Change of Variables Formula

\n(Substitution in multiple integrals)

\nReview of 1-vaniable

\n
$$
\int_{\alpha}^{b} f(x)dx = \int_{c}^{d} [f(x)du, \frac{dx}{du}]du
$$
\n
$$
x = x(au, f_{av} u \in [c, d]
$$
\n
$$
x = x(au, f_{av} u \in [c, d]
$$
\n
$$
y = x(au, f_{av} u \in [c, d]
$$
\nprovided $\frac{dx}{du} > 0$ ($\Rightarrow c < d$)

\nand

\n
$$
\int_{\alpha}^{b} f(x)dx = \int_{d}^{c} f(x)u \in (d, d)
$$
\n
$$
(\Rightarrow c > d)
$$
\nRecall, in Equation sum (of general dimensions):

\n
$$
\int_{[a,b]} f(x)dx
$$
\n
$$
dx = \int_{a}^{b} f(x)dx
$$
\n
$$
dx = \int_{[a,b]} f(x)dx \quad dx \in (a, b]
$$
\n
$$
\int_{a}^{b} f(x)dx = \int_{[a,b]} f(x)dx \quad d, a \le b
$$
\n
$$
\int_{[a,b]} f(x)dx = \int_{[a,b]} f(x)dx \quad d, a \ge b
$$
\n
$$
= \int_{[a,b]} f(x)dx \quad d, a \ge b
$$
\n
$$
= \int_{[a,b]} f(x)dx \quad d, a \ge b
$$

Combarang these, $\left(\begin{array}{cc} \text{sime} & \frac{|\Delta \times|}{|\Delta u|} \sim |\frac{d \times}{du}| \end{array}\right)$ $\sqrt{f(x)} \frac{dx}{du} du$ $f(x)dx = \int$ $TCAJ$ $\widetilde{[\mathbb{Q}}$

।
১

 α

 $\overline{\mathbf{b}}$

$$
\left(\begin{array}{ccc}\n\frac{\partial x}{\partial y} < 0 & \Rightarrow < > d \\
\frac{\partial x}{\partial y} < 0 & \Rightarrow < > d\n\end{array}\right) \begin{array}{c}\n\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & d\n\end{array}\n\big| du = -\int_{a}^{c} f(x) \left(\frac{\partial x}{\partial u}\right) du
$$
\n
$$
= \int_{d}^{c} f(x) \frac{\partial x}{\partial u} du
$$

1.20.1. We need to find

\n
$$
\frac{Area(\psi(r_{\mu}))}{Area(\psi_{\mu})} \rightarrow ? \quad \omega_{0} \quad \omega_{\mu} \rightarrow point''
$$
\n1.4.1.1.040.1.1.040.1.1.040.2.1.1.040.2.1.1.040.2.1.1.040.2.1.1.040.2.1.1.040.2.1.1.040.2.1.1.040.2.1.0

Self Delete the Jacobian

\n
$$
\begin{cases}\n\begin{cases}\n x = g(u, v) \\
 y = \varphi(u, v)\n\end{cases} \\
\begin{cases}\n \begin{cases}\n x = g(u, v) \\
 y = \varphi(u, v)\n\end{cases}\n\end{cases}
$$
\nby

\n
$$
\begin{cases}\n \frac{\partial(x, y)}{\partial(u, v)} = \frac{\partial(x, y)}{\partial(v, v)} = \frac{\partial(x,
$$

With this notation, we should have the family.

$$
\iint_{R} f(x,y) dx dy = \iint_{G} f(xu,\omega, y(u,\omega)) \left| \frac{\partial(x,y)}{\partial(u,\omega)} \right| dud\omega
$$

=
$$
\iint_{G} f(g(u,\omega, \hat{u}(u,\omega)) |\overline{J(u,\omega)}| dud\omega
$$

$$
\frac{log2\theta}{\theta} = \int \frac{x = r \omega \theta}{\theta = r \omega \omega \theta}
$$
\n
$$
\Rightarrow \quad \mathcal{T}(r, \theta) = \frac{\partial(x, y)}{\partial(r, \theta)} = det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) = r \quad (check')
$$
\n
$$
\Rightarrow \quad \mathcal{T}(r, \theta) = \frac{\partial(x, y)}{\partial(r, \theta)} = det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) = r \quad (check')
$$
\n
$$
\Rightarrow \quad \mathcal{T}(r, \theta) = \frac{\partial(x, y)}{\partial(r, \theta)} = det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) = r \quad (check')
$$
\n
$$
\Rightarrow \quad \mathcal{T}(r, \theta) = \frac{\partial(x, y)}{\partial(r, \theta)} = det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) = r \quad (check')
$$
\n
$$
\Rightarrow \quad \mathcal{T}(r, \theta) = \frac{\partial(x, y)}{\partial(r, \theta)} = det \left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta} \right) = r \quad (check')
$$

