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Notes 18 More Real Integrals

18.1 Integrands having Branches

As we know, there is a new concept about functions in complex, that is, the concept of branches.

A real function which has clear definition may become a function with branches in complex.

Typical examples are lnx or xr where r ∈ R. This creates some troubles, but surprising also

benefits.

18.1.1 Choose an Indented Contour

Example 18.1. To evaluate

∫ ∞

0

lnx dx

(x2 + 4)2
. The natural complex function to consider is

f(z) =
A branch of log z

(z2 + 4)2
.

Which branch of log z should we choose? Although there are many choices, we still need to choose

it carefully. Of course, we would like to choose a convenient one to simplify the calculation.

However, the choice must be compatible with the contour. Here are the key points.

• First, ln(x) and any branch of log z are not defined at the origin, we have to avoid the

origin.

• Second, to get the result, we need the straight line γ1 along the R from δ > 0 to R > 0;

then take limit δ → 0 and R → ∞.

• Observe the integrand, besides lnx, the remaining part
1

(x2 + 4)2
is an even function, so

we will use the straight line from −R to −δ. (Compare this step with the one in the next

exercise).

With the above considerations, we will choose the contour Γ = (γ1, γ2, γ3, γ4) as shown below.

γ4γ3

γ2

γ

-

i2

1

R R

Moreover, we will take Log−π/2(z) = ln |z|+ iArg−π/2(z), where Arg−π/2(z) ∈
(
−π

2
,
3π

2

)
.



First, since 2i is a pole of order 2, the contour integral is given by∫
Γ

Log−π/2(z)

(z + 2i)2(z − 2i)2
dz = 2πi lim

z→i

d

dz

[
Log−π/2(z)

(z + 2i)2

]
= 2πi lim

z→i

[
1/z

(z + 2i)2
− 2(ln |2i|+ iπ/2)

(z + i)3

]
=

π(ln 2− 1)

16
+

π2i

32
.

Second, similar as the methods learned before, and observe that Arg−π/2(Reit) = t ≤ π,

∣∣∣∣∫
γ2

f

∣∣∣∣ ≤ ∫ π

0

∣∣ln(Reit)
∣∣+ ∣∣∣iArg−π/2(Reit)

∣∣∣
(R2 − 4)2

∣∣∣Rieit
∣∣∣ dt = ∫ π

0

lnR+ |t|
(R2 − 4)2

Rdt

≤ π (lnR+ π)R

(R2 − 4)2
−→ 0 , as R → ∞.

Third, on the arc −γ4, we have z(t) = δeit for t ∈ [0, π] and Arg−π/2(δe
it) = t ≤ π. Thus,

∣∣∣∣∫
γ4

f

∣∣∣∣ ≤ ∫ π

0

∣∣ln(δeit)∣∣+ ∣∣∣iArg−π/2(δe
it)
∣∣∣

(4− δ2)2

∣∣∣δieit∣∣∣ dt
≤ π (ln δ + π) δ

(4− δ2)2
−→ 0 , as δ → 0.

Fourth, it is easy to see that

∫
γ1

f(z) dz −→
∫ ∞

0

lnx dx

(x2 + 4)2
. It remains to work on γ3.

On γ3, we have z(t) = t for t ∈ [−R,−δ]; Log−π/2(t) = ln |t|+ iArg−π/2(t) = ln |t|+ iπ. So,∫
γ3

f(z) dz =

∫ −δ

−R

|t|+ iπ

(t2 + 4)2
dt =

∫ R

δ

|t|+ iπ

(t2 + 4)2
dt −→

∫ ∞

0

lnx dx

(x2 + 4)2
+ iπ

∫ ∞

0

dx

(x2 + 4)2
.

Summarizing the above, we get

2

∫ ∞

0

lnx dx

(x2 + 4)2
+ iπ

∫ ∞

0

dx

(x2 + 4)2
=

π(ln 2− 1)

16
+

π2i

32
.

