Monday, 5 February 2018 10:43 AM

Finite Product X×Y JXXY is generated by $S = \{ U \times Y : U \in J_{X} \} \cup \{ X \times V : V \in J_{Y} \}$ That is having a base $\mathbf{B} = \{ \mathbf{U} \times \mathbf{V} : \mathbf{U} \in \mathbf{J}_{\mathbf{X}}, \mathbf{V} \in \mathbf{J}_{\mathbf{Y}} \}$ Examples $* \mathbb{R}^{n} = \mathbb{R}^{n-1} \times \mathbb{R}$ * Annulus = Cylinder = S'×[a,b] ′ () - IR・3 product \mathbb{R}^2 $\mathbb{R}^2 \times \mathbb{R}$ * S² not a product (as surfaces. * Möbius strip not a product Proof nontrivial Torus, T = surface of revolution $\subset \mathbb{R}^3$ $x_1 = (R + r \cos \theta) \cos \phi$ Θ $\chi_2 = (R + r \cos \theta) \sin \beta$ $\chi_3 = r \sin \theta$

Feb 13, Tuesday, 2018 9:52 AM

 $If \begin{cases} \theta \in (0, 2\pi) \\ \phi \in (0, 2\pi) \end{cases}$ then 1-1 but not onto If $f \theta \in [0, 2\pi)$ then not homeomorphic $l \phi \in [0, 2\pi)$ No such open set in T^2 Homeomorphism to Torus $\rightarrow T^2$ $(e^{i\theta}, e^{i\phi})$ $S' \times S' = A$ product of $S' \subset \mathbb{R}^2$ $n-Totas T^n = g'xg'x - - xg'$ n times Infinite Product Set Given sets Xa, aEI, we have XE IIXa where $X: I \longrightarrow \bigcup_{x \in T} X_{x}$ such that $X(x) \in X_{x}$ Examples * X1=A, X2EB, XEAXB satisfies $\chi: \{1,2\} \longrightarrow A \cup B$ $\{\chi(z) \in B\}$

Sunday, 11 February 2018 7:54 AM

 $X_1 = X_2 = \dots = X_n = \mathbb{R}$, $X \in \mathbb{R}^n$ if ⊁ $\chi: \{1, 2, \dots, n\} \longrightarrow \mathbb{R} = \mathbb{R} \cup \mathbb{R} \cup \dots \cup \mathbb{R}$ $\chi(1), \chi(2), \dots, \chi(n) \in \mathbb{R}$ denote II II II $\chi = (\chi_1, \chi_2, \dots, \chi_n)$ If all Xa = I then XE all I means ★ $\chi: I \longrightarrow \chi$ Thus $\Pi \gamma = \gamma^{I}$ * I = IN, $X_{\alpha} = \{0,1\}$, $\prod_{\alpha \in IN} \{0,1\} = \{0,1\}^{N}$ XE {0,1} is an infinite sequence with entries 0,1 For a finite product X1×X2×····×Xn, the generating set is $\bigcup_{k\geq 1} \{X_1 \times \cdots \times X_{k-1} \times \bigcup_k \times X_{k+1} \times \cdots \times X_n : \bigcup_k \in J_k \}$ How to rewrite it to a simple version? TTK (UK) where $\pi_{k} \colon \chi_{1} \times \cdots \times \chi_{n} \longrightarrow \chi_{k}$ projection $(x_1, \dots, x_n) \longmapsto \chi_k$

Sunday, 11 February 2018 9:54 AM

Definition. Given (Xa, Ja), XEI, the product topology JII for TIXX is generated by $S = \bigcup_{x \in I} \{ T_{\alpha}^{-1}(U_{\alpha}) : U_{\alpha} \in J_{\alpha} \}$ After finite intersections, do we get ETTUR: URE Jaf? Example. Let I=N, Xx = (70,13, discrete) cand $\overline{O} = (0, 0, 0, \dots, 0, \dots) \in \{0, 1\}^{N}$ In JBox, what are the nords of 0? Quite a lot !!! {0,1}^N, {0}× {0,1}^{N-1}, {0,0} {× {0,1}}^{N-2}. or 502x 50,12x 301x 30,13 N-3 what is the smallest nord of 5? Answer. Jöł

Feb 13, Tuesday, 2018 10:01 AM

In J_{Π} , is there a smallest normal of \overline{O} ? { (0,0,..., 0) { x { 0,1 } } - 1000000 {(0,0,...,0,0)}× {0,1} etc. σ $x, y \in \mathbb{R}^{[a, b]}$ Example. I=[a,b]; X_t= Rstd for all te [a,b]. Y ∈ E-nohd of x ⇐ [y(t)-x(t) < E for finitely many telab] Why use IT but not JBOX? We have a lot of choices for $\prod_{\alpha \in I} X_{\alpha} = P$, $\{\phi, P\} \subset \cdots \subset \exists_{\pi} \subset \cdots \subset \exists_{\text{Box}} \subset \cdots \subset \mathcal{C}(P).$

