
Lecture 1-2 

 

 

Calculus is a study of “functions”. 

 

A function is basically a “rule” of the following form: 

𝑓: 𝑥 ↦ 𝑦 

 

(Here the symbol 𝑓 is the “name” of the function. E.g. sin: 𝑥 → 𝑦 would be 

sine function. exp: 𝑥 ↦ 𝑦 would be the exponential function). 

 

Remark 

Sometimes, we write the symbol over the “arrow with a vertical line”. 

 

The “totality” or “collection” or “set” of all such 𝑥 is called the domain (or 

“maximal” or “natural” domain) of the function. 

 

Because the 𝑦 here depends on what 𝑥 we choose, we call 𝑥 the 

“independent variable” and 𝑦 the dependent variable. 

 

The fact that 𝑦 is the “result” of applying the rule 𝑓 to the independent 

variable leads the writing 𝑦 = 𝑓(𝑥). It means “𝑦 is the result of (evaluating) the 

function at 𝑥”. 

 

Important Point  

Each time when you input an 𝑥, there is one and only one answer for 𝑦. 

 

Counterexample 

The rule 𝑥 ↦ ±√𝑥 is not a function (because it has two values each time). 

 

Examples of Domains 

Consider the function given by 𝑦 =
𝑥−1

(𝑥−2)(𝑥−3)
. Its domain is the set (in interval 

notation) (−∞, 2) ∪ (2,3) ∪ (3, ∞). 

 

Picture (or “graph”) of the function 

One can quickly sketch a rough graph of it. 

 



 

Method: 

1. Consider the three numbers 1,2 and 3, check their order; 

2. Note that 1 < 2 < 3; 

3. Check which of these 3 numbers is a “zero” of the “numerator”. Which of 

them are “zeros” of the denominator; 

4. Since 𝑥 < 1 implies 𝑥 < 2 and 𝑥 < 3, we have 

 

5. Also, note that the curve (described by the function) passes through the point 

(1,0), because 1 is a zero of the function; 

6. Next, we try to study what happens (i) when 𝑥 → −∞, 𝑥 → +∞, 𝑥 → 1−, 𝑥 →

1+, 𝑥 → 2−, 𝑥 → 2+, 𝑥 → 3− and 𝑥 → 2+. 

7. Having done all the above, we get the picture similar to the following one: 

 

 

This is one reason why we have to study the concept of “limits”. 

 

Remarks on the picture 

1. Our method is very crude, it doesn’t tell us whether there is no/one local 

minimum or more local minima in region A. Same for region C. 

2. Similarly, it doesn’t tell us how many local maxima or local minima there 

are in region B.  
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More on limit concept 

Notation 

 

We use the notation lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 to mean “when 𝑥 goes nearer and 

nearer to the point 𝑐, the function goes nearer and nearer to 𝐿. 

 

Most of the time, 𝑐 and 𝐿 are finite numbers.  

In this case, in order that lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 is true, we need to ensure that 

1. lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿1  holds;  

2. lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿2  holds;  

3. The numbers 𝐿1 is equal to the number 𝐿2. 

 

That is, the left-hand limit is equal to the right-hand limit. 

 

Remark 

If these two numbers are not equal, or one (or both) of them does/do not 

exist, then we say lim
𝑥→𝑐

𝑓(𝑥)  doesn’t exist. 

 

The case when 𝑐 = −∞, +∞ or 𝐿 = −∞, +∞ 

Previously, we concentrated on the case when both 𝑐 and 𝐿 are finite 

numbers. For simplicity!  

 

Case 1) 𝑐 = +∞ (case for −∞ is similar!) 

In this case, only left-hand limit exists (why? Because we cannot approach 

+∞ from the right-hand side); 

Case 2) 𝑐 is a finite number and 𝐿 = +∞ (case for −∞ is similar!) 

In this case, lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 = +∞ and we say “the limit of 𝑓 when 𝑥 → 𝑐 

(meaning “𝑥 goes nearer and nearer to 𝑐”) cannot exist. 

 

Example 

𝑓(𝑥) = 1/|𝑥| 



Then when 𝑥 → 0−, 𝑓(𝑥) → +∞. 

Same thing happens when 𝑥 → 𝑐+ (i.e. 𝑓(𝑥) → +∞). 

 

But “infinity” is not a number (it’s just a concept, meaning the function’s 

values become larger and larger beyond any bound!) 

 

So we say “lim
𝑥→𝑐

𝑓(𝑥) doesn’t exist”. 

