Proof of Stokes' Thm
Special case : , S & a graph given by

$$Z = f(x, y)$$
 over a region R with upward namel
 $\int_{1}^{n} S = \{(x, y, f(x, y))\}$
 $\int_{1}^{1} C + 1$
 $\int_{2}^{1} C + 1$
 $\int_{2}^{1} C + 1$
 $\int_{1}^{1} C + 1$
 $\int_{2}^{1} C + 1$

there
$$\vec{n} = \frac{\vec{r}_{x} \times \vec{r}_{y}}{|\vec{r}_{x} \times \vec{r}_{y}|}$$
 is the upward normal.
and $d\tau = |\vec{r}_{x} \times \vec{r}_{y}| dx dy = |\vec{r}_{x} \times \vec{r}_{y}| dA$
Let $\vec{F} = M \vec{i} + N \vec{j} + L \vec{k}$ be the C weda field.
Then $\iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} d\sigma = \iint_{R} \vec{\nabla} \times \vec{F} (\vec{r}(xy)) \cdot \frac{\vec{r}_{x} \times \vec{r}_{y}}{|\vec{r}_{x} \times \vec{r}_{y}|} \cdot |\vec{r}_{x} \cdot \vec{r}_{y}| dA$
 $= \iint_{R} [(Ly - N_{z}) \cdot \vec{i} + (M_{z} - L_{x}) \cdot \vec{j} + (N_{x} - M_{y}) \cdot \vec{k}] \cdot [\vec{r}_{x} \cdot \vec{r}_{y}] dA$
 $= \iint_{R} [-f_{x} (Ly - N_{z}) - f_{y} (M_{z} - L_{x}) + (N_{x} - M_{y})] dx dy$.
For the line integral
 $\oint_{C} \vec{F} \cdot d\vec{r} = \oint_{C} M dx + N dy + L df (\vec{\tau} = f(x,y))$
urbu vestict
on the priject $= \oint_{C} M dx + N dy + L (f_{x} dx + f_{y} dy)$

$$= \oint_{C'} (M + Lf_x) dx + (N + Lf_y) dy$$

Reason: If ('is parametrized by

$$\hat{\mathbf{x}}(t) = (\mathbf{x}(t), \mathbf{y}(t))$$
 for $a \le t \le b$,
when C is parametrized by
 $\hat{\mathbf{F}}(t) = (\mathbf{x}(t), \mathbf{y}(t), \mathbf{f}(\mathbf{x}(t), \mathbf{y}(t)))$
 $= \mathbf{x}(t) \hat{\mathbf{x}} + \mathbf{y}(t) \hat{\mathbf{j}} + \mathbf{f}(\mathbf{x}(t), \mathbf{y}(t)) \hat{\mathbf{k}}$.

$$\Rightarrow \oint \vec{F} \cdot d\vec{r} = \int^{b} M(\vec{F}(t)) x(t) dt$$

$$= a + N(\vec{F}(t)) y(t) dt$$

$$+ L(\vec{F}(t)) \frac{d}{dt} (f(x(t)) y(t)) dt$$

$$= \int_{a}^{b} [(M + L f_{x}) x' + f_{y}y'] dt$$

$$= \int_{a}^{b} [(M + L f_{x}) x' + [N + L f_{y}) y'] dt$$

$$= \int_{c'} (M + L f_{x}) dx + (N + L f_{y}) dy$$

Then by Green's Theorem

$$\oint_{C} \vec{F} \cdot d\vec{r} = \oint_{C'} (M + Lf_{x}) dx + (N + Lf_{y}) dy$$
$$= \iint_{R} \left[\frac{2}{8} (N + Lf_{y}) - \frac{2}{8} (M + Lf_{x}) \right] dA$$

$$= \iint \left\{ \begin{array}{l} \sum_{x \in \mathcal{N}(x,y), f(x,y)} + L(x,y, f(x,y)) f_y(x,y) \\ - \sum_{x \in \mathcal{N}} [M(x,y, f(x,y)) + L(x,y, f(x,y)) f_y(x,y)] \\ \end{array} \right\} dxdy$$

$$= \iint [(N_{x} + N_{z} f_{x}) + (L_{x} + L_{z} f_{x})f_{y} + L_{z} f_{y}x] dx dy$$

$$R \Big[-(M_{y} + M_{z} f_{y}) - (L_{y} + L_{z} f_{y})f_{x} - L_{z} f_{xy} \Big] dx dy$$

