Saturday, 27 January 2018 7:20 PM

Uniqueness Theorem. Given X and Hausdorff Y ACX where A is dense, and continuous mappings $f,g:X\longrightarrow Y$ such that flA = glA. Then f=g on X.

Proof. Start Let xe X Wish: fix) = g(x)

What if not, i.e., $f(x) \neq g(x)$ Y is Hausdorff, therefore

I VI, Vz & Jy such that $f(x) \in V_1$, $g(x) \in V_2$, $V_1 \cap V_2 = \emptyset$

Both fig: X -> Y are continuous

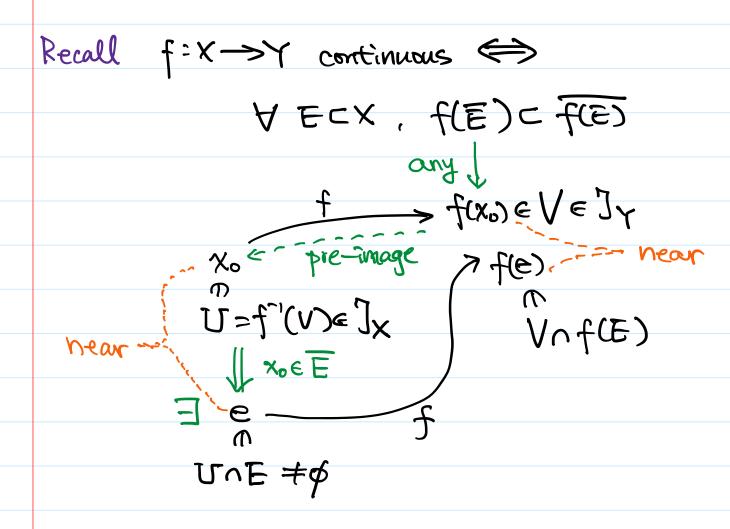
: U=f'(V,) ng'(V2) e]x Also, xEU, i.e., U=\$; then what

Since A is dense, $\exists a \in A \cap U \neq \emptyset$ $f(a) = g(a) \in f(U) \cap g(U) \subset V_1 \cap V_2$

contradiction \$

Jan 30, Tuesday, 2018

4:42 PM



In analysis, there is a similar statement What is it?

In analysis, we have
$$f(\lim x_n) = \lim f(x_n)$$
or $x_n \to x \to f(x_n) \to f(x)$

Definition. A sequence in X is $n \in \mathbb{N} \longrightarrow x_n \in X$ Denoted by $(x_n)_{n=1}^{\infty}$ It converges to $x \in X$; or x is a limit;

denoted $x_n \to x$ or $\lim_{n \to \infty} x_n = x$ if $\forall U \in J \text{ with } x \in U$ $\exists n \in \mathbb{N} \text{ such that}$

V n≥N Xne U

(ii) TEUx, bocal base of x

First Theorem about limit (What is it?)

Limit is unique if X is Housdorff
Idea. Assume $x_n \rightarrow x$, $x_n \rightarrow y$, and $x \neq y$ Wish. Get a contradiction

By x+y

By x+y

By x+y

Tinus=\$

For sufficiently large n, $xn \in U$, and $xn \in U_2$ contradiction. Jan 30, Tuesday, 2018

4:45 PM

Proposition. For space X and ACX,

if $(x_n)_{n=1}^{\infty}$ in A and $x_n \rightarrow x$ then $x \in \overline{A}$ Idea. Consider $U \in J$ with $x \in U$ Wish: $U \cap A \neq \emptyset$ Simply because for large n, $x_n \in U$ A

Corollary. Any convergent sequence in a closed set A always has its limit in A.

Question. Given $x \in \overline{A}$, can we conclude $\exists (x_n)_{n=1}^{\infty}$ in A such that $x_n \longrightarrow x$?

True if $X = \mathbb{R}^n$ with Jstd. How to prove it?