 

An Important Kind of Limit 

The concept of limit originated probably the time when people began to think 

about the concept of “differentiation”. 

 

That is, one is interested in limits of the form: 

 

lim
𝑥→0

𝑓(𝑐 + 𝑥) − 𝑓(𝑐)

𝑥
 

 

The fraction (or “quotient”) 
𝑓(𝑐+𝑥)−𝑓(𝑐)

𝑥
 is obviously “not defined” when 𝑥 =

0. But we can still study its “limiting behavior” when 𝑥 → 0. 

 

Example 1 

Suppose 𝑓(𝑢) = 𝑢2. Compute the limit  

lim
𝑥→0

𝑓(𝑐 + 𝑥) − 𝑓(𝑐)

𝑥
 

 

Ans:  

𝑓(𝑐 + 𝑥) − 𝑓(𝑐)

𝑥
=

𝑥2 + 2𝑥𝑐 + 𝑐2 − 𝑐2

𝑥
 

After simplification, we obtain 
𝑥2+2𝑥𝑐

𝑥
= 𝑥 + 2𝑐 

(cancellation is allowed, because 𝑥 ≠ 0). 

 

Finally, we let 𝑥 → 0 and get  

lim
𝑥→0

𝑓(𝑐 + 𝑥) − 𝑓(𝑐)

𝑥
= lim

𝑥→0
(𝑥 + 2𝑐) = 2𝑐. 

 



 

Remark 

The above limit is the justification of what we learned in school, i.e. 
𝑑𝑥2

𝑑𝑥
= 2𝑥 

calculated at the point 𝑥 = 𝑐. 

 

Example 2 

Suppose 𝑓(𝑢) = 𝑢𝑛, 𝑛 is a natural number. Compute the limit  

lim
𝑥→0

𝑓(𝑐 + 𝑥) − 𝑓(𝑐)

𝑥
 

 

Ans: First we study the fraction 
𝑓(𝑐+𝑥)−𝑓(𝑐)

𝑥
=

(𝑐+𝑥)𝑛−𝑐𝑛

𝑥
 

But (𝑐 + 𝑥)𝑛 = (𝑐 + 𝑥)(𝑐 + 𝑥) ⋯ (𝑐 + 𝑥) multiplied 𝑛 times. 

 

Here we notice that the right-hand side is of the form 

𝑐𝑛 + 𝑛𝑐𝑛−1𝑥 + polynomial starting at 𝑥2 

, 

Therefore, 
(𝑐+𝑥)𝑛−𝑐𝑛

𝑥
=

𝑐𝑛+𝑛𝑐𝑛−1𝑥+ sum involving 𝑥2,𝑥3,⋯,𝑥𝑛−𝑐𝑛 

𝑥
 

= 𝑛𝑐𝑛−1 +  sum involving 𝑥, 𝑥2, ⋯ , 𝑥𝑛−1 

Finally we let 𝑥 → 0 and obtain 

lim
𝑥→0

(𝑐 + 𝑥)𝑛 − 𝑐𝑛

𝑥
= lim

𝑥→0
(𝑛𝑐𝑛−1 +  sum involving 𝑥, 𝑥2, ⋯ , 𝑥𝑛−1) 

= 𝑛𝑐𝑛−1 

which is the proof of the formula 
𝑑𝑥𝑛

𝑑𝑥
= 𝑛𝑥𝑛−1 calculated at the point 𝑥 =

𝑐. 

 

Remark 

𝑛 is a natural number here (i.e. numbers beginning from 0). In the case 

when 𝑛 is any real no., we also have a similar formula, but the proof is 

different (we use Chain Rule). 

 

First Examples of Functions 

As first examples, we have the functions such as 

 Polynomials, i.e. functions like 𝑥4 + 100𝑥 + 1. A polynomial is a finite 

sum involving powers of 𝑥 and numbers.  



 sine, cosine functions; 𝑒𝑥  function (or “exponential function”), ln 𝑦 

function (or log function).  

 

Domain 

 For polynomials, the domain is (−∞, +∞), because each time we choose 

a value for 𝑥, the polynomial can be computed. 

 For sine, cosine, exponential functions the domains are also (−∞, +∞), 

if you use the right-angled triangle definitions for them. 

 For log function, the domain is (0, +∞). 

 

More Examples of Functions 

 (Rational function) A rational function is a quotient of two polynomials, 

e.g. 
𝑥2+3𝑥+2

𝑥3−1
. 

 (Tangent function) tan 𝑥 is the quotient 
sin 𝑥

cos 𝑥
. 