Sunday, 11 February 2018 11:15 AM

 $\pi_{\mathbf{x}}: \mathcal{P} \longrightarrow X_{\mathbf{x}}$ Most natural mappings (P, P(P)) - $\rightarrow X_{\alpha}$ which J (P, J_{Box}) — is good! (P, J_{π}) — U: (P, 10, P1)-Theorem. JIT is the smallest topology for TIXa such that for each BEI TIB: II Xa ~ XB is continuous How to prove it ?? Answer. Simply by definition of JII, which is generated by $\Pi_{\beta}^{-1}(V_{\beta})$, $V_{\beta} \in J_{\beta}$ so belong to JT

Sunday, 11 February 2018 12:14 PM

Theorem Let $W \xrightarrow{f} P = \prod_{\alpha \in I} X_{\alpha} \xrightarrow{\pi_{\beta}} X_{\beta}$. f is continuous $\Leftrightarrow \forall \beta \in I$, Trof is so. coordinate function Useful: (x,y) (xysin(x+y), (x+y)exy, x2-y2) π₁ xysin(x+y) (x+y)exy x²-y² ">" Trivial - composition of continuous mappings " To verify continuity of $f:(W, J_W) \longrightarrow (P, J_{\pi})$ Where should we start? Take any GEBTT. Then, what do we wish? $f'(G) \in Jw$ $f'(\bigwedge_{\beta_k} \overline{m}_{\beta_k}(U_{\beta_k})), U_{\beta_k} \in J_{\beta_k}$ $= \bigcap_{k=1}^{n} f'(\pi_{\beta_{k}}^{-1}(U_{\beta_{k}}))$ $= \bigcap_{k=1}^{n} (\pi_{\beta_k} f)' (U_{\beta_k})$ by continuity of Trof []

Feb 13, Tuesday, 2018 10:06 AM

(w, Jw) f Above > includes JIT Also includes Sø, Pi, trivial ; , $\{\phi, P\} \subset \cdots \subset (P, J_{\Pi}) \subset \cdots \subset J_{\text{Box}} \subset \cdots \subset \mathcal{O}(P)$ TIB make TTB continuous XB Theorem. JIT is the maximal topology on P=TIXa such that $F: (W, J_W) \longrightarrow (P, J)$ is continuous ⇔ ∀ BEI mpof: W→Xp is so. From above JI satisfies the property. Maximality Let J on P have the above property. Wish. $J \subset J \Pi$ Simply consider $id: (P, J_{\Pi}) \rightarrow (P, J)$ As Theoid = The is continuous, so is id. Thus, VGEJ, (id) (G)=GEJTI. Example. Let I = IN; $(X_k, J_k) = (R, std)$, ke I Consider $f: (\mathbb{R}, std) \longrightarrow \mathbb{R}^{\mathbb{N}} = \prod_{k \in \mathbb{I}} X_k$ $\leftarrow \leftarrow \rightarrow (\star, \star, \cdots, \star, \cdots)$ i.e. $f(t)_{(k)} = t \forall k \in I$

Sunday, 11 February 2018 2:47 PM

For $f: (\mathbb{R}, \mathcal{J}_{\mathsf{Std}}) \longrightarrow (\mathbb{R}^{\mathsf{N}}, \mathcal{J}_{\pi})$ Is it continuous? Yes, each keI, $T_{k}of:(\mathbb{R}, std) \rightarrow (\mathbb{R}, std)$ $t \mapsto t$ In fact, $f:(\mathbb{R}, \mathsf{rtd}) \longrightarrow (\mathbb{R}^{\mathsf{N}}, \uparrow)$ is continuous for zo, RNJC....CJT What about f: (R, std) -> (R, JROX)? Not continuous! How to argue? Choose $V \in J_{BOX}$ such that $f'(V) \notin J_{std}$. (-い)×(=,+)×(=,+)×····×(=,+)×····· $f(o) = (o, o, o, \cdots, o, \cdots)$ Suppose $f^{-1}(V)$ is open. Since $O \in f^{-1}(V)$, then what? $\exists z > 0, 0 \in (-2, 2) \subset f'(V)$, but then $f(-\varepsilon,\varepsilon) = (-\varepsilon,\varepsilon) \times (-\varepsilon,\varepsilon) \times \cdots \not \subset \bigvee$ Remark. In fact $f'(V) = \bigcap_{k=1}^{\infty} (\overline{f_k}, \frac{1}{k}) = \{0\}$