egg40 (Cart'd) Recall
$$\vec{F} = (x-y)\hat{i} + x\hat{j}$$

 $C: x^{2}+y^{2} = 1$
Find the flow (auti-clockwicely) along C and
flux across C.
Solut: Let $\vec{F}(t) = (at \hat{i} + u\hat{n} t\hat{j}, 0 \le t \le 2\pi)$
 $(x(t))$ ($y(t)$) (auti-dativice!)
Then flows = $\oint_{C} \vec{F} \cdot \hat{T} ds = \oint_{C} \vec{F} \cdot dt^{2}$
 $= \int_{0}^{2\pi} ((at - ait)\hat{i} + cat\hat{j}) \cdot \vec{L} - ait\hat{i} + cat\hat{j}) dt$
 $= \int_{0}^{2\pi} (-cot aint + 1) dt = 2\pi$ (check!)
flux = $\oint_{C} \vec{F} \cdot \hat{n} ds$
 $= \oint_{C} Mdy - Ndx$ (with auti-clochwise parametrization)
 $= \int_{0}^{2\pi} ((at - aint)) dait - cost d cast$
 $= \int_{0}^{2\pi} ((at - aint)) dait + (at aint) dt$
 $= \int_{0}^{2\pi} (cot - aint) (ost + (at aint) dt)$

Remark: If C is an mented curve, denote by - C' the <u>wiented</u> curve with <u>opposite</u> mentation $-\frac{c'}{c'}$

• If f is a scalar function

$$\begin{bmatrix} \int_{C} f \, ds &= & \int_{C} f \, ds \\ \hline & \int_{C} f \, ds &= & \int_{C} f \, ds \end{bmatrix}$$
o If \vec{F} is a vector field

$$\int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & \int_{C} \vec{F} \cdot \hat{f} \, ds = & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$

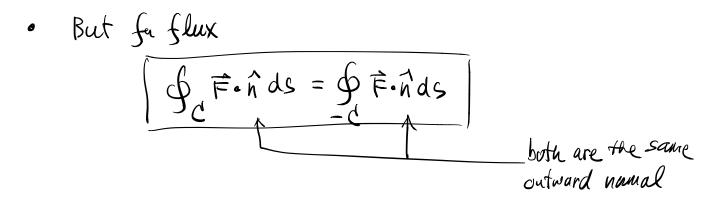
$$\begin{bmatrix} \int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$

$$\begin{bmatrix} \int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$

$$\begin{bmatrix} \int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$

$$\begin{bmatrix} \int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$

$$\begin{bmatrix} \int_{C} \vec{F} \cdot \hat{f} \, ds &= & - & \int_{C} \vec{F} \cdot \hat{f} \, ds \\ \hline & flow \end{bmatrix}$$



Summary:

scalar f	le tqz	independent of aientatia	f, ds have no direction
vectu É flav	∫ _c F.7ds	depends on orientation	7 depends on mientation
Slux	Sc F.n de	cidependent of viewtation	n = always outrand

Conservative Vecta Field

Then
$$\int_{C} \vec{F} \cdot \vec{T} ds = \int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} x(t) dt = x(b) - x(a)$$

(x-conditate at $\vec{F}(b) \in at \vec{F}(a)$)

:.
$$\int_C \vec{F} \cdot \vec{T} ds$$
 depends only on the starting \mathbf{x} and points.
 $\Rightarrow \vec{F} \cdot \vec{v}$ conservative.
(Note: $\vec{F} = \vec{\nabla} f$ where $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}$)

Thus (Fundamental Theorem of Line Integral)
Let f be a C¹ function on an open set
$$\mathcal{I} \subset \mathbb{R}^{n}$$
, $n=2n3$,
and $\vec{F} = \vec{\nabla} f$ be gradient vector field of f . Then for
any piecewise smooth oriented course C on \mathcal{I} with
starting paint A and end paint B,
 $\int_{C} \vec{F} \cdot \hat{f} \, dS = \hat{f}(B) - \hat{f}(A)$