By choosing $Xn \in B(X, t_n) \cap A$ True if X is a metric space. Exercise. True if X is 1st countable.

Now,路人甲乙丙面可馬昭♡

Onestion. Find a counter-example when X is not 1st countable

Bad Example. (R, co-countable), A=R\{0}
(i) 0 ∈ A Why?

Only closed sets are ϕ , countable, and \mathbb{R} (ii) $x_n \in \mathbb{R} \setminus \mathbb{F}$ of with $x_n \to 0$ gives contradiction. How?

Let U=R\319. Then DEUEJ

IN YNZN XnER\319

Take V=U\3xn:n>NgeJ bad!

Proposition. Let $f: X \longrightarrow Y$ be continuous. If $X_N \in X$, $X_N \longrightarrow X$ then $f(X_N) \longrightarrow f(X)$

Idea of proof.

Expand $f(x_n) \longrightarrow f(x)$

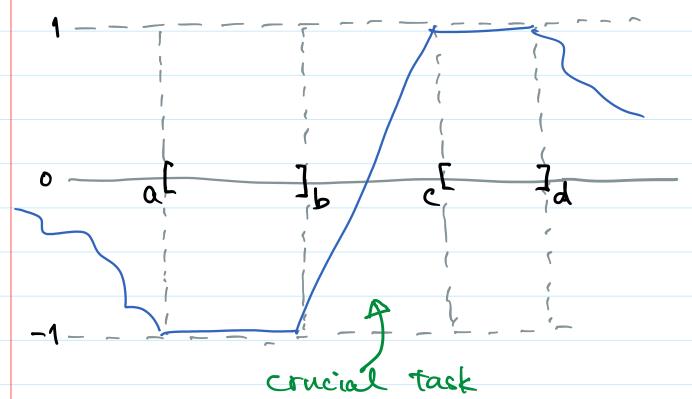
Start: Let V& Jy, f(x) & V

Wish: an NeW

Consider this $f(x) \in V$ $f(x_n)$ $f^{-1}(v) \in J_X \qquad f$ $x_n = J \text{ Nein } , \forall n \geq n \text{ } x_n \in f^{-1}(v)$

Remark. The converse is not true. That is, $\exists f: X \longrightarrow Y$, not continuous at $x \in X$. But every $x_n \longrightarrow x$ has $f(x_n) \longrightarrow f(x)$. Exercise. Find such example.

Easy Question. Given [a,b], [c,d], b < c. Find a continuous $f : \mathbb{R} \longrightarrow [-1,1]$ such that $f|_{[a,b]} = -1$, $f|_{[c,d]} = 1$



 $f(x) = -1 + \frac{2}{c-b}(x-b) = \frac{2x-b-c}{c-b}, x \in [b,c]$

Proposition. Let (X,d) be a metric space, A_1BCX be closed and $A\cap B=\emptyset$. Then \exists continuous $f:X\longrightarrow [-1,1]$ such that $f|_{A}=-1$, $f|_{B}=1$.

Any insight from A=[a,b], B=[c,d]?

Any insight from
$$A = [a,b]$$
, $B = [c,d]$?
$$f(x) = \frac{2x-b-c}{c-b} \quad \text{for } x \in [b,c]$$

$$= \frac{(x-b)-(c-x)}{(x-b)+(c-x)} \quad \text{a } b \quad c \quad d$$

A & B

Idea of proof.

Define
$$f(x) = \frac{d(x,A) - d(x,B)}{d(x,A) + d(x,B)}$$
 $x \in X$

Obviously,
$$f(x) = -1$$
 if $x \in A$
 $f(x) = 1$ if $x \in B$

How to make sure that f is continuous?

ci) Fix
$$S \subset X$$
, $x \mapsto d(x,S) : X \longrightarrow [0,\infty)$
is continuous

Why?

