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Starting from the study of line integral, the d’s, e.g. dx, dy, dz, ds, etc, in an integral,
which had mostly been a formal notation, will become increasingly important. An infor-
mal introduction to the d’s will be discussed in this tutorial. While materials in this note
is unlikely to appear in the examination, they are important in geometry theory.

The d’s are called differential 1-forms. They are defined for the study of coordinate-free
integration. This is the reason why its role has been marginal before the introduction
of line integral: integration has been done in standard coordinates alone, and for line
integral, there are no convenient standard coordinates.

In short, differential 1-forms are linear functionals on the space of tangent vectors (or
their combinations), and they are basically the only things that can be integrated (in an
coordinate-free manner). Below, the role of linear functionals is first discussed, followed
by the identification of the functionals with the d’s and the interpretation of flow and
flux integral in terms of differential 1-forms. [Lee13] (Chapters 11, 14 and 16) is a good
reference for the study of forms.

1 Integration of Linear Functional Fields

The integration of functional fields rather than functions will be illustrated by the follow-
ing example.

Consider the graph γ of the function ϕ : [0, 1]→ R defined by ϕ(x) = y2, which is a curve
in R2. Consider the ”line integral” of the function F (x, y) = x+ y along the curve C. An
naive approach to define the integral would be to integrate with respect to x, giving

I =

∫ 1

0

F (x, x2)dx =

∫ 1

0

(x+ x2)dx = 5/6. (1)

However, there is no reason to favor x over y, and integrating with respect to y gives

J =

∫ 1

0

F (
√
y, y)dy =

∫ 1

0

(
√
y + y)dy = 7/6 6= 5/6 = I. (2)

To investigate this discrepancy, it is instructive to examine the Riemann sums.
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For easier comparison, we may also discretize J with the tags used for I.
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where the last line follows because 1/n is very small and it vanishes in the limit. For a
focused discussion, the reader is asked to take this by faith.

The following observations are made.

1. Comparing (3) and (4) shows that I and J differ by the factors 1 and 2(i/n).

2. Considering the parametrization t
γ7−→ (t, t2) of the curve, 1 and 2(i/n) are respec-

tively the x- and y-components of the (non-normalized) tangent vector γ′(t) = (1, 2t)
at t = i/n.

3. Taking the x- and y-components are instances of linear functionals, namely, v 7→ e1·v
and v 7→ e2 · v.

The above observations show that linear functionals of tangent vectors keep track of
both the heights and widths of the rectangles in Riemann sums so that they integrate
to a consistent quantity. When γ(t) moves faster on the curve as t varies, for the same
increment 1/n of t, the increment along the curve is larger, and hence larger weights for
the corresponding tags are needed in the Riemann sum. These weights should depend
linearly on the tangent vector; if the speed doubles, the ”infinitesimal distance” γ(t)
traverses also double, and hence so should the weight.

Furthermore, I and J are not really integrals of the function F along the curve, but
rather, integrals of the F -scaled field of functionals of tangent vectors. In other words,
the integrand is actually an assignment of a linear functional of tangent vectors to every
point of the curve, rather than an assignment of a number to every point of the curve. For
I, this functional field is (x, v) 7→ F (x)e1·v; for J , the functional field is (x, v) 7→ F (x)e2·v,
where (x, v) denotes the tangent vector v based at a point x.

In general, for a functional field ω, the integral of ω along the curve parametrized by
γ : I → Rn is

∫
γ
ω =

∫
I
ω(γ(t), γ′(t))dt. This may be verified to be independent of

parametrization by chain rule, because the linear functional takes care of the scaling of
the rectangles in Riemann sums.

2 Nomenclature of Differential 1-Forms

It remains to identify the d’s. Indeed, recall that for a smooth function f : Rn → R,
df(v) = ∇f · v, and hence df is a linear functional. In particular, for f(x, y) = x,
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∇f = e1, so dx is the functional v 7→ e1 · v. Similarly, dy is v 7→ e2 · v. This justifies
our notations in (1) and (2). Clearly, in R2, at every point, dx and dy span the space of
functionals, and hence every functional field on R2 can be expressed as

ω = M(x, y)dx+N(x, y)dy. (5)

Sometimes, the notation may not be suggestive of the actual definition of the linear
functional. For instance, ds is in fact v 7→ T̂ · v, where T̂ is the unit tangent along
the curve. Then when integrating along the curve γ, T̂ · γ′ = |γ′|, because by definition
T̂ = γ′/|γ′|.

3 Differential 1-Forms and Vector Fields

(5) makes possible the identification of differential 1-forms and vector fields, simply by
associating ω with the vector field F = (M,N).

Then for a curve parametrized by γ with unit tangent T̂ and unit normal n̂,∫
γ

F · T̂ds =

∫
γ

Mdx+Ndy∫
γ

F · n̂ds =

∫
det[F, ·]

They may be verified by using the ordered basis {n̂, T̂} and the fact that γ′ · n̂ = 0.
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