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Solution to Homework 3

We want to solve det(A — AI) = 0 for some A

i— A 1
det( 9 —i—A)ZO'

Easily, one can get A> — 1 = 0. So eigenvalues are —1 and 1.
For A = —1, we want to solve Av = —v for some nonzero v € C2.

Av=—-v= (A+DHv=0= Lt 1. v=20
2 1—1
. . . 1 1 . .
One possible choice of v is (1 z) So (1 z) is an eigen-

vector with respect to eigenvalue A = —1.
Similarly, for A = 1, we want to find a nonzero eigenvector.

B ~14i 1 B
Av—v:>< 9 _1_Z.)U—0

One can choose v to be (1 i z> So (1 i z> is an eigenvector
with respect to eigenvalue A = 1.

Obviously, 8 = { (_11_ z) , (1 i z) } is a basis for C? consist-

ing of eigenvectors of A.

Let v be the standard basis for C2. If we take Q = [I ]g, which
is invertible, then Q 1AQ = [I]Q[LA],Y[I]g = [Lalp will be a
diagonal matrix as [ are the eigenvectors of A.

Hence, we have
1 1
Q= <—1 -7 1- z)

p=(3 1)

and



(d) i. Again we solve for det(4 — AI) = 0.

2—-A 0 -1
det 4 1—A —4 =0
2 0 —1-A

2 -1
(1A)det< ) _1_A>o

So we have (1 —=A) (2—=A)(=1=A)+2)=0=AXA—-1)2=0.
So 0 and 1 are the eigenvalues of A.
ii. For A = 0, we solve for some nonzero v as eigenvector.

2 0 -1
4 1 —-4)v=0
2 0 -1
1
We choose v = | 4
2
For A = 1, we solve for some nonzero v.
1 0 -1
4 0 —4]lv=0
2 0 -2
1 0
Then v = [0 ] and v = | 1| are two nonzero solutions and
1 0
linearly independent to each other.
1 1 0
Hence, g = 41,10]),(1 is a basis of R® consisting of
2 1 0

eigenvectors of A.
iii. Let v be the standard basis for R3. Similarly, we set

110
Q=|I ]g =(4 0 1
2 10
Then
0 0 O
D=0 1 0
0 0 1
will be a diagonal matrix consisting of eigenvalues of A in corre-

sponding order.



4.

(e) Let v = {1, 7, 2%} be the standard basis for P,(R). Then

1 3 9
), ={1 3 4
0 0 2
Next, we solve det([T], — AI) = 0 for some A.
1—A 3 9

1 3—A 4
0 0 2—A

Easily, one can get
0=2-XN((1-X)B—=X)—=3)=Ax2-N)(A—-4).
Then for each A, we look for nonzero vectors v such that [T],v = Av.

For A = 0, we have

1
1 v=0.
0

N =~ ©

3
3
0
-3
One possible solution is v = [ 1 |. So we see that —3 + z is an
0
eigenvector of T'.
For A = 2, we have

-1 3 9
1 1 4])v=0.
0 0 O
-3
One possible solution is v = | —13 |. So we see that —3 — 13z + 422
4
is another eigenvector of T'.
For A = 4, we have
-3 3 9
1 -1 v=10
0o 0 -2
1
One possible solution is v = | 1 |. So we see that 1 + x is another
0

eigenvector of T'.
Hence 8 = {—3+ z,—3 — 13z + 42%,1 + 2} is a basis for P»(R) con-
sisting of eigenvectors of T'. So [T]g is a diagonal matrix.

0 0 O

Tz=1(0 2 0
00 4



(h) Note that we are solving Tv = v for some A and 0 # v € May2(R).
d b a b a b
e 0=r( = )
1 0 0 1 0 0 0 0
Let v = {(O 0) ; (0 0> ; <1 0) ; (0 1)} be the standard ba-

sis for Mayo(R). Then one can easily write down

00 01
01 00
7]y = 00 10
10 0 0
Next, by solving det([T], — AI) =0,
—A 0 0 1
0 1-2X 0 0
et o o 1-x o 7"
1 0 0 -A

one could get A to be —1 or 1.

