such that at least one of 
$$X_{k}$$
,  $y'_{k}$  is irrational.  
The corresponding Riemann sum aquals  
 $S'_{n}(5; P) = \sum_{k=1}^{n} f(X_{k}, y'_{k}) \triangle A_{k} = \sum_{k=1}^{n} 1 \triangle A_{k} = A_{nea}(R) = 1 \Rightarrow 1$   
as  $||P|| \Rightarrow 0$ .  
Sume  $S'_{n}(5; P) \Rightarrow 0 \neq 1 \leftarrow S'_{n}(5; P)$ ,  
 $f$  is not integrable.  
 $g(b): let R = IO, I \times IO, I J$   
 $f(x, y) = \begin{cases} \frac{1}{xy}, & y'_{k} \times + 0 \approx y \neq 0 \\ 0, & y' \times = 0 \approx y \neq 0 \end{cases}$   
Then  $f$  is not integrable over  $R$ .  
 $P(f) = In$  any partition  $P$  of  $R$ ,  
there is a sub-vectangle  
 $R_{1} = IO, \pm_{1} I \times IO, 5 I$ .  
 $Choose$   
 $(x, y_{1}) = (\pm_{1}^{n}, s_{1}^{2}) \in R_{1} = IO, \pm_{1} I \times IO, 5 I$   
 $(since 0 < \pm_{1}^{2} < \pm_{1} < 1, 0 < 5^{2} < 5, <1)$   
Then  $R$  remains sum  
 $S'_{n}(S; P) = \sum_{k=1}^{n} f(X_{k}, y_{k}) \triangle A_{1k}$   
 $> f(x, y_{1}) \triangle A_{1}$  (since  $f \ge 0$ )  
 $= \frac{1}{4^{2}_{1}} S_{1}^{2} \pm I S_{1} = \frac{1}{4 + 5}$ 