It follows from comparing real and imaginary parts that∫ ∞

0

lnx dx

(x2 + 4)2
=

π(ln 2− 1)

32
and

∫ ∞

0

dx

(x2 + 4)2
=

i

32
.

Exercise 18.2. Convince yourself that if Logα, i.e., Argα(z) ∈ (α, α+ 2π) instead, as long the

branch cut is away from the contour Γ, the results of the two integrals will be the same (but

some of the steps may be different).

Exercise 18.3. Evaluate

∫ ∞

0

lnx dx

(x3 + 4)2
, in which the denominator of the integrand is slightly

changed. Explain why the contour Γ above does not work. Instead, one should take γ3

from Re2πi/3 to δe2πi/3.

The above example and exercise demonstrate the following fact. Let f be a function that involves

a branch. When it is restricted on suitable paths (γ1 and γ3 above), it mostly gives the real

integrand with slight variations. In the way, the variation seems to give us trouble, but instead

it makes the calculation work. This motivates the next method.
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18.1.2 Along a Branch Cut

Example 18.4. Let us try to work on the same integral

∫ ∞

0

lnx dx

(x2 + 4)2
but we insist to use

g(z) =
Log0 z

(z2 + 4)2
=

ln |z|+ iArg0(z)

(z2 + 4)2
, that is, the branch with Arg0(z) ∈ (0, 2π).

For the chosen branch of logarithm, the cut is along

the positive real axis. We may try the contour shown

in the picture.

The line γ1 is given by t + iε for t ∈ [δ,R] and γ3 is

R− t+ δ − iε for t ∈ [δ,R]. The circles γ2 and γ4 are

having radii R and δ respectively. Obviously, at the

end, we will take limit δ → 0, ε → 0, and R → ∞.

R-

γ4

γ3

γ2

γ1

R

Similar to previous calculations in Example 18.1, we have the estimates that∣∣∣∣∫
γ2

g(z) dz

∣∣∣∣ ≤ 2πR(lnR+ 2π)

(R2 − 4)2
and

∣∣∣∣∫
γ4

g(z) dz

∣∣∣∣ ≤ 2πδ(ln δ + 2π)

(4− δ2)2
.

These two integrals approach to 0 as R → ∞ and δ → 0. Moreover, as δ, ε → 0 and R → ∞,∫
γ1

g(z) dz −→
∫ ∞

0

lnx dx

(x2 + 4)2
.

On γ3, we have z(t) = R − t + δ − iε for t ∈ [δ,R]. Then Log0 z(t) = ln |z(t)| + iArg0(z(t)),

where z(t) → t and Arg0(z(t)) → 2π as ε → 0. Thus,∫
γ3

g(z) dz =

∫ R

δ

ln |z(t)|+ iArg0(z(t))

(z(t)2 + 4)2
(−dt) −→

∫ ∞

0

− lnx dx

(x2 + 4)2
+

∫ ∞

0

−2πi dx

(x2 + 4)2
.

Thus, this contour will not give us what we want because the desired integral cancels out in∫
γ1

g(z) dz +

∫
γ3

g(z) dz −→ −2πi

∫ ∞

0

dx

(x2 + 4)2
.

Exercise 18.5. Somebody suggests that

∫
Γ

(Log0 z)
2

(z2 + 4)2
dz, where Γ is the branch cut above, may

give us the answer. Try this method.

18.1.3 A Tale of Three Methods

Let us evaluate the integral

∫ ∞

0

dx√
x(x2 + 4)

by working on the contours Γa, Γb, and Γc with

the branch cuts shown respectively from left to right below.

R-

γ4

γ3

γ2

γ1

R
γ4γ3

γ2

-

1γ

R R γ 6

γ4

γ3

γ

5 γ1

2

γ

R
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First, take the complex function f(z) =
1

z1/2(z2 + 4)
, which has singularities at 0, 2i, and −2i.