(&= ).

So one possible solution is <(1) 01).

()=

0 1 00 10 . ' .
So {(0 0) ) (1 0) ) (0 1)} are possible linearly independent

solutions.

For A = —1, we have

For A =1, we have

Together, we have a basis of eigenvectors of T' for Mayo(R).

5={<<1) —01)(8 é)(? 8)((1) (1)>}

Moreover, we have

-1 0 0 0
0 1 0 0
Tle=109 01 0
0 0 0 1



8. (a) Note that zero is an eigenvalue of T if and only if there exists some
nonzero vector v such that Twv = Ov = 0. This is equivalent to say
that there exists some nonzero vector

veN(T —X)=N(T),
that is N(T) # {0}. So T is not invertible. In other words, T is

invertible if and only if zero is not an eigenvalue of T

(b) Again ) is an eigenvalue if and only if T'(v) = Av for some nonzero
vector v. As T is invertible, from the above, we see A # 0. So this
means

M= A" N T () =T o,
which means that A~! is an eigenvalue of T—1.

(¢) 1i. First, we show that M is invertible if and only if A = 0 is not an
eigenvalue. This is true because A is an eigenvalue if and only if
there exists some nonzero vector v such that

Mv = M.

But X is just zero, this means there is some nontrivial solution
to the system
Mv =0,

that is M is not invertible. In order words, M is invertible if and
only if zero is not an eigenvalue of M.

ii. Second, we prove that A~! is an eigenvalue of M~!. As M is
invertible, we have A # 0 by the above argument. Since there
is some nonzero vector v such that Mv = Av, hence we can
multiply both sides by M~ and A7'.

AN lo=X"TM"TMv=M1v
This is equivalent to say that A~! is an eigenvalue of M ~!.

12. (a) Suppose A is similar to B, there exists some invertible matrix P such
that

A=P'BP
with det(P) # 0. Then
det(A — \I) = det(P~*BP — \I)
=det(P~'BP — P~*(\I)P)
=det(P~Y(B - \I)P)
(
(

= det(P)~ det(B Al) det(P)
= det(B — \I)



18.

(b)

Note the representations of a linear operator T are similar matrices.
In order words [T, is similar to [T]g for any choices of bases «
and 8. (This is true as for bases o and 3, [[}2 is invertible and

-1

[1g = (112) )

Then, by the above part, we see that the characteristic polynomial
is well-defined.

Hence, the characteristic polynomial is independent of the choice of
basis for V.

Note that if B is invertible, we can “factor” B out from A + c¢B.
Then, by considering det(A + ¢B), we have

det(A + ¢B) = det(B) det(B~' A + 1),

which is a polynomial of = over C.

By the fundamental theorem of algebra, there must be a root of the
polynomial, say ¢, such that det(B=*A + cI) = 0.

Hence, there exists some scalar ¢ € C such that det(A + ¢B) =0, in
other words A + ¢B is not invertible.

From the above, we see that if B is invertible, then A 4+ ¢B will not
be invertible for some ¢ € C. So we choose B to be some nonzero
matrix which is not invertible.

11
20 o)
kol

(i ] _fitc jtc
A_(k: l) andA—l—cB—( 3 ! )

are invertible for all ¢ € C. In other words, we need il # jk and
(i + ¢)l # (j + ¢)k. One possible choice is to choose k =1 # 0, then
any ¢ # j would give a feasible solution. So we may choose

(Y

and A and A + ¢B would be invertible for all ¢ € C.

Let A = (Z ‘7>. Then

20. By definition, we have det(A—tI) = f(t). So when t = 0, we get det(A) =

21.

()

f(0) = ag. In other words, A is invertible if and only if ag # 0.

Let’s prove main statement by induction.