 

Domains of rational function & tangent function 

The domains are (−∞, +∞)\{zeros of denominator} 

E.g. Domain of 
𝑥2+3𝑥+2

𝑥3−1
 is the set (−∞, +∞)\{1}. In interval notation, it is 

then the set (−∞, 1) ∪ (1, +∞). 

 

Domain of tan 𝑥 is the set  

(−∞, +∞)\{⋯ , −𝜋 −
𝜋

2
, −

𝜋

2
, 0,

𝜋

2
, 𝜋 +

𝜋

2
, ⋯ } 

 

 

Arithmetic of Limits 

Suppose 𝑐, 𝐿 are  

(i) two finite numbers 

(ii) lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 exists (i.e. left-hand limit = right-hand limit); 

(iii) lim
𝑥→𝑐

𝑔(𝑥) = 𝑀.   

Conclusion: We have lim
𝑥→𝑐

𝑓(𝑥) ∗ 𝑔(𝑥) = lim
𝑥→𝑐

𝑓(𝑥) ∗ lim
𝑥→𝑐

𝑔(𝑥), 

where * means +, −,× or ÷. In the case of ÷, one has to further assume 



that lim
𝑥→𝑐

𝑔(𝑥) ≠ 0. 

Remark 

As before, we have similar arithmetic rules in the cases when 𝑐, 𝐿 are 

infinities. But there, one has to be more careful. 

 

Examples of Limit Computations 

It is useful to read the pages in the webpage 

http://www.intuitive-calculus.com/solving-limits.html 

 

 

Two Useful Theorems for Finding Limits 

1. Assumptions: Let 𝑓(𝑥) satisfy 

(i) (bounded above) That is  𝑓(𝑥) ≤ 𝐶 for all 𝑥 

(ii) (increasing) That is 𝑓(𝑥) ≤ 𝑓(𝑦) whenever 𝑥 < 𝑦 

Conclusion: lim
𝑥→∞

𝑓(𝑥) = 𝐿  exists 

Remarks  

 Similar result holds if we have “bounded below” & “decreasing”. 

 One can also replace ∞ by any finite number 𝑎. The conclusion then 

becomes: lim
𝑥→𝑎

𝑓(𝑥) = 𝐿. 

 

 (Special Case of Sequence) 

The above result is also true if the function’s domain is the set of natural 

numbers (starting from one). i.e. 𝑎: 𝑛 ↦ 𝑦 = 𝑎(𝑛) 

Let 𝑎(𝑛) satisfy 

(iii) (bounded above) That is  𝑎(𝑛) ≤ 𝐶 for all 𝑛 = 1,2,3, ⋯ 

(iv) (increasing) That is 𝑎(𝑛) ≤ 𝑎(𝑚) whenever 𝑛 < 𝑚 

Then lim
𝑥→∞

𝑎(𝑛) = 𝐿  exists 

Remark 

Usually, we use the notation 𝑎𝑛 for 𝑎(𝑛). 

 

Sandwich/Squeeze Theorem 

This theorem says the following: 

 Let ℎ(𝑥), 𝑓(𝑥), 𝑔(𝑥) be 3 functions, satisfying ℎ(𝑥) ≤ 𝑓(𝑥) ≤ 𝑔(𝑥), 

𝑎 < 𝑥 < 𝑏 and 𝑥 ≠ 𝑐 (𝑐 is some point between 𝑎 and 𝑏). 

http://www.intuitive-calculus.com/solving-limits.html


 Furthermore, suppose lim
𝑥→𝑐

ℎ(𝑥) = 𝐿 and lim
𝑥→𝑐

𝑔(𝑥) = 𝐿. 

 Then, the middle function, i.e. 𝑓(𝑥) also has a limit when 𝑥 → 𝑐 and 

the limit is also 𝐿. Mathematically, this is written as lim
𝑥→𝑐

𝑓(𝑥) = 𝐿. 

 

Examples 

1. Let 𝑓(𝑥) = {
𝑥 sin (

1

𝑥
)         , 𝑥 ≠ 0

  undefined       , 𝑥 = 0
   

Find lim
𝑥→0

𝑓(𝑥). 

Ans: Use Sandwich Theorem.  

From the picture, one sees that the curve 𝑦 = 𝑓(𝑥) is sandwiched between 

an upper V-shape and a lower V-shape. To say this more precisely, one can 

consider the absolute value of 𝑓(𝑥), i.e. the function 𝑔(𝑥) = |𝑓(𝑥)|. 

