Mathematical Analysis III Tutorial 10 (November 28)

The following were discussed in the tutorial this week:

1. We first recall Arzela-Ascoli Theorem:

Theorem (Arzela-Ascoli). Let \mathcal{F} be a closed set in C(K), where $K \subset \mathbb{R}^n$ is closed and bounded. Then \mathcal{F} is compact $\Leftrightarrow \mathcal{F}$ is bounded and equicontinuous.

- Remark. (a) In the tutorial, I forgot to assume that \mathcal{F} is closed in C(K). Sorry.
- (b) The theorem can be easily generalized to C(K), where K is any compact metric space.
- (c) In showing the direction \Leftarrow , one only needs to assume that \mathcal{F} is pointwise bounded, that is for all $x \in K$, there is $M_x > 0$ such that $|f(x)| \leq M_x$ for $f \in \mathcal{F}$.
- 2. (HW 9, Q1) Let K be a bounded convex subset of \mathbb{R}^n . Show that a family of equicontinuous functions is bounded in C(K) if there is a point $x_0 \in K$ and a constant M > 0 such that $|f(x_0)| \leq M$ for all $f \in \mathcal{F}$.
- 3. Let $\{a_n\}$ be a sequence of non-zero real numbers. Show that the sequence of functions

$$f_n(x) = \frac{1}{a_n}\sin(a_n x) + \cos(x + a_n)$$

has a subsequence that converges to a continuous function on every compact subset of \mathbb{R} .

- 4. **Definition:** A topological space X is said to be a Baire space if it satisfies any one of the following equivalent properties:
 - (a) Every countable union of closed subsets of X with empty interior has empty interior.
 - (b) Every countable union of dense open subsets of X is dense in X.

Theorem (Baire Category Theorem). Every complete metric space is a Baire space.

5. (a) Show that \mathbb{R} and $\mathbb{R} \setminus \mathbb{Q}$ are Baire spaces.

(b) Show that \mathbb{Q} is not a Baire space.

- 6. Show that \mathbb{Q} cannot be expressed as a countable intersection of open subsets of \mathbb{R} .
- 7. Show that there does not exist a function $f : \mathbb{R} \to \mathbb{R}$ such that

 ${x \in \mathbb{R} : f \text{ is continuous at } x} = \mathbb{Q}.$