* Fix
$$30eX$$
, $x \mapsto d(x, 3e)$ is continued
Done in HW Exercise
* $d(x,5) = \inf \{d(x,2): 3eS\}$
Sup, inf of continuous functions

(ii) Denominator $d(x,A)+d(x,B) \neq 0 \ \forall \ x \in X$ Why? What if denominator =0?

Denominator $=0 \implies both d(x, A) = 0 = d(x, B)$ When will d(x,S)=0 for SCX?

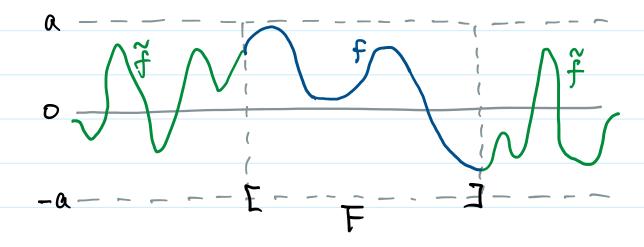
 $d(x,S) = 0 \Rightarrow x \in S$ Exercise Denominator =0 -> XEA=A, XEB=B -: AnB = contradiction

Urysohn Lemma (will not prove) Let a space X be normal (define later), A, B $\subset X$ be closed and $A \cap B = \emptyset$. Then \exists continuous function $f:X \rightarrow [-1,1]$ such that $f|_{A} = -1$, $f|_{B} = 1$.

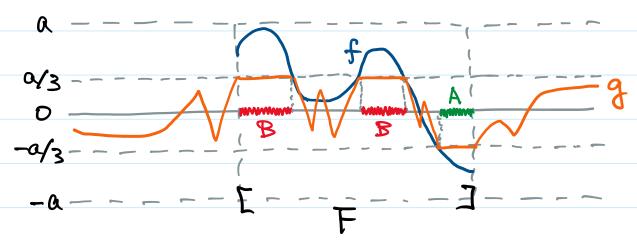
Tietz Extension Theorem. Let X be a space that the above proposition is true (i.e.,

X can be R or metric or normal).

If FCX is closed and f:F-> [-a,a] is continuous then I continuous extension f: X -> [-a,a], f|==f. Picture Illustration.



Let us construct f step by step



Let
$$A = f'[-\alpha, \frac{-\alpha}{3}]$$
, $B = f'[\frac{\alpha}{3}, \alpha]$

Jan 30, Tuesday, 2018

4:53 PM

By proposition, \exists continuous $g: X \longrightarrow \begin{bmatrix} -\frac{\alpha}{3}, \frac{\alpha}{3} \end{bmatrix}$ such that

$$\frac{9}{A} = \frac{-9}{3} \quad 9 = \frac{9}{3}$$

From now on, call this g_{1} First step * On X, $\|g_{1}\| = \sup \{|g_{1}(x)| : x \in X\} \le \frac{q}{3}$

* On F, $||f-g_1|| \le \frac{2q}{3}$

Second step, repeat the argument on $f-g_1: F \longrightarrow \left[-\frac{2q}{3}, \frac{2q}{3}\right]$ and get

$$g_2: X \longrightarrow \left[\frac{-2q}{q}, \frac{2q}{q}\right]$$
 and

$$(f-g_1)-g_2=F \longrightarrow \left[\frac{-4a}{9},\frac{4a}{9}\right]$$

Inductively, what do we get?

$$g_n: \times \longrightarrow \left[\frac{-\alpha}{3}\left(\frac{2}{3}\right)^{n-1}, \frac{\alpha}{3}\left(\frac{2}{3}\right)^{n-1}\right]$$

$$f - \sum_{k=1}^{n} g_k : F \longrightarrow \left[-\alpha \left(\frac{2}{3} \right)^n, \alpha \left(\frac{2}{3} \right)^n \right]$$

$$\sum_{k=1}^{n} g_{k} \xrightarrow{\text{uniformly}} \tilde{f} : X \longrightarrow [-a,a]$$

Moreover, what happens to

$$\therefore \hat{f}|_{F} = f.$$