Conservative Vector Field

Def14 Let JL CIRⁿ, n=2023, be open. A vector field F defined on 52 is said to be consorvative if $\int_{C} \vec{F} \cdot \vec{T} \, dS = \int_{C} \vec{F} \cdot d\vec{r}$ along an oriented curve C on SZ depends only on the starting point and end point of C. Note: This is usually referred as "path independent" i.e. If C1, C2 are oriented curves with starting point A and end point B, then $\int_{C_1} \vec{F} \cdot \vec{T} ds = \int_{C_2} \vec{F} \cdot \vec{T} ds$ (so the value only depends) A TC, on the points A and B)

Notation : If
$$\vec{F}$$
 is conservative, we sometimes write
 $\int_{A}^{B} \vec{F} \cdot \vec{T} \, ds$ to denote the common value
 $\int_{C} \vec{F} \cdot \vec{T} \, ds$ along any oriented curve \vec{C}
from A to B .
 $equal : \vec{F} = \vec{T}$ on IR^2 $\vec{T} = \vec{T}$

$$C : \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$

$$Q \le t \le b$$

Then
$$\int_{C} \vec{F} \cdot \vec{f} ds = \int_{C} \vec{F} \cdot d\vec{r}$$

$$= \int_{a}^{b} \chi(t_{+}) dt_{+} = \chi(b) - \chi(a)$$

$$x - conditates of$$

$$+ \epsilon starting paint and end paint$$

$$GC$$

$$\Rightarrow \int_{C} \vec{F} \cdot \vec{f} ds \quad depends and y \text{ on the starting } s end$$

$$points$$

$$\Rightarrow \vec{F} is conservative.$$
(Note $\vec{F} = \vec{\nabla} f$, where $f(x,y) = \chi$)

Thus (Fundamental Theorem of line Integral)
let f be a C¹ function on an openset
$$\Omega \in \mathbb{R}^{n \times 2005}$$

and $\vec{F} = \vec{\nabla} f$ be gradient vector field of f.
Then for any piecewise smooth critered conve C
on Ω with starting point A and end point \vec{S}
 $\int_{C} \vec{F} \cdot \vec{T} \, dS = f(B) - f(A)$
(:. gradient \Rightarrow conservative)
Pf: First assume C is smooth with parametrization
 $\vec{F}(t), a \leq t \leq b$.
Then $\int_{C} \vec{F} \cdot \vec{T} \, dS = \int_{C} \vec{F} \cdot d\vec{F}$
 $= \int_{0}^{b} \vec{F}(\vec{F}(t)) \cdot \vec{F}(t) \, dt$
 $= \int_{a}^{b} \vec{T} f(\vec{T}(t)) \cdot \vec{F}(t) \, dt$
chain rule $= \int_{a}^{b} dt f(\vec{F}(t)) \, dt$
 $= f(\vec{F}(b)) - f(\vec{F}(a)) = f(B) - f(A)$

For a general piecewise smooth curve $C = C_1 \cup C_2 \cup \cdots \cup C_k$ $(= C_1 + C_2 + \cdots + C_k$ in oder to indicate $(= C_1 + C_2 + \cdots + C$

where Ci is smooth going from Ai-1 to Ai.

Then
$$\int_{C} \hat{F} \cdot \hat{T} dS = \sum_{\lambda} \int_{C_{c}} \hat{F} \cdot \hat{T} dS$$

 $= \sum_{z} [f(A_{z}) - f(A_{z} - 1)]$
 $= f(A_{k}) - f(A_{0})$
 $= f(B) - f(A)$

$$\begin{array}{l} \overline{\operatorname{IIm}} 9 \quad \text{let } \mathcal{I}_{\mathbb{C}} \subset \operatorname{IR}^{n}, n=2n3, \text{ be open and } \underline{\operatorname{connected}}.\\ \overrightarrow{\mathsf{F}} \circ a & \underline{\operatorname{contunuous}} \quad \text{vectar field on } \mathcal{I}_{\mathbb{C}} \text{. Then the }\\ followings are equivalent.\\ (a) $\exists a \subset I \text{ function } f: \mathcal{I}_{\mathbb{C}} \rightarrow \operatorname{IR} \text{ such that }\\ \overrightarrow{\mathsf{F}} = \overrightarrow{\nabla} f\\ (b) \quad \oint_{\mathbb{C}} \overrightarrow{\mathsf{F}} \cdot d\overrightarrow{\mathsf{r}} = 0 \quad \text{along any } \underline{\operatorname{closed}} \quad \text{curve} \\ & \overline{\mathbb{C}} \text{ on } \mathcal{I}_{\mathbb{C}}.\\ (c) \quad \overrightarrow{\mathsf{F}} \text{ is conservative.} \end{array}$