 

Using the fact that sine, cosine functions are always between −1 and +1, 

we obtain 

0 ≤ |𝑓(𝑥)| = |𝑥 sin (
1

𝑥
) | ≤ |𝑥| 

So the middle function, i.e. |𝑓(𝑥)| is sandwiched between the zero-function 

and the absolute value function. 

 

As lim
𝑥→0

0 = 0  and lim
𝑥→0

|𝑥| = 0, by Sandwich Theorem, the middle function 

also has zero limit, i.e. lim
𝑥→0

|𝑓(𝑥)| = 0. 

Next, as −|𝑓(𝑥)| ≤ 𝑓(𝑥) ≤ |𝑓(𝑥)|, 𝑥 ≠ 𝑐, therefore by Sandwich Theorem 

again, we have  

− lim
𝑥→0

|𝑓(𝑥)| ≤ lim
𝑥→0

𝑓(𝑥) ≤ lim
𝑥→0

|𝑓(𝑥)| 

 

This shows that the “middle” function also has zero limit. 

 

Conclusion: lim
𝑥→0

𝑓(𝑥) = 0. 

 



2. Let 𝑓(𝑥) = {
𝑥2𝑛 sin (

1

𝑥
)   , 𝑥 ≠ 0

  0             , 𝑥 = 0
   

Find lim
𝑥→0

𝑓(𝑥)−𝑓(0)

𝑥−0
. Here 𝑛 is a natural number starting from 1. 

Ans: 
𝑓(𝑥)−𝑓(0)

𝑥−0
=

𝑥2𝑛 sin(
1

𝑥
)−0

𝑥
= 𝑥2𝑛−1 sin (

1

𝑥
), where 𝑛 = 1,2,3, ⋯ and 𝑥 ≠

0. 

Therefore |
𝑓(𝑥)−𝑓(0)

𝑥−0
| = |𝑥2𝑛−1 sin (

1

𝑥
)| , where 2𝑛 − 1 = 1,3,5 ⋯  and 𝑥 ≠

0.  

By Sandwich Theorem, 0 ≤ |𝑥2𝑛−1 sin (
1

𝑥
)| ≤ |𝑥|2𝑛−1. 

Therefore, the middle function is sandwiched between the zero-function and 

the function |𝑥|2𝑛−1. Since lim
𝑥→0

|𝑥|2𝑛−1 = 0, the middle function also has 

zero limit. 

 

3. Let 𝑓(𝑥) = {
𝑥 sin (

1

𝑥
)   , 𝑥 ≠ 0

  0             , 𝑥 = 0
   

Find lim
𝑥→0

𝑓(𝑥)−𝑓(0)

𝑥−0
. 

Ans: 
𝑓(𝑥)−𝑓(0)

𝑥−0
= sin (

1

𝑥
) , 𝑥 ≠ 0. One can show by choosing numbers like 

𝑥1 =
1
𝜋
2

, 𝑥2 =
1

𝜋
2 + 𝜋

, 𝑥3 =
1

𝜋
2 + 2𝜋

, ⋯ , 𝑥𝑛 =
1

𝜋
2 + (𝑛 − 1)𝜋

, ⋯ 

Therefore sin (
1

𝑥𝑛
) = 1 if 𝑛 is an odd number, sin (

1

𝑥𝑛
) = −1, if 𝑛 is an 

even number, while 𝑥𝑛 → 0. Since sin (
1

𝑥
) oscilates as 𝑥𝑛 goes to zero, the 

function doesn’t have a limit as 𝑥𝑛 → 0. 

   Remark  

 

Special Limits 

Two special limits which we quite often use are the following: 

 lim
𝑥→0

sin 𝑥

𝑥
= 1 

 lim
𝑥→∞

(1 +
1

𝑥
)

𝑥

= 𝑒 



 

Inverse Function 

Given a function 𝑦 = 𝑓(𝑥), one may “solve” 𝑥 in terms of 𝑦 and get 𝑥 

depending on 𝑦. If this can be done, then this “𝑥 in terms of 𝑦 is an inverse 

function of 𝑓.  

More mathematically, we can write 𝑦 = 𝑓(𝑥) implies 𝑥 = 𝑔(𝑦), where the 

function 𝑔 performs the “reverse” of 𝑓. That is, 𝑦 = 𝑓(𝑥) = 𝑓(𝑔(𝑦)) = 𝑦. 