It also involves a branch of

z1/2 = e
1
2
Logα z = exp

(
1

2
ln |z|+ i

2
Argα z

)
=

√
|z| exp

(
i

2
Argα z

)
, for suitable α.

We will take α = 0,
3π

2
, and −π respectively for Γa, Γb, and Γc.

Example 18.6. For Γa and the branch cut at α = 0, Arg0(2i) = π/2 and Arg0(−2i) = 3π/2.

Therefore,

(2i)1/2 = e
1
2
ln 2 · e

i
2
(π/2) =

√
2 eπi/4 = 1 + i ,

(−2i)1/2 = e
1
2
ln 2 · e

i
2
(3π/2) =

√
2 e3πi/4 = −1 + i ,

Res(f, 2i) =
1√

2 eπi/4(2i+ 2i)
=

−i

4
√
2
e−πi/4 =

−i

8
(1− i) ,

Res(f,−2i) =
1√

2 e3πi/4(−2i− 2i)
=

i

4
√
2
e−3πi/4 =

i

8
(−1− i) .

By Residue Theorem, ∫
Γa

f(z) dz = 2πi · −i

8
[(1− i)− (−1− i)] =

π

2
.

On γ2, we may compare with the full circle CR of radius R,∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ ≤ ∫
CR

|f(z) dz| ≤ 2πR√
R(R2 − 4)

−→ 0 .

Similarly, γ4 ⊂ Cδ, where Cδ is the circle with radius δ, and∣∣∣∣∫
γ4

f(z) dz

∣∣∣∣ ≤ ∫
Cδ

|f(z) dz| ≤ 2πδ√
δ(4− δ2)

−→ 0 .

On γ1, z(t) = t+ iε, we have Arg0 z(t) → 0 and z(t)1/2 →
√
t as ε → 0. Thus,∫

γ1

f(z) dz −→
∫ ∞

0

dt√
t(t2 + 4)

.

On −γ3, z(t) = t− iε. As ε → 0, we have Arg0 z(t) → 2π and z(t)1/2 → −
√
t. Therefore,∫

γ3

f(z) dz −→ −
∫ ∞

0

dt

−
√
t(t2 + 4)

=

∫ ∞

0

dt√
t(t2 + 4)

.

To summarize, we have

2

∫ ∞

0

dx√
x(x2 + 4)

=
π

2
.

Example 18.7. For the second contour Γb, we deliberately use α = 3π/2 instead of −π/2 to

illustrate how things will nicely cancel out. Here 3π/2 < Arg3π/2(z) < 7π/2, then

Arg3π/2(2i) =
√
2e5πi/4 = −(1 + i) and Res(f, 2i) =

i

8
(1− i) .

There is an additional negative when compared with the calculation in the cut of Γa. Neverthe-

less, we will see that things will work out fine. The estimates on γ2 and γ4 are beyond doubt

and they go to zero. We only need to consider the situation along the real axis, i.e., γ1 and γ3.
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On γ1, z(t) = t and Arg3π/2(t) = 2π. So, z(t)1/2 = −
√
t and∫

γ1

f(z) dz −→
∫ ∞

0

dt

−
√
t(t2 + 4)

= −
∫ ∞

0

dx√
x(x2 + 4)

.

On −γ3, z(t) = −t and Arg3π/2(−t) = 3π, which leads to z(t)1/2 = −i
√
t. Therefore,∫

γ3

f(z) dz −→
∫ ∞

0

dt

−i
√
t(t2 + 4)

= i

∫ ∞

0

dx√
x(x2 + 4)

.

From above, we already have calculated the residue at 2i (note that −2i is outside Γb). Thus,

2πi · i
8
(1− i) =

∫
γ1

f(z) dz +

∫
γ3

f(z) dz −→ (−1 + i)

∫ ∞

0

dx√
x(x2 + 4)

,

which gives the same answer π/4.

Exercise 18.8. Find out whether the contour Γc is helpful to get the answer.
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