Double Integrals

\nRecall: In one-variable, "integral" is regarded as "limit" of "Riemann sum" (take MATH2060 for rigorous
\ntragatment)

\n
$$
\int_{\alpha}^{b} f(x)dx = \lim_{\|P\| \to \alpha} \sum_{k=1}^{n} f(x_k) \Delta x_k
$$
\nwhere\n
$$
\int_{\alpha}^{b} \hat{b} \, \alpha
$$
 function on the interval E₀5J\n
$$
\begin{cases}\n\hat{b} & \text{a partition} & \text{a = } t_0 < t_1 < \cdots < t_n = b \\
\alpha_k \in [t_1, t_k] & \text{and } \Delta x_k = t_k - t_{k-1} \\
\text{if } |P| = \max_{k} |\Delta x_k|\n\end{cases}
$$

Remark : We usually use uniform partition P: $q = \frac{1}{10}$ < $\frac{1}{10}$ = $q + \frac{1}{10}$ (b-a) < $\frac{1}{10}$ = $a + \frac{2}{10}$ (b-a) <.. $\cdots < x_{k} = 0 + \frac{k}{n}(b-a) < \cdots = x_{n} = b$ coural length In this case $||P|| = \frac{max}{h} |\Delta x_{k}| = \frac{b-a}{n} \gg 0 \iff n \to \infty$

$$
\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{1}{k^{2}} f(x_{k}) \cdot \Delta x_{k} \quad (x_{k}c[x_{t},tx])
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{k^{2}} f(x_{k}) \cdot \frac{1}{k^{2}} \quad (x_{k}c[x_{t},tx])
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{k^{2}} f(x_{k}) \cdot \frac{1}{k^{2}}
$$
\n
$$
\frac{1}{k^{2}} \int_{x}^{x_{k}} f(x_{k}) \cdot \frac{1}{k^{2}} dx
$$
\n
$$
\frac{1}{k^{2}} \int_{x}^{x_{k}} f(x_{k}) \cdot \frac{1}{k^{2}} dx
$$
\n
$$
= \lim_{n \to \infty} \frac{1}{n^{2}} \int_{x_{k}}^{x_{k}} \frac{1}{x_{k}} dx
$$
\n
$$
= \frac{1}{k^{2}} \int_{x_{k}}^{x_{k}} \frac{1}{x_{k}} dx
$$
\n
$$
\frac{1}{k^{2}} \int_{x_{k}}^{x_{k}} \frac{1}{x_{k}} dx
$$
\n

This concept can be generalized to any dimension. F_{α} 2-doin., let me first consider a function $f(x,y)$ defined on a rectangle $R = \overline{a}$, s x \overline{c} , d \overline{s} = $\{(x,y) : a \le x \le b, c \le y \le d\}$

Ref 1 : The function f is said to be integrable over R		
if	lim. $S(f, P) = \lim_{\ P\ \to 0} \sum_{k=1}^{n} f(x_k, y_k) \triangle A_k$	
with	g	independent of the choose of $(x_k, y_k) \in R_k$.
in this case, the limit is called the (double) integral of f over R and is denoted by		
of f over R and is denoted by		
$\iint_{R} S(x, y) \triangle A$ or $\iint_{R} f(x, y) \triangle A dy$		

Remark: Same as 1-variable, the double integral of $f(5z0)$ over R can be interpreted as volume under the graph off

$$
\frac{qq^{2}}{8}R = [0,27\times10,13, 50x^{4}) = xy^{2}
$$
\nFinally $\int_{R} xy^{2}dx dy$
\n
$$
\frac{36dy}{R} = \frac{1}{2}y^{2}dx dy
$$
\n
$$
= \frac{1}{2}y^{2} = \frac{1}{2}y^{2} + \frac{1}{2}y^{2}
$$

 $\frac{1}{2}$

493 : IbaixG, Fubini to calculate
$$
\iint_{R} xy^{3}dxdy \twhere R = \overline{10,2}x\overline{10,13}
$$

\n50th : By Fubini
\n
$$
\iint_{R} xy^{3}dx = \int_{0}^{2} (\int_{0}^{1}x^{3}dy)dx
$$
\n
$$
= \int_{0}^{2} (x \int_{0}^{1}y^{2}dy)dx
$$
\n
$$
= \int_{0}^{2} (\frac{x}{3})dx = \frac{2}{3}
$$
\n
$$
\iint_{R} xy^{2}dx = \int_{0}^{1} (\int_{0}^{2}xy^{2}dx)dy
$$
\n
$$
= \int_{0}^{1} (\int_{0}^{2}xy^{2}dx)dy
$$
\n
$$
= \int_{0}^{1} (y^{2})^{3}xdx dy
$$
\n
$$
= \int_{0}^{1} (y^{2})^{3}xdx dy
$$
\n
$$
= \int_{0}^{1} (2y^{2}dy)dx
$$
\n
$$
\iint_{R} y^{2}dx = \frac{2}{3}
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx dy
$$
\n
$$
\iint_{R} y^{2}dx = \int_{0}^{2} \int_{0}^{2} xdx dy dx dy
$$
\n
$$
\iint_{R} y^{2}dx
$$

On the other hand, in different order $\iint x \sin(xy) dA = \int_{0}^{1} \left(\int_{0}^{\pi} x \sin(xy) dy \right) dx$ \overline{S} \overline{J} $X\overline{S}$ $= \int_{0}^{1} \int_{0}^{1} cos xy \int_{40}^{40} dx$ $=\int_{0}^{1}(-\omega\pi x+i)dx$ $= 1$ (easy!)