 

Examples 

1. 𝑦 = 𝑒𝑥 implies 𝑥 = ln(𝑦) because 𝑦 = 𝑒𝑥 = 𝑒ln 𝑦 = 𝑦 

   Question: What are the domains of 𝑒𝑥 and of ln 𝑦 ? 

2. 𝑦 = 𝑥2, then 𝑥 = √𝑦 is the inverse function of 𝑥2. 

Domains: (−∞, ∞) and (0, ∞). 

 

Remark 

In many textbooks, there is a graphical method to find inverse function. 

Method: 

1. Given a function 𝑦 = 𝑓(𝑥). Draw the straight line 𝑦 = 𝑥 

2. Reflect the curve 𝑦 = 𝑓(𝑥) about this line. 

3. The reflected curve is the inverse function of 𝑓. 

(see https://www.purplemath.com/modules/invrsfcn.htm) 

 

Implicit Function 

Sometimes, a function is not given by formulas like 𝑦 = 𝑓(𝑥), but is hidden 

inside some equation relating 𝑥 and 𝑦. 

 

Example 

𝑥2 + 𝑦2 − 1 = 0 

Then 𝑦 = ±√1 − 𝑥2 and 𝑥 = ±√1 − 𝑦2 

So the equation 𝑥2 + 𝑦2 − 1 = 0 describes four functions. Two of them 

depende on the variable 𝑥, the other two depend on the variable 𝑦. 

 

Remark  

The equation is of the form 𝐹(𝑥, 𝑦) = 0. On the left-hande side, we have a 

function depending on 𝑥 and 𝑦. On the right-hand side, we have a zero 

(actually any constant number is O.K.) 

 

There is a theorem, which says if we have an “equation” of the form 

https://www.purplemath.com/modules/invrsfcn.htm


𝐹(𝑥, 𝑦) = 0, then it is always true that 𝑦 is a function of 𝑥 (written as 𝑦 =

𝑦(𝑥)) or 𝑥 is a function of 𝑦 (written 𝑥 = 𝑥(𝑦)) 

 

Example 

Lemniscate (see https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli) 

function given by  

(𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2 = 0 

 

Question: 

How would you write down 𝑦 in terms of 𝑥? 

 

Range 

Given a function 𝑦 = 𝑓(𝑥) and a domain 𝐷 (just a notation!) we can ask 

“for which 𝑦 is this equation solvable?” That is, does there exist 𝑥 such that 

𝑦 = 𝑓(𝑥) has a solution? 

x 

The range of  𝑓 is the set of all “solvable” 𝑦 is the range of 𝑓, written as 

𝑅(𝑓) = {𝑦|𝑦 = 𝑓(𝑥) is solvable for some 𝑥 in the domain}. 

 

Example 

Find the range of the function 𝑓(𝑥) =
1

1+𝑥2. 

Ans: 

Consider the equation 𝑦 = 𝑓(𝑥) =
1

1+𝑥2 

We want to ask “for which 𝑥 is the equation solvable?”  

 

Method 1 (intuitive method) 

Since 0 ≤
1

1+𝑥2
≤ 1, 𝑓(0) = 1 and the curve 𝑦 =

1

1+𝑥2
 is continuous (i.e. 

unbroken). Also we have lim
𝑥→−∞

1

1+𝑥2
= 0+ and lim

𝑥→+∞

1

1+𝑥2
= 0+, therefore 

𝑅(𝑓) = (0,1].  

 

Method 2 (algebraic) 

Consider the equation 𝑦 =
1

1+𝑥2 which is equivalent to 𝑦(1 + 𝑥2) − 1 = 0. 

This is a quadratic equation in 𝑥. (Think of 𝑦 and 𝑦 − 1 as “coefficients”!) 

https://en.wikipedia.org/wiki/Lemniscate_of_Bernoulli


𝑦𝑥2 + (𝑦 − 1) = 0 

Coefficient of 𝑥2 is 𝑦,  coeff. Of 𝑥 is 0, “constant” term is 𝑦 − 1.  

So using 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 , we get 𝑏2 − 4𝑎𝑐 = 02 − 4𝑦(𝑦 − 1) = 4𝑦(1 −

𝑦) 

𝑏2 − 4𝑎𝑐 ≥ 0 if an only if 𝑦 ≥ 0 & 1 − 𝑦 ≥ 0  which gives 1 ≥ 𝑦 ≥ 0. 

One more requirement – the term 2𝑎 in the denominator has to be 

nonzero, so we need also 𝑦 ≠ 0. 

 

Conclusion. 𝑅(𝑓) = (0,1] .  

 