$$\begin{array}{c} \operatorname{Pf} "a \Rightarrow b & \operatorname{If} f \text{ is } \operatorname{C}' \text{ and } \overrightarrow{\mathsf{F}} = \overrightarrow{\nabla} f\\ and \quad \overrightarrow{\mathsf{F}} = [a,b] \Rightarrow \mathcal{I}_{\mathbb{C}} \text{ parameterizes } \mathbb{C}.\\ & \underline{\mathbb{C}} \quad \underline{\operatorname{closed}} \Rightarrow \quad \overrightarrow{\mathsf{F}}(a) = \overrightarrow{\mathsf{r}}(b) = A\\ & \operatorname{Fundamental Thm of Line \; \operatorname{Integral} \\ \Rightarrow \quad \oint_{\mathbb{C}} \overrightarrow{\mathsf{F}} \cdot \overrightarrow{\mathsf{rds}} = f(\overrightarrow{\mathsf{F}}(b)) - f(\overrightarrow{\mathsf{res}})\\ & = f(A) - f(A) = 0 \end{array}$$$$

"b=) c" Suppose C, C2 are viented conves
with starting point A and end points B.
Then C, U(-C2)
(a latter dunoted by

$$C_1 - C_2$$

Then C, -C2 $=$
 $Then C_1 - C_2 = G$
 T

Let
$$\vec{F} = M\vec{i} + N\vec{j}$$
 be conservative.
Fix a point $A \in SZ$.
For any paint $B \in SZ$,
 $define = \int_{A}^{B} \vec{F} \cdot \vec{T} dS$
 $= \int_{C} \vec{F} \cdot d\vec{F}$ for C is an alcosted
 $Guide \vec{F}$ is conservative $\Rightarrow \int_{A}^{B} \vec{F} \cdot \vec{T} dS$ independent
Since \vec{F} is conservative $\Rightarrow \int_{A}^{B} \vec{F} \cdot \vec{T} dS$ is independent
of C
(We've also used the assurption that SZ is connected,
otherwrise there is no path from A to B is
 A, B belong to different convected components:
 $SI = \int_{C} \vec{F} \cdot \vec{T} dS$
 A, B belong to different convected components:
 $SI = \int_{C} \vec{F} \cdot \vec{T} dS$
 $A = \int_{C} \vec{F} \cdot \vec{T} dS$
 $A = \int_{C} \vec{F} \cdot \vec{T} dS$
 $A = \int_{C} \vec{F} \cdot \vec{T} dS$ is independent.
Hence $f(B)$ is well-defined.

$$\frac{(law)}{P_{1}} \stackrel{\neq}{\models} = \stackrel{\neq}{\nabla} \stackrel{f}{f} .$$

$$\frac{P_{1}}{P_{2}} \stackrel{f}{(law)} : \stackrel{\Rightarrow}{\xrightarrow{\partial}} \stackrel{f}{(B)} = \stackrel{lw}{e} \stackrel{f}{\xrightarrow{\partial}} \frac{f(B + \epsilon_{1}) - f(B)}{\epsilon}$$

$$let \stackrel{f}{C} \stackrel{b}{le} an ariented converse from A to B$$

$$\frac{f(B + \epsilon_{1})}{f(B + \epsilon_{1})} \stackrel{f}{=} \stackrel{f}{\int_{C}} \stackrel{f}{=} \cdot d\vec{r} \stackrel{f}{=} \stackrel{f}{\underset{A}{}} \stackrel{f}{=} \cdot d\vec{r}$$

$$= \int_{A}^{B} \stackrel{f}{=} \cdot d\vec{r} = \int_{C} \stackrel{f}{=} \cdot d\vec{r} \stackrel{f}{=} \cdot d\vec{r}$$

$$= \int_{A}^{B} \stackrel{f}{=} \cdot d\vec{r} + \int_{L} \stackrel{f}{=} \cdot d\vec{r}$$

$$= \int_{A}^{B} \stackrel{f}{=} \cdot d\vec{r} + \int_{L} \stackrel{f}{=} \cdot d\vec{r}$$

$$= \int_{C}^{E} (B + \epsilon_{1}) - f(B) = \int_{L} \stackrel{f}{=} \cdot d\vec{r}$$

$$= \int_{0}^{E} M(x + t, y) dt$$

$$where \stackrel{g}{=} (x, y)$$

Remark: The function
$$f$$
 in (a) of Thung is
called the potential function for \vec{F} . It
is unique up an additive constant:
 $\vec{\nabla}(f+c) = \vec{F}$, $\forall c=const$.