$$
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy
$$
\nLower $\lim_{x \to 1} x = \frac{y}{2} \Leftrightarrow 2x-y=0$
\n
$$
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} x = \frac{y}{2} + 1 \Leftrightarrow 2x-y=2
$$
\n
$$
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}} \frac{1}{\sqrt{x}} dx
$$
\n
$$
\int_{0}^{4} x = 2x-y
$$
\n
$$
\int_{0}^{4} 0 = y
$$
\n
$$
\int_{0}^{4} 0 = y
$$
\n
$$
\int_{0}^{4} 0 = y
$$
\n
$$
\int_{0}^{4} 0 = 0
$$
\n
$$
\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy = \int_{0}^{4} \int_{0}^{2} \frac{y}{2} \cdot \left| \frac{1}{2} \right| du dv
$$
\n
$$
= 2 \left(\frac{dy}{dx} \right)
$$

Thmb Sappae
$$
\phi: \begin{pmatrix} u \\ v \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix}
$$
 is a differentiable on a $(1-1, \text{ and } \phi) \in \Phi^{\prime} \in C^{\prime}$

\nmapping a region G (closed and bounded) is the uv -plane (except possible and uv -plane). Suppose $f(x_i y)$ is continuous on R , then

\nboundary.)

\nSuppose $f(x_i y)$ is continuous on R , then

\n
$$
\begin{pmatrix} \iint_S f(x,y) dx dy = \iint_S f \circ \phi(y, u) \left(\frac{\partial(x, y)}{\partial(u, u)} \right) du dv \\ \varphi & \varphi & \varphi \end{pmatrix}
$$
\nNotas: (i) $f \circ \phi(u, u) = f(x(u, u), y(u, u))$

\n(ii) ϕ is a different polynomial in \Rightarrow $\begin{pmatrix} \frac{\partial(x, y)}{\partial(u, u)} \end{pmatrix} \neq 0$.

94 of Thm6
Step 0: We need better notations and to uniquely:
54. His proof, we'll denote
54. His proof, we'll denote
37.4) = $\begin{pmatrix} \frac{3x}{24} & \frac{3x}{24} \\ \frac{3y}{24} & \frac{3y}{24} \end{pmatrix}$
24. The Jacobian matrix.
25. (4) = $\begin{pmatrix} \frac{3x}{24} & \frac{3x}{24} \\ \frac{3y}{24} & \frac{3y}{24} \end{pmatrix}$
24. The Jacobian determinant of the matrix.
25. (4) = det T(4)
26. The Jacobian determinant of the matrix.
27. (4) = det T(4)
28. The Jacobian determinant of the matrix.
29. The Jacobian determinant of the matrix.
30. The Jacobian determinant of the matrix.
40. The Jacobian determinant of the matrix.
51. The Jacobian matrix of the matrix.
62. The Jacobian matrix of the matrix.
7. The Jacobian matrix of the matrix.
8. The Jacobian matrix of the matrix.
9. The Jacobian determinant of the matrix.
10. The Jacobian matrix of the matrix.
11. The Jacobian matrix of the matrix.
12. The Jacobian matrix of the matrix.
13. The Jacobian matrix of the matrix.
14. The Jacobian matrix of the matrix.
15. The Jacobian matrix of the matrix.
16. The Jacobian matrix of the matrix.
17. The Jacobian matrix of the matrix.
18. The Jacobian matrix of the matrix.

Step 1: Let $F = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} 5_1(X_1, X_2) \\ 5_2(X_1, X_2) \end{pmatrix}$ near a point P
with $\frac{\partial(f_1, f_2)}{\partial(X_1, X_2)} + 0$ at p . Then, near the point p , F can be determined.
denposed into $F = H \circ K$
with H , K of the f -axis
$K = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \mapsto \begin{pmatrix} k(X_1, X_2) \\ X_2 \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$
and $\begin{pmatrix} G & G \\ G & G \end{pmatrix} \mapsto \begin{pmatrix} g & G \\ g & G \end{pmatrix}$
such that $\det_{f} \frac{\partial(f_1) \otimes f_2}{\partial(f_1)} = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$
with H , K of the f -axis
and $\begin{pmatrix} G & G \\ G & G \end{pmatrix} \mapsto \begin{pmatrix} g & G \\ g & G \end{pmatrix}$
such that $\det_{f} \frac{\partial(f_1) \otimes f_2}{\partial(f_1)} = \begin{pmatrix} \frac{\partial f_1}{\partial f_2} & \frac{\partial f_1}{\partial f_2} \\ \frac{\partial f_2}{\partial f_2} & \frac{\partial f_2}{\partial f_2} \end{pmatrix} \begin{pmatrix} f_1 + f_2 \\ f_1 + f_2 \end{pmatrix}$

$$
\frac{Pf}{f} \frac{f}{f} \frac{f}{f} \left(\frac{f}{f} \right) = \frac{Pf}{f} \left(\frac{f}{f} \right) = \frac{P(f, f_2)}{f} = \frac{P(f, f_2)}{f} \left(\frac{f}{f} \right) = \frac{P(f, f_2)}{f} \left(\frac{f}{f} \right) = \frac{P(f, f_2)}{f} \left(\frac{f}{f} \right)
$$