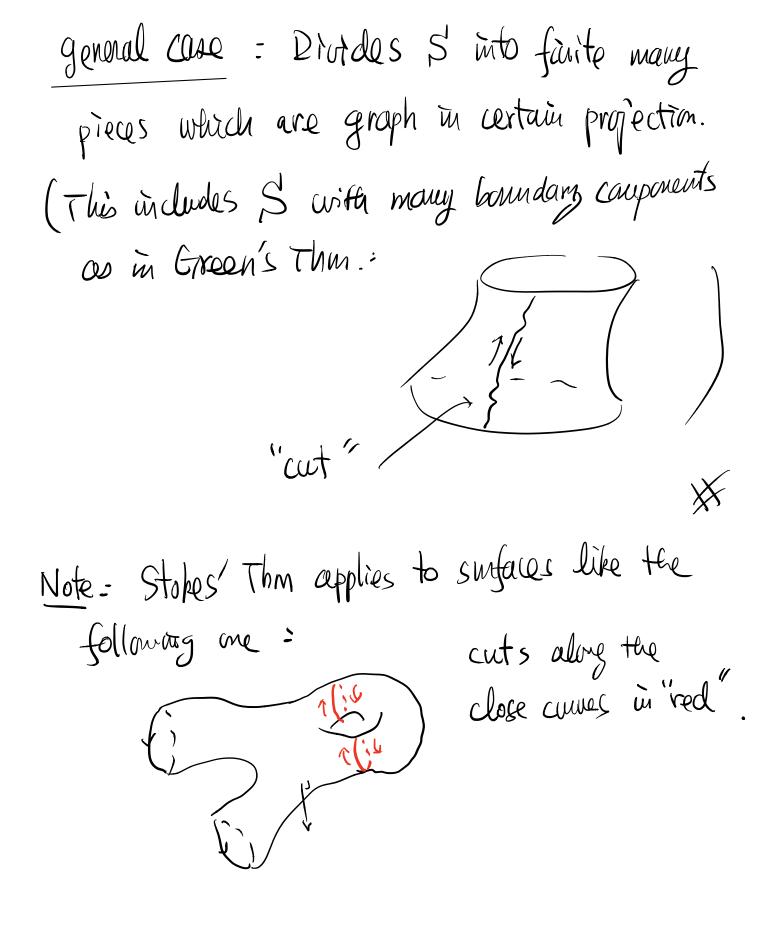
$$\Big(provided your \\ Quiface \ Q C^{2} \Big)$$

$$T = h$$

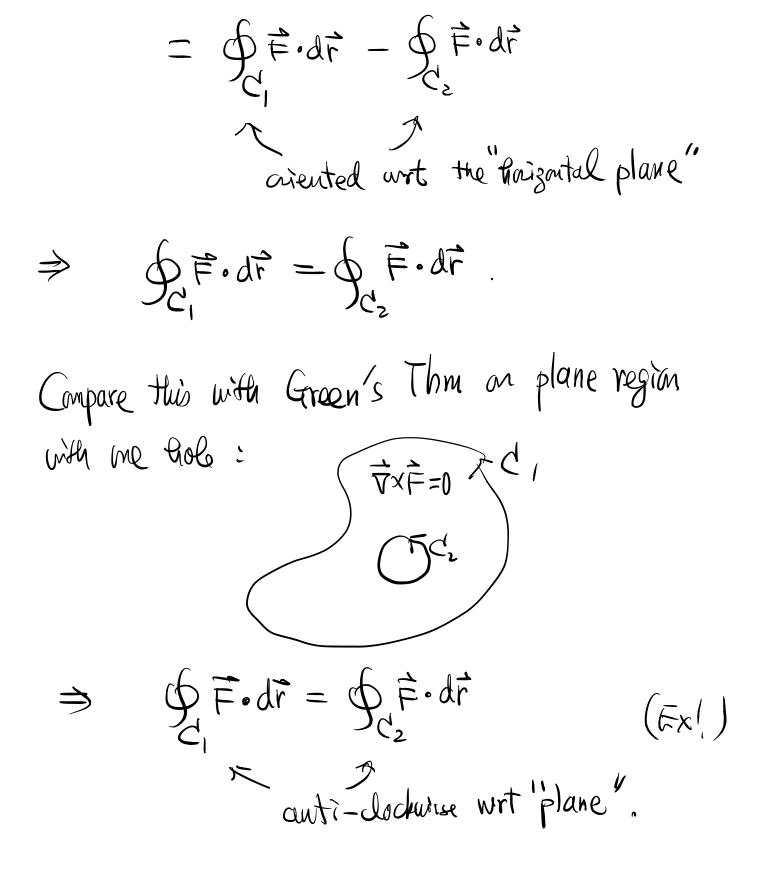
$$= \iint \left[-f_{x} \left(L_{y} - N_{z} \right) - f_{y} \left(M_{z} - L_{x} \right) + \left(N_{x} - M_{y} \right) \right] dxdy$$
R

