$$\frac{\text{Covallary (to Thm?)}}{\text{let } \vec{F} \text{ ke (ansemptive and C)}}$$

$$(n=3) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} + L\hat{k} \quad (m \ D \in IR^{3})$$

$$(n=3) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} + L\hat{k} \quad (m \ D \in IR^{3})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad If \quad \vec{F} = M\hat{i} + N\hat{j} \quad (m \ D \in IR^{2})$$

$$(n=2) \quad \vec{F} = \hat{O} \quad \vec{F} = \hat{O} \quad \vec{F} \quad \vec{$$

$$ug_{42} : Show that \vec{F}(x,y) = \hat{i} + x\hat{j} \text{ is not conservative on } |R^2$$

Soly: $(\vec{F} \in C^\infty) | M \equiv 1 \implies \frac{2M}{3y} = 0 \neq 1 = \frac{2N}{3x}$.
By Cor to Thm 9, \vec{F} is not conservative.

Remark (Important)
Fa a Cl vecta field
$$\vec{F} = M\hat{i} + N\hat{j} + L\hat{k}$$

 \vec{F} conservative $\xrightarrow{CortoThu9}$ M, N, L satisfy the system
of PDE in Ca to Thun 9.
Answer: Not true in general, needs extra condition on the
domain Ω.

eg43 Consider the vector field

$$\vec{F} = \frac{-y}{\chi^{2} + y^{2}} \hat{i} + \frac{x}{\chi^{2} + y^{2}} \hat{j}$$
cuid the domains

$$\Pi_{1} = \Pi^{2} \setminus \{(x, o) \in \Pi^{2} : x \le 0\}$$

$$\Pi_{2} = \Pi^{2} \setminus \{(0, o)\}$$

$$\Pi_{2} = deent in llude$$

$$He negative (but include negative$$

In polar conductes

$$\vec{F} = -\frac{AiQ}{r} \hat{Q}_{1}^{2} + \frac{(Q \oplus \hat{P}_{1})^{2}}{r} + \frac{(Q \oplus \hat{P}_{1})^{2}}{r}$$

$$\Rightarrow \vec{F} \text{ rotates around the origin anti-clockwisely} \begin{cases} |\vec{F}| = \frac{1}{r} \rightarrow 0 \text{ as } r \rightarrow 0 \Rightarrow \vec{F} \text{ cannot be extended to a C'} \\ \text{uectra field on } R^{2}. \end{cases}$$
Besides (0,0), \vec{F} is C¹ and dence \vec{F} is C¹ on SI, and also C¹ on SI2.
Questions: IS \vec{F} concentive on Ω_{1} ?
Is \vec{F} concentive on Ω_{2} ?
Solut: (1) For SI, and (k,y) can be expressed in polar conductes with $(1 - \pi) < \Theta < \pi$
 $1 - \pi < \Theta < \pi$
 $1 - \pi < \Theta < \pi$
 $\frac{2f}{r} = -\frac{AiQ}{r} = -\frac{AiQ}{r}$
 $\Rightarrow \vec{F} = \frac{2f}{2r} \cdot \hat{i} + \frac{2f}{2r} \cdot \hat{j} = \vec{\nabla}f$.
 $\Rightarrow \vec{F}$ is concentive.

(2) Fin Siz, the function

$$f(x,y) = 0$$
 cannot be extended $- \int_{-\pi}^{\pi} \int_{$

Summary:	
JZ I	٦ <u>۲</u>
$f(x,y) = \theta$ smooth function on \Re_1	S(X,Y)=O is not a smooth function on SZ2 (O cannot be well-defined on the whole SZ2)
$C : X^{2} + y^{2} = 1$ is <u>not</u> a curve in Ω_{1} because (-1,0) $\in C$ (-1,0) $\notin \Omega_{1}$	C: X ² +y ² =1 à a closed convert m SZZ
Closed curves cannot circle around the nigin => closed curves can be deformed continuous (with in Sr,) to a paint (in Sr1)	C enclosed the "hole" ⇒ C cannot be defamed contrinans (with à 52) to a point (ù 52)

eg
$$\frac{47}{2}$$
: Let $\Omega \equiv IR^3$
(connected and sumply-connected)
Let $\vec{F} = M_{1}^{2} + N_{1}^{2} + L\hat{h}$
 $= (y+e^{2})_{1}^{2} + (x+1)_{1}^{2} + (1+xe^{2})\hat{h}$
Found the potential function $f \circ f \vec{F}$, i.e.
 $\vec{T}f = \vec{F}$.
Solut: This is, we want to solve
 $\frac{2f}{2x} = M$, $\frac{2f}{2y} = N$, $\frac{2f}{2z} = L$.
Checking M,N, L satisfy the system of PDE in Cor to Thin?:
 $\frac{2M}{2X} = 0$ $\frac{2M}{2y} = 1$ $\frac{2M}{2z} = e^{2}$
 $\frac{2M}{2X} = 0$ $\frac{2M}{2y} = 0$ $\frac{2M}{2z} = e^{2}$
 $\frac{2M}{2X} = e^{2}$ $\frac{2M}{2y} = 0$ $\frac{2M}{2z} = e^{2}$
Thus $IO \Rightarrow$ existence of potential function f .
To find f explicitly:
 $\frac{2f}{2x} = y + e^{2}$
 \Rightarrow $f = \int (y+e^{2}) dx = x(y+e^{2}) + v cout in x^{2}$
 $= xy + xe^{2} + g(y, z)$ for some sumetime $g(y, z)$
 \Rightarrow $x+I = \frac{2f}{2y} = \frac{3}{2y}(xy + xe^{2} + g(y, z)) = x + \frac{2g}{2y}$

Thur II (Green's Thenen)
Let
$$JZ \subseteq |R'$$
 be open, $\vec{F} = M_{1}^{2} + N_{j}^{2}$ be C' vector field on JZ_{j} .
 C' is a piecewise "smooth" simple closed anti-clockwisely niented
curve enclosing a region R which lies entirely in JZ .
Then

. Normal Four

$$\oint_C \vec{F} \cdot \hat{n} \, ds = \oint_C M \, dy - N \, dk = \iint_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) \, dx \, dy$$

· Tangential Form

$$\oint \vec{F} \cdot \hat{T} ds = \oint_{C} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

(Remark: The two focus are equivalent.)
Note:
$$\pi_1 = \pi^2 \cdot 1 \times \leq 0$$

 $R = \pi^2 \cdot 1 \times \leq 0$
 $R = \pi^2 \cdot 1 \times =$