Double Integrals

Recall: In one-variable "integral" is regarded as
"Limit" of "Riemann Sum" (take MATH2060
for rigorous treatment)

$$\int_{a}^{b} f(x) dx = \lim_{\|P\| \neq 0} \sum_{k=1}^{b} f(X_{k}) \Delta X_{k}$$

where
$$f$$
 is a function on the interval [a,b]
 P is a partition $a=t_0 < t_1 < \dots < t_n=b$
 $X_k \in [t_{k+1}, t_k]$ and $\Delta X_k = t_k - t_{k-1}$
 $\|P\| = \max_k |\Delta X_k|$

Remark : We usually use uniform partition P: $Q = t_0 < t_1 = a + \frac{1}{n}(b-a) < t_2 < \dots$ $- < t_k = q + \frac{k}{n}(b-a) < \dots < t_n = b$ Then $\|P\| = \frac{1}{n}$ (>0, as $n \to \infty$) eq1: Find $\int_0^1 x^2 dx$ ($i_k = \frac{1}{n} \in [b_1 - \frac{k}{n}]$ Solu : (1) One may choose $x_k = \frac{k-1}{n} \in [\frac{k-1}{n}, \frac{k}{n}]$

Hun

$$S_{n} = \sum_{k=1}^{n} x_{k}^{2} \Delta X_{k}$$

$$= \sum_{k=1}^{n} \left(\frac{k-1}{n}\right)^{2} \cdot \frac{1}{n}$$

$$= \frac{1}{n^{3}} \cdot \frac{(n-1) \cdot n \cdot (2n-1)}{6} (Uak!)$$

$$= \frac{1}{6} \left((1-\frac{1}{n}) \cdot 1 \cdot (2-\frac{1}{n})\right)$$

$$\xrightarrow{k=1}{3} \quad as \quad n \neq ox \quad (||P|| \neq 0)$$

$$\xrightarrow{k=1}{3} \quad as \quad n \neq ox \quad (||P|| \neq 0)$$

$$\xrightarrow{k=1}{3} \quad as \quad n \neq ox \quad (||P|| \neq 0)$$

$$\xrightarrow{k=1}{3} \quad as \quad n \neq ox \quad (||P|| \neq 0)$$

(Z) Or we may choose
$$X_{k2} = \frac{k}{n} \in [\frac{k-1}{n}, \frac{k}{n}]$$

(Will we get different answer?)
Then
 $S_{k} = \sum_{k=1}^{n} x_{k}^{2} \le x_{k} = \sum_{k=1}^{n} (\frac{k}{n})^{2} \frac{1}{n}$
 $= \frac{1}{n^{3}} \frac{n(n+1)(2n+1)}{6} \rightarrow \frac{1}{3}$ as $n \Rightarrow \infty$
(is. ||P|| $\Rightarrow 0$)
Remark: We can use any $X_{k} \in [t_{k-1}, t_{k}]$, and still
Set the same $\int_{0}^{1} x^{2} dx = \frac{1}{3}$.

set the same
$$\int_0^1 x^2 dx = \pm . \Rightarrow$$

Then we can subdivide R into sub-rectangles by using partitions P, of [a,b] and P2 of [c,d]. Denote P=P,xP2 (partition (subdivision) of R) and ||P|| = max (||P, ||, ||P2||) Let the sub-rectangles be Rk, k=1,...,n with areas SAk,

Choose point (Xk, Yk)
$$\in Rk$$
, then carsider
"Riemann sum"
 $S(f; P) = \sum_{k=1}^{n} f(Xk, Yk) \land Ak$
 $2oft: The function f is said to be integrable own R
if lim $S(f; P) = \lim_{k \to 1} \sum_{k=1}^{n} f(Xk, Yk) \land Ak$
 $\|P\| \ge 0$ $\|P\| \ge 0$ $k=1$
 $exists e independent of the choose of (Xk, Yk) $\in Rk$.
In this case, the limit is called the (double)
integral of f over R and is clearated by
 $\iint_{R} f(X, Y) dA$ or $\iint_{R} f(X, Y) dX dY$
Remark: Same as 1-variable, the double integral of$$

mark: Same as I-valiable, the double integral f (f20) own R can be interpreted as volume under the graph of f:

