Tuesday, March 20, 2018

2:24 PM

Definition. Let $x_0 \in X$. CCX is the connected component of x_0 if either one holds.

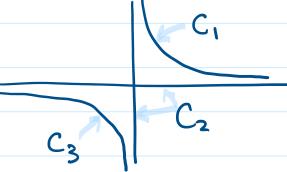
(i) C is the largest connected subset of X containing xo.

2 C = U{ACX: xoeA and A is connected}

(3) Let \sim be an equivalence relation on X where $x \sim y$ if x, y belong to a connected subset. $C = [x_0]$, the equivalence class of x_0 .

Example.

 $X = \{(x,y) \in \mathbb{R}^2 : xy = 0 \text{ or } xy = 1\} \subset \mathbb{R}^2$ has three connected components



What is needed about 3 definitions?
They are equivalent.

D⇔3 Trivial

 $x \in C_2 \iff \exists \text{ connected } A \text{ with } x \notin A$ $\iff x \sim x_0 \implies x \in [x_0]$

D⇒© Trivial

C1 = largest connected subset containing X0 C2 = U { connected ACX: X0EA}

By def. of C_1 , $C_1 \in \mathcal{A}$, $C_1 \subset U\mathcal{A}$ Every $A \in \mathcal{A}$ satisfies $A \subset C_1$, $C_1 = C_2$

② ⇒ ① Easy

Only need to show UA is connected.

Theorem. Let $A_{\alpha} \subset X$ be connected subsets. If \forall pair $\alpha, \beta \in I$, $A_{\alpha} \cap A_{\beta} \neq \phi$ then $\bigcup_{\alpha \in I} A_{\alpha}$ is connected.

Remark. In Definition 3,

A = {ACX: A is connected, xoeA}

Ax, ABEA -> AxnAB > {xo} +\$

Idea of proof. Let SCaEIAa be both open and closed.

Wish: $S = \emptyset$ or $S = \bigcup_{\alpha \in I} A_{\alpha}$

Tuesday, 20 March 2018

4:11 PM

Obviously, by considering
$$S \cap A_{\alpha}$$
 $\forall \alpha \in I$ we have $S \cap A_{\alpha} = \emptyset$ or $S \cap A_{\alpha} = A_{\alpha}$

WRONG above

$$\forall x \in I \left[S \cap A_{\alpha} = \emptyset \text{ or } S \cap A_{\alpha} = A_{\alpha} \right]$$

some &

Assume 3 REI with SnAz=\$

Let BEI, we already know

$$S \cap A_{\beta} = \emptyset$$
 or $S \cap A_{\beta} = A_{\beta}$

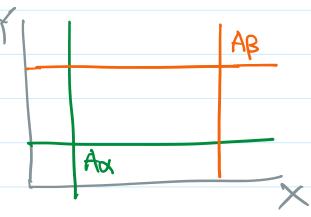
Contradiction

Theorem. If X, Y are connected then so is XxY.

Idea of proof.

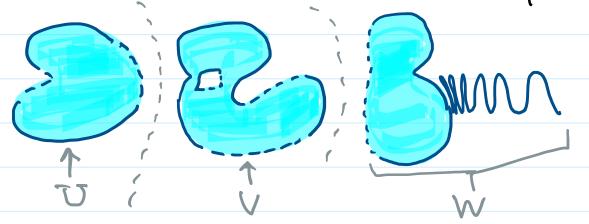
$$X \times \{b\}$$
, $\{al \times Y \text{ are connected}\}$
and $(X \times \{b\}) \cap (\{al \times Y\}) = \{(a_ib)\} \neq \emptyset$

Let
$$A_{\alpha} = (X \times Fb) \cup (Fa^{2} \times Y)$$
, $\alpha = (a_{1}b) \in X \times Y$
Then $A_{\alpha} \cap A_{\beta} \neq \emptyset$ \forall pair α, β



Fact. True for infinite product, but the proof is harden. See a supplement later.

Intuition X has several connected components



X = UU(VUW)

both open & closed

Again, both open & closed

Apparently, every connected component of X is both open and closed in X.

wrong

true

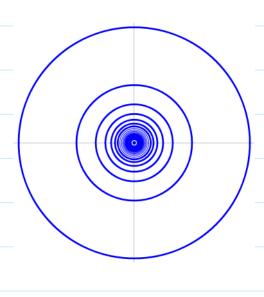
Example. $X = \bigcup_{n=0}^{\infty} C_n \subset \mathbb{R}^2$ where

$$C_{n} = \{(x,y): x^{2} + y^{2} = \frac{1}{n^{2}}\},$$

$$C_0 = \{(0,0)\}$$

ISNEM

Each Cn, n > 1, is both open & closed while Co is only closed but not open



Mar 22, Thursday, 2018 3:34 PM

Theorem Let ACX be a connected set. If ACBCA then B is also connected. troof. Let S be both open & closed in B I GeJx and XIFEJX $S = G \cap B = F \cap B$ -: SnA = GnA = EnA
open& closed in A By connectedness of A, $S \cap A = \emptyset$ or $S \cap A = A$ How to get From A to A? $GnA = \phi$ or FnA = A: ACXIG or ACF closed sets ACXIG or ACF Consequently, every connected component

Notes Page 6

must be closed, by maximality