THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2017–2018) Introduction to Topology Exercise 0 Preparation (Set Language)

Remarks

These exercises may give you an impression of the foundation needed in this course.

- 1. Let $f: X \to Y$ and $g: Y \to Z$; $A \subset X$, $B \subset Y$; if needed, $f(A) \subset B$. Determine the correctness of the following statements. Justify with proofs or counter-examples.
 - (a) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
 - (b) if $B_1 \subset B_2$ then $f^{-1}(B_1) \subset f^{-1}(B_2)$
 - (c) if $A_1 \subset A_2$ then $f(A_2 * A_1) = f(A_2) * f(A_1)$ where * may be \cup , \cap , \setminus (set minus), or \triangle (symmetric difference).
- 2. Define a relation \sim on \mathbb{R}^2 by $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 y_1^2 = x_2^2 y_2^2$. Show that this is an equivalence relation. What are its equivalence classes?

For an equivalence relation \sim (not necessarily the above) on a set X, what is its quotient map q defined on X?

Under what condition does a function $f: W \to X/\sim$ has another $\tilde{f}: W \to X$ such that $f = q \circ \tilde{f}$?

- 3. Define a family of sets X_{α} for $\alpha \in A$ (index set) and the arbitrary product $\prod_{\alpha \in A} X_{\alpha}$. If there are functions $f_{\alpha} \colon X_{\alpha} \to Y$, is it possible to define a function $f \colon \prod_{\alpha \in A} X_{\alpha} \to Y$? On the other hands, if there are functions $g_{\alpha} \colon U \to X_{\alpha}$, is it possible to define a function $g \colon U \to \prod_{\alpha \in A} X_{\alpha}$?
- 4. Let $A_{\alpha} \subset X$ where $\alpha \in A$. Define $\bigcup_{\alpha \in A} A_{\alpha}$ and $\bigcap_{\alpha \in A} A_{\alpha}$.

For $B \subset A$, what is the meaning of $\bigcup \{A_{\alpha} : \alpha \in B\}$? What is the meaning of all arbitrary unions of sets in $\{A_{\alpha} : \alpha \in A\}$?

Let \mathcal{C} be a set of sets. What is the notation $\bigcup \mathcal{C}$? What is $\bigcup \mathcal{B}$ where $\mathcal{B} \subset \mathcal{C}$?

- 5. What is a countable or uncountable set? State some propositions about countability between a set and its image under a function.
- 6. What are the basic requirements of an algebraic group?

Give two examples of infinite group except \mathbb{Z} and \mathbb{R} . Also, give two examples of finite non-abelian group.