•

i.e.
$$\iint \forall x \vec{F} \cdot \vec{n} d\sigma = \oint_C \vec{F} \cdot d\vec{r}$$
.
S
This completes the case of (C^2) grouph



eg62: Let
$$\vec{F}$$
 be a vecta field such that $\vec{\nabla} \times \vec{F} = 0$
and defaned on a region cartaining the
sunface S with unit named vecta field \vec{n}
as in the figure:
The boundary C of S
thas 2 components
C1 and C2
at the level
 $\vec{E} = \vec{z}_1$ and $\vec{z} = \vec{z}_2$ respectively.
If both C1 and C2 oriented auticlocknike
with respect to the "thaizantal planes"
Then when C created with respect to \vec{n} .
then $C = C_1 - C_2$.
And Stoked Thrn $=$
 $0 = \iint \vec{\nabla} \times \vec{F} \cdot \vec{n} \, d\sigma = \oint \vec{F} \cdot d\vec{r}$
 \vec{S} are created with \vec{n}



$$\frac{Summary}{n=2}$$

$$\frac{n=3}{Taypential fam of Green's Thm}$$

$$\frac{Stokes' Thm}{\oint_{c} \vec{F} \cdot d\vec{r}} = \iint_{R} \vec{\nabla} \times \vec{F} \cdot \hat{k} \, dA$$

$$\oint_{c} \vec{F} \cdot d\vec{r} = \iint_{R} \vec{\nabla} \times \vec{F} \cdot \hat{k} \, dA$$

$$\frac{\int_{c} \vec{F} \cdot d\vec{r}}{\int_{c} \vec{F} \cdot \vec{n} \, d\sigma}$$

$$\frac{Divergence Thm}{\int_{c} \vec{F} \cdot \vec{n} \, d\sigma} = \iint_{R} \vec{\nabla} \cdot \vec{F} \, dA$$

$$\int_{c} \vec{F} \cdot \vec{n} \, dS = \iint_{R} \vec{\nabla} \cdot \vec{F} \, dA$$

$$\int_{c} \vec{F} \cdot \vec{n} \, dS = \iint_{R} \vec{\nabla} \cdot \vec{F} \, dA$$

$$\int_{c} \vec{F} \cdot \vec{n} \, d\sigma = \iint_{R} \vec{\nabla} \cdot \vec{F} \, dV$$

$$\int_{c} \vec{e} \cdot \vec{n} \, d\sigma = \iint_{c} \vec{\nabla} \cdot \vec{F} \, dV$$

$$\int_{c} \vec{e} \cdot \vec{n} \, d\sigma = \iint_{c} \vec{\nabla} \cdot \vec{F} \, dV$$

$$\int_{c} \vec{e} \cdot \vec{n} \, d\sigma = \iint_{c} \vec{\nabla} \cdot \vec{F} \, dV$$

$$\int_{c} \vec{e} \cdot \vec{n} \, d\sigma = \int_{c} (\vec{e} \cdot \vec{e} \, below)$$

