Proof of Green's Thu fa

eg.

$$R_1, R_2 = suiple$$

 R_2 R_1 C_1 but $R = R_1 \cup R_2 \neq suiple$
 $\partial R_1 = C_1 + L$ $(L: \neq)$
 $\partial R_2 = C_2 - L$
with anti-clochwise aientation R
 $\partial R = C_1 + C_2$.

By assumption
$$R = URi$$
 Suite min sti
 Ri are supple and
 $RiR_j = line$ segment of a common bundary partion,
denote by Lij ($i \neq j$) (may be empty)
Then $\iint_{R} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}\right) dA = \sum_{i} \iint_{Ri} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}\right) dA$
 R
 $= \sum_{i} \iint_{\partial Ri} Mdx + Ndy$ (by the Green's Thun
 $i = \sum_{i} \iint_{\partial Ri} Mdx + Ndy$ (of simple region)

Denote
$$C_i = \text{the part of } \exists R_i \text{ with no intersection with any}$$

other R_j (except at the end points)

Then
$$\partial R_i = C_i + \sum_{j \neq i} L_{ij}$$
,
where L_{ij} is areated according to the anti-clockwise
areatation of ∂R_i
Hence $\iint_{R} (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial y}) dA = \sum_{i} \int_{C_i} M dx + N dy$
 $R = \sum_{i} \int_{C_i} M dx + N dy + \sum_{i} \int_{\substack{j \neq i \\ j \neq i}} M dx + N dy$

Note that, as Ci is not a common boundary of any other Pj,

$$\overline{Z} C_{c} = \partial R.$$

$$= \int_{C_{c}} M dx + N dy = \int_{\partial R} M dx + N dy$$

Finally, we have

$$L_{ji} = -L_{ij}$$

as Riz Rj are located
on the two different
cides of the camma
boundary.

$$\begin{split} \sum_{i} \int_{i} Mdx + Ndy &= \sum_{i} \sum_{j} \int_{L_{ij}} Mdx + Ndy \\ &= \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy \\ &= \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy + \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy \\ &= \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy + \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy \\ &= \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy + \sum_{i \in j} \int_{L_{ji}} Mdx + Ndy \\ &= \sum_{i \in j} \int_{L_{ij}} Mdx + Ndy + \sum_{i \in j} \int_{L_{ji}} Mdx + Ndy \\ &= \sum_{i \in j} \left(\int_{L_{ij}} Mdx + Ndy + \int_{L_{ji}} Mdx + Ndy \right) \\ &= \sum_{i \in j} \left(\int_{L_{ij}} Mdx + Ndy + \int_{L_{ij}} Mdx + Ndy \right) \\ &= \sum_{i \in j} \left(\int_{L_{ij}} Mdx + Ndy + \int_{L_{ij}} Mdx + Ndy \right) \\ &= \sum_{i \in j} \left(\int_{L_{ij}} Mdx + Ndy + \int_{L_{ij}} Mdx + Ndy \right) \\ &= 0 \\ This z^{nd} case basically include almost all situations in the land of Advance Calcubes. The proof of general case needs "aualysis" and will be chitted flare. $X$$$

$$\begin{array}{l} \underbrace{\text{Def} 12: \text{The divergence of } \vec{\mathsf{F}} = M_{1}^{2} + N_{j}^{2} \text{ is defined to be} \\ \\ div \vec{\mathsf{F}} = \frac{\partial M}{\partial X} + \frac{\partial N}{\partial y} \\ \hline \\ \underbrace{\text{Note:}} \quad div \vec{\mathsf{F}} = \underbrace{\lim_{k \to 0}}_{k \to 0} \frac{1}{A_{\text{real}}(\overline{D}_{e}(x,y))} \iint_{\overline{D}_{e}(x,y)} \iint_{\overline{D}_{e}(x,y)} dA \\ \\ = \underbrace{\lim_{k \to 0}}_{k \to 0} \frac{1}{A_{\text{real}}(\overline{D}_{e}(x,y))} \bigoplus_{\overline{D}_{e}(x,y)} \vec{\mathsf{F}} \cdot \hat{n} ds \\ \\ \underbrace{(\text{called})}_{=} \text{ "flux density"} \\ \underbrace{\text{Notation}: \text{Fer } f(x,y), \quad \nabla f = \frac{\partial f}{\partial x} \stackrel{1}{\rightarrow} + \frac{\partial f}{\partial y} \stackrel{1}{j} \quad (\text{gradient}) \\ \\ = \left(\stackrel{1}{\xrightarrow{k}}_{\partial x} + \stackrel{2}{\xrightarrow{j}}_{\partial y}\right) f \end{array}$$

It is convenient to denote
$$(\nabla \text{ "nable"})$$

 $\left[\overrightarrow{\nabla} = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}\right]$

Then

$$\vec{\nabla} \cdot \vec{F} = (\vec{x} \cdot \vec{y} \cdot \vec{y}) \cdot (M \cdot \vec{x} + N \cdot \vec{y})$$
$$= \underbrace{\partial M}_{\partial X} + \underbrace{\partial N}_{\partial Y} = div \vec{F}.$$