For n = 2, we have f(t) = det(A —t[) = (All —t) <A22 — t) — A12A21.
As A5 A5, a constant, is a polynomial of 0 degree, the statement is
true for n = 2.



Assume the statement is true for n = k — 1. We prove the statement
for n = k. First, expand the determinant along the first row.

det(A — t.[) = (All — t) det(flu - tj) + Z(_1)1+jA1j det(Blj)

=2
(Here Iis just I(nfl)x(nfl)-)
An—t  Ap Aig - Ain
Ay Ay —t Az - Ao,
Az Asy Agz—t .- Asy,
Anl An2 An3 e Ann —t

We observe that the first columns of each By is independent of t. So
we can expand the determinant along the first row.

n—1 —~—

det(By;) = Z(Blj)ik det((B1;) ;1)
k=1

P

Note that (Byj),, is an (n — 2) x (n — 2) matrix with at most one

entry involving ¢, det((Bi;),;,) is a polynomial in ¢ of degree not
greater than n—2 T, so is det(By;). So the second part of det(A —tI)
is a polynomial of degree at most n — 2.

The first part follows easily from the induction hypothesis. We have
det(Ay; —tI) = (Aog —t) - (Apn — ) + q(2),

where ¢(t) is a polynomial of degree at most n — 2.
Hence, we get

det(A — tI) :(A11 — t)(AQQ — t) s (Ann — t)

+q(t) + > (—1)"7 Ay det(Byj),
=2

p(t)

where p(t) is a polynomial of degree at most n — 2. The statement
then follows by induction.
We claim that if B € M,,x,(R) is a matrix such that in each row, at

most one entry involves variable ¢, then det(B) is a polynomial in ¢
of degree not greater than n.

When n = 1, this is obviously true.



3.

()

Suppose the claim holds for n = k — 1. When n = k, we note that,
by expanding the determinant along some row,

det(B) = Z Bij det(B”)
j=1

for some 7. It is easy to see that Bij is a matrix with at most one

entry involving ¢ in each row. So, by induction hypothesis, det(B;;)
is a polynomial in ¢ with degree not greater than n — 1.

As a result det(B) is a polynomial in ¢t with degree not greater than
n. Hence, by induction, the claim is true.

From the Exercise 20, we have
f@) = (=1)™" + ap_1t" '+ + art + ao.
From the above part, we have

f(@) =(An —)(A22 — 1) -+ (Apn — ) + q(2)
=(=1)™M" + (An A+ Agp 4+ Apn) (1) (1),

where r(t) are terms of degree at most n — 2.
Hence, we see that

tr(A) =Y A= (-1)""an_1.
=1

First, we look at the characteristic polynomial of A.

-2 0 1
det| 1 -\ -1 =0
0 1 1-X

We then get
AN HAT A+ 1=(1-NAN\+1)=0,

which does not split in R. So we conclude that A is not diagonaliz-
able.

Let v be the standard basis for R2. Then one can easily write down

0
[T]w =1-1
0

SO =
N OO



12.

Then we see that the characteristic polynomial of T, which is the
same as that of [T],, does not split over R.

-2 1 0
det | =1 =X 0 | =2-NMN+1)=0
0 0 2-2X

Hence, T is not diagonalizable over R.

Let E) denotes the eigenspace of T' corresponding to A and F)-:
denotes the eigenspace of T~! corresponding to A7 !.

Recall that for any eigenvalue A of T, A~! is an eigenvalue of T7!.
So for any v € Ej, it is an eigenvector of T'. Then it is an eigenvector
of T—!, which means v € Fy-1.

Similarly, one can show v € Fy-1 implies v € Ej.

Hence, E) = F)-1.

If T is diagonalizable, then there exists a basis 8 for V' consisting of
eigenvectors of T'. As T is invertible, 3 is also a basis for V' consisting
of eigenvectors of T71.

Hence, T~ is also diagonalizable.



