

Let

f (x) =

{
e
− 1

x2 , if x 6= 0

0, if x = 0
.

Then the Taylor series for f (x) at x = 0 is T (x) = 0.

Note. It is obvious that f (x) 6= 0 when x 6= 0. Therefore T (x) 6= f (x) for any

x 6= 0.
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Proof.

We claim that for any nonnegative integer n, we have

f (n)(x) =


Pn(x)

x3n
e
− 1

x2 , if x 6= 0

0, if x = 0

for some polynomial Pn(x). In particular, f (n)(0) = 0 for any n = 0, 1, 2, · · · which
implies that T (x) = 0. We prove that claim by induction on n. When n = 0,
f (0)(x) = f (x) and there is nothing to prove. Suppose the claim is true for n = k.
Then when x 6= 0,

f (k+1) =
x3k (P′k + 2Pk

x3 )− 3kx3k−1Pk

x6k
e
− 1

x2 =
x3P′k − 3kx2Pk + 2Pk

x3(k+1)
e
− 1

x2 .

We may take Pk+1 = x3P′k − 3kx2Pk + 2Pk . On the other hand,

f (k+1)(0) = lim
h→0

f (k)(h)− f (k)(0)

h
= lim

h→0

Pk (h)

h3k
e
− 1

h2 = lim
y→+∞

y3k Pk ( 1
y

)

ey2
= 0.

This completes the induction step and the proof of the claim
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Example

f ′(x) =
2

x3
e−

1
x2

f ′′(x) =
−6x2 + 4

x6
e−

1
x2

f (3)(x) =
24x4 − 36x2 + 8

x9
e−

1
x2

f (4)(x) =
−120x6 + 300x4 − 144x2 + 16

x12
e−

1
x2

f (5)(x) =
720x8 − 2640x6 + 2040x4 − 480x2 + 32

x15
e−

1
x2
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Figure: f (x) = e−
1

x2
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