Hence we also write

$$div\vec{F} = \vec{\nabla}\cdot\vec{F}$$

Using the notations of , div
$$\vec{F} = \vec{\nabla} \cdot \vec{F}$$
 and
 $\int cure \vec{F} = \vec{\nabla} \times \vec{F}$

the Green's Thus can be written as

Vecta forms of Grean's Thue
normal for

$$\oint_{\mathcal{C}} \vec{F} \cdot \hat{n} ds = \iint_{\mathcal{D}} dx \vec{F} dA$$

 $\int_{\mathcal{C}} \vec{F} \cdot \hat{n} ds = \iint_{\mathcal{D}} \vec{\nabla} \cdot \vec{F} dA$
tangential form
 $\oint_{\mathcal{C}} \vec{F} \cdot \hat{\tau} ds = \iint_{\mathcal{D}} curl \vec{F} \cdot \hat{\kappa} dA$
 a
 $\oint_{\mathcal{C}} \vec{F} \cdot \hat{\tau} ds = \iint_{\mathcal{D}} curl \vec{F} \cdot \hat{\kappa} dA$
 $\int_{\mathcal{C}} \vec{F} \cdot \hat{\tau} ds = \iint_{\mathcal{D}} curl \vec{F} \cdot \hat{\kappa} dA$

And Thenew 10 can be written as

Thus 10'
$$\Omega = \operatorname{Augeby-connected}$$
, $\vec{F} \in C'$. Then
 $\vec{F} = \operatorname{conservative} \iff \operatorname{curl} \vec{F} = \vec{\nabla} \times \vec{F} = 0$

(check: n=3 cose) Note: i) curl $\vec{F} = \vec{\nabla} \times \vec{F}$ defined only in $IR^3 (\neg IR^2)$ (i's but div $\vec{F} = \vec{\nabla} \cdot \vec{F}$ can be defined on IR^n for any n.

In particular, in
$$\mathbb{R}^3$$

Defiz The divergence of $\vec{F} = M\hat{i} + N\hat{j} + L\hat{k}$ is defined to be
 $div \vec{F} = \vec{\nabla} \cdot \vec{F} = (\hat{i} \stackrel{>}{\rightarrow}_{X} + \hat{j} \stackrel{>}{\rightarrow}_{Y} + \hat{k} \stackrel{>}{\rightarrow}_{Z}) \cdot (M\hat{i} + N\hat{j} + L\hat{k})$
 $= \frac{\partial M}{\partial X} + \frac{\partial N}{\partial Y} + \frac{\partial M}{\partial Z}$

For
$$C^2$$
 function f and C^2 vector field \vec{F} :
(i) $\vec{\nabla} \times (\vec{\nabla} f) = 0$ (i.e. $curl \vec{\nabla} f = 0$)
(ii) \vec{F} (inservation \Rightarrow $curl \vec{F} = \vec{\nabla} \times \vec{F} = 0$
(iii) $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$ (i.e. $div(curl \vec{F}) = 0$)

Permark: $\vec{\forall} \cdot (\vec{\forall} f) \neq 0$ in general, and it is called the <u>Laplacian</u> of f, and is denoted by $\vec{\forall}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = \operatorname{div} (\vec{\nabla} f) = \frac{3}{3\chi^2} + \frac{3}{3\chi^$

Pf of Thu 10 (n=2)
We may need to show J2 simply-cannected
$$e^{\frac{1}{2}K\vec{F}} = o\left(\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x}\right)$$

Hen \vec{F} is conservative.
Suppose C_1 , $C_2 \leq \Omega$ have the same starting point and
end point.
Case 1: C_1 , C_2 there no intersection $\begin{pmatrix} C_1 \\ R \\ \end{pmatrix}$,
Then "J2 is simply-cannected"
 \Rightarrow the region R embased by C_1 and C_2
 $lies completely inside J2. Then by Grean's Thm,
 $0 = \int \int \left(\frac{\partial N}{\partial x} - \frac{\partial H}{\partial y}\right) dA = \pm \left(\int_{C_1} - \int_{C_2}\right) (Mdk + Ndy)$
 $\Rightarrow \int_{C_1} Mdx + Ndy = \int_{C_2} Mdk + Ndy$
 $C_1 = C_2$, C_2 intersect
Pick another cure C_3 with
the same starting paint and
oud point, and ho not intersect
 $C_1 = C_2$.
Then by Case 1, $\int_{C_1} Mdx + Ndy = \int_{C_2} Mdx + Ndy$
 $= \int_{C_2} Mdk + Ndy$$

curve (starting from p):

$$C^{*} = (C + L - C_{1} - L)$$
Then the region R enclosed between $C + C_{1}$
is the region enclosed by C^{*} except the arc L
Hence $\iint_{R} (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y}) dA = \iint_{R \setminus L} (\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y}) dA$
 $\stackrel{\text{Green's}}{=} \oint_{C^{*}} (M dX + N dY)$
 $= (\oint_{C} + \int_{L} - \oint_{C_{1}} - \int_{L})(M dX + N dY)$
 $= \oint_{C} M dX + N dY - \oint_{C_{1}} M dX + N dY$
 $\stackrel{\text{cg.49}}{=} : \vec{F} = -\frac{-Y}{X^{2} + Y^{2}} : 1 + \frac{X}{X^{2} + Y^{2}} : 1$ on $R^{2} \setminus I(Q_{0}) f = \Omega$
we've calculated $\oint_{C_{1}} \vec{F} \cdot d\vec{r} = 2\pi i f_{0} C_{1} = X^{2} + Y^{2} = 1$
(auti-clochurice)
How about
(a)

