Topics covered in Lecture 3

(partial)
Two examples on special limits
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Ans: Let a, = (1 + %) ,n=1,23,-- We will use (i) the sequence {a,} is

increasing (we usually write sequence in this way, enclosing it by { and } on
the left and on the right) and (ii) it is bounded above. These two facts would

show that the sequence has a limit.
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Proof of (i) a, < a,.; (i.e. (1 + %) < (1 + ﬁ) )

To show this, we need to use (a) Mathematical Induction and the (b)
Arithmetic Mean — Geometric Mean inequality. It says if b, by, -+ non-
negative numbers, then

b, + b, + -+ b,

1
(biby -+ by)n < -

Remark We will omit this, because it’s technical

Proof of (ii) This is more elementary. One uses the Binomial Theorem.
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As each of the terms —y T, T, are < 1, we have

(1+1)n<1+1+1+1+1 .
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Hence we have found a number 3 which is an upper bound for the sequence
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e By using these facts, we get lim (1 + %) = a number less than 3.
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This limiting number is given the symbol e.
e One canshow that e = 2.71828

Remark
Take a look at this webpage it you want to know more:
https://courses.lumenlearning.com/boundless-algebra/chapter/the-real-number-

e/
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