Thm 13 (Divergence Thenem)
let
$$\vec{F}$$
 be a C'vecta field on $\Omega^{\text{open}} \leq IR^3$, [
S be a piecewise smooth crientable closed surface
enclosing a (solid) region $D \leq SZ$.
let \vec{n} be the outward pointing unit normal vector
field on \vec{S} . Then
 $\iint \vec{F} \cdot \vec{n} d\sigma = \iiint div \vec{F} dV$
 $\vec{S} = D$
 $= \iiint \vec{\nabla} \cdot \vec{F} \cdot \vec{P} \cdot \vec{P$

eg63 Verify Divergence Thun fa

$$\vec{F} = x \hat{x} + y \hat{j} + z \hat{k},$$

 $S' : x^2 + y^2 + z^2 = a^2, a > 0$
sphere
 $(\Rightarrow D = Solid sphere bounded by S')$

$$\frac{\text{Solm}}{n} : \text{At} (x,y,z) \in S'$$

$$\frac{1}{n} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{a} (x\hat{i} + y\hat{j} + z\hat{k})$$

$$\int \vec{F} \cdot \vec{n} d\sigma = \iint (x\hat{i} + y\hat{j} + z\hat{k}) \cdot \frac{1}{a} (x\hat{i} + y\hat{j} + z\hat{k}) d\sigma$$

$$s = \iint a d\sigma = a \iint d\sigma = a \text{Area}(S)$$

$$s = 4\pi a^3 (\text{Check}!)$$

On the other thand

$$div \vec{F} = \vec{\nabla} \cdot \vec{F} = \left(\frac{\partial}{\partial x} \cdot \frac{1}{a} + \frac{\partial}{\partial y} \cdot \frac{1}{b^2} + \frac{\partial}{\partial z} + \frac{\partial}{\partial$$

$$\frac{\partial q63}{\partial t} := \widehat{F} = x \operatorname{Aug} \widehat{i} + (\operatorname{coy} + \overline{z})\widehat{j} + \overline{z}^{2}\widehat{k}$$
Compute outward flux of \overline{F} across
boundary ∂T of $T = i(x,y,\overline{z}) \in [\mathbb{R}^{3} : \frac{x+y+\overline{z}\leq 1}{x,y,\overline{z}\geq 0}]$

$$\iint \widehat{F} \cdot \widehat{n} \, d\sigma$$

$$\frac{\int (0,0,1)}{\sqrt{n}} \xrightarrow{n} \frac{x+y+\overline{z}=1}{\sqrt{n}}$$
Soln:

$$\operatorname{div} \widehat{F} = \overline{v} \cdot \widehat{F}$$

$$= \frac{\partial}{\partial x} (x \operatorname{Aug}) + \frac{\partial}{\partial y} (\operatorname{coy} + \overline{z}) + \frac{\partial}{\partial z} (\overline{z}^{2})$$

$$= 2\overline{z} (\operatorname{check}!)$$
Divergence Thus

$$= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z\overline{z} \, d\overline{z} \, dy \, dx$$

$$=\frac{1}{12}$$
 (check!)

egb4: Let
$$S_1, S_2$$
 be
 $z \sin faces with common$
boundary curve C such
that $S_1' \cup S_2'$ forms a
close surface enclosing a solid region D
(without table)
Suppose \vec{n} is the outwood named of the solid
region D.
Then the inextation of C with (S_1, \vec{n})
and (S_2, \vec{n}) are opposite.
Stokes' Thm \Longrightarrow
 $S_1 = - \oint_C \vec{F} \cdot d\vec{r}$
(two oriented with (S_2, \vec{n}))
 $= - \int_S \vec{\nabla} x \vec{F} \cdot \vec{n} \, d\sigma$

$$= \iint \vec{\forall} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= 0$$

$$= \iint \vec{\forall} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= 0$$

$$= \iint \vec{\forall} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= \iint \vec{\forall} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= \iint \vec{\forall} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= \iint \vec{\nabla} \cdot \vec{\nabla} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= \iint \vec{\nabla} \cdot \vec{\nabla} \times \vec{F} \cdot \vec{n} \, d\sigma = 0$$

$$= \iint \vec{\nabla} \cdot \vec{\nabla} \times \vec{F} \cdot \vec{F} \cdot$$