$$\frac{\text{Corollary (to Thin 9)}}{\text{Let } \vec{F} \text{ be conservative and } \underline{C^{1}}}$$

$$(n=3) \text{ If } \vec{F} = M\vec{i} + N\vec{j} + L\hat{k} \text{ (on } SZ < \mathbb{R}^{3}\text{)}$$

$$(n=3) \text{ If } \vec{F} = M\vec{i} + N\vec{j} + L\hat{k} \text{ (on } SZ < \mathbb{R}^{3}\text{)}$$

$$(n=2) \text{ If } \vec{F} = M\vec{i} + N\vec{j}, \text{ then (on } SZ < \mathbb{R}^{2}\text{)}$$

$$\frac{\partial N}{\partial Z} = \frac{\partial N}{\partial Z}$$

$$(n=2) \text{ If } \vec{F} = M\vec{i} + N\vec{j}, \text{ then (on } SZ < \mathbb{R}^{2}\text{)}$$

$$\frac{\partial M}{\partial Y} = \frac{\partial N}{\delta X}$$

$$\begin{array}{rcl} \begin{array}{c} \text{Pf}: \ \overrightarrow{\mathsf{F}} & \text{conservative} & \overrightarrow{\mathsf{Theng}} & \overrightarrow{\mathsf{F}} = \overrightarrow{\mathsf{vf}} & f & \text{some} \\ & \text{function } f \\ \hline \\ \text{i.e. } & \overrightarrow{\mathsf{vf}} = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j} + \frac{\partial f}{\partial z} \overrightarrow{k} \\ & = & M \overrightarrow{i} + N \overrightarrow{j} + L \overleftarrow{k} & = \overrightarrow{\mathsf{F}} \\ \Leftrightarrow & M = \frac{\partial f}{\partial x} & N = \frac{\partial f}{\partial y} & L = \frac{\partial f}{\partial z} \\ \hline \\ \begin{array}{c} \text{Mixed durivatives Then} & (\text{Clairauts Then}) \\ \overrightarrow{\mathsf{F}} \in C^{1} \Rightarrow & \frac{\partial M}{\partial z} = \frac{\partial^{2} f}{\partial y \partial z} = \frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial M}{\partial y} \\ & \frac{\partial N}{\partial z} = \frac{\partial^{2} f}{\partial z \partial y} = \frac{\partial^{2} f}{\partial y \partial z} = \frac{\partial L}{\partial y} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial z} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial z} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial z} = \frac{\partial H}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial^{2} f}{\partial z \partial x} = \frac{\partial M}{\partial z} \\ & \frac{\partial L}{\partial X} = \frac{\partial M}{\partial z \partial x} = 0 \\ & \overrightarrow{\mathsf{F}} = \frac{\partial M}{\partial x} \\ & \frac{\partial H}{\partial x} = 0 \\ & \overrightarrow{\mathsf{F}} = 0 \\$$

Remark : (Jupptaut)
For a C' vecta field
$$\vec{F} = M\vec{i} + N\vec{j} + L\vec{k}$$

 \vec{F} conservative $\stackrel{\text{Cortoth.}}{=} MN, L satisfy the
System eqts in Cortoth.
Animer : Not true in general, needs extra
Cardition on the domain SZ.$

eg43 Consider the vector field

$$\vec{F} = \frac{-Y}{X^2 + y^2} \stackrel{?}{i} + \frac{x}{x^2 + y^2} \stackrel{?}{j}$$
and the domains

$$JZ_1 = IR^2 \setminus \{(x, 0) \in IR^2 : x \leq 0\}$$

$$JZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$JZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_2 = IR^2 \setminus \{(0, 0)\}$$

$$IZ_1 = IR^2 \setminus \{(0, 0$$

 $\begin{array}{c} \vec{F} & \text{rotates around the night anti-clockwisely} \\ |\vec{F}| = \frac{1}{r} \rightarrow 0 \quad \text{es } r \rightarrow \infty \\ \cdot & |\vec{F}| \; \mathcal{I} + \infty \quad \text{as } r \rightarrow 0 \quad \text{so } \vec{F} \text{ cannot be extended to} \\ \alpha \; C' \; \text{vecta field on } \mathbb{R}^2 \end{array}$

Questions: Is
$$\vec{F}$$
 conservative on Ω_1 ?
Is \vec{F} conservative on Ω_2 ?

Soly: (1) For IZI, any (X,Y) can be expressed in polar conditates with $\begin{cases} r > 0 \\ -\pi < \theta < \pi \end{cases}$ $((r,\theta)$ are migue) $l = -\pi < \theta < \pi$ Define $f(x,y) = \theta$ smooth on IZ_1 Then $\overline{\nabla}f = \overline{F}$ (check!)

(2) For SZ2, the function f(x,y) = 0 cannot be extended to a smooth function on SZ2,

Surve

$$T_{T}$$

$$J_{amp} of the = T_{T}$$

$$J_{amp} of the = J_{cannot} be extended to a "cartainon" on SZ2
$$\therefore f(x,y) = 0 \quad doedn't \text{ work in the case of } \Omega_{Z}$$

$$We can check, fn \quad C : \vec{F}(t) = cost i + soint j'
(mit+coicle to E-T, TJ)$$
Here
$$f = d\vec{r} = ZTT \quad (check)$$

$$f = 0$$

$$\therefore Thing = \vec{F} = v not conservative on SZ2$$$$