Case 1 :
$$
\frac{\partial f_1}{\partial x_1}(\rho) + 0
$$

\n*Define* $k(x_1, x_1) = f_1(x_1, x_1)$ near ρ .
\nThen the translation
\n $k = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} y_1 = k(x_1, x_2) = f_1(k_1, x_2) \\ y_2 = x_2 \end{pmatrix}$
\n \overrightarrow{a} of the required form and the x Jacobian matrix
\n
$$
\overrightarrow{J}(k) = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ 0 & 1 \end{pmatrix}
$$

$$
\Rightarrow \text{det } J(k)(p) = \frac{3}{2x_1}(p) + 0
$$
\n
$$
\Rightarrow \text{det } J(k)(p) = \frac{3}{2x_1}(p) + 0
$$
\n
$$
\left(\frac{x_1}{x_2}\right) = k^{-1}\left(\frac{y_1}{y_2}\right) = \left(\frac{3(y_1, y_2)}{y_2}\right) \text{ is differentiable at } k(p)
$$
\n
$$
\left(\frac{x_1}{x_2}\right) = k^{-1}\left(\frac{y_1}{y_2}\right) = \left(\frac{3(y_1, y_2)}{y_2}\right) \text{ is differentiable at } k(p)
$$
\n
$$
\Rightarrow \left(\frac{3y_1}{2y_1} \frac{2y_1}{2y_2}\right) \left(\frac{3y_1}{2x_1} \frac{3y_1}{2x_2}\right) = \left(\frac{1}{0}\right)
$$
\n
$$
\Rightarrow \frac{3y_1}{2y_1} \frac{3y_1}{2x_1} = 1 \Rightarrow \frac{3y_1}{2y_1} \frac{3y_1}{2x_1} + \frac{3y_1}{2y_2} = 0
$$
\n
$$
\Rightarrow \text{Int } p
$$
\n
$$
\Rightarrow \text{Int } p
$$
\n
$$
\Rightarrow \text{Int } p
$$
\n
$$
\Rightarrow \text{Int } \left(\frac{y_1}{y_2}\right) = \frac{1}{2} \cdot 0 \cdot k^{-1} (y_1, y_1)
$$
\n
$$
= \frac{1}{2} \cdot 0 \cdot 0 \cdot 0 \cdot 0 \Rightarrow \text{Int } p
$$
\n
$$
\Rightarrow \text{Int } \left(\frac{y_1}{y_2}\right) \Rightarrow \left(\frac{z_1}{z_2} = \frac{1}{k} (y_1, y_1)\right)
$$
\n
$$
\Rightarrow \text{Aut } \left(\frac{y_1}{z_2}\right) \Rightarrow \left(\frac{z_1}{z_2} = \frac{1}{k} (y_1, y_1)\right)
$$
\n
$$
\Rightarrow \text{Out } \left(\frac{y_1}{z_2}\right) = \frac{3y_1}{2y_1} + \frac{3y_2}{2x_2} \cdot \frac{3x_1}{2y_1} \cdot \frac{3x_2}{2y_2} \cdot \left(\frac{y_1}{y_
$$

$$
= \frac{362}{20} \frac{99}{29} + \frac{96}{20} \cdot 1
$$

$$
= \frac{3f_2}{\partial x_1} \left(-\frac{3f_1}{\partial x_2} \frac{9}{\partial y_1} \right) + \frac{3f_2}{\partial x_2}
$$

\n
$$
= -\frac{3f_2}{\partial x_1} \frac{9f_1}{\partial x_2} + \frac{3f_2}{\partial x_1}
$$

\n
$$
= -\frac{3f_1}{\partial x_1} \left[\frac{3f_1}{\partial x_1} \frac{3f_2}{\partial x_1} - \frac{3f_1}{\partial x_1} \frac{3f_2}{\partial x_1} \right] \frac{g_1f_1, f_2}{\partial (x_1, x_2)}
$$

\n
$$
= \frac{1}{\frac{3f_1}{\partial x_1}} d\theta t \sqrt{t} + 0 \quad \text{at } \rho
$$

\nSo, $\theta \neq k$ satisfy the requirements and we have
\n
$$
H \circ k \left(\frac{x_1}{x_2} \right) = H \left(\frac{y_1}{y_2} \right) = \left(\frac{y_1}{h(y_1, y_1)} \right) = \left(\frac{f_2(x_1, x_2)}{f_2(x_1, x_2)} \right)
$$

\n
$$
= \left(\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} \right) = F \left(\frac{x_1}{x_2} \right)
$$

This coupletes case 1.