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We close the study of top-dimensional integration by discussing differentiation under
integral sign. In multivariable differential calculus, the order of two differential operators
may be exchanged if the function is smooth enough. In multivarable integral calculus, the
order of two integrals may be exchanged if the function and the domain are nice enough.
Differentiation under integral sign is about exchanging the order of a differential operator
and an integral.

Proposition 1 (Differentiation Under Integral Sign (Smooth Version)). Let X ⊆ Rn be
a closed and bounded set and I be an open interval. Suppose f : I ×X is C1. Then

d

dt

∫
X

f(t, x)dx =

∫
X

∂

∂t
f(t, x)dx (1)

Proof. Fix t0 ∈ I.

d

dt

∫
X

f(t, x)dx =
d

dt

(∫
X

f(t, x)dx−
∫
X

f(t0, x)dx

)
(

∫
X

f(t0, x)dx is a constant.)

=
d

dt

∫
X

(f(t, x)− f(t0, x))dx (Fundamental theorem of calculus)

=
d

dt

∫
X

∫ t

t0

∂

∂t
f(t, x)dx

=
d

dt

∫ t

t0

∫
X

∂

∂t
f(t, x)dx (Fubini’s theorem)

=

∫
X

∂

∂t
f(t, x)dx (Fundamental theorem of calculus)

In fact, differentiation under integral sign holds in much greater generality. The following
proposition is an example. The proof, however, is beyond the scope of this course, as it
requires reconstructing the definition of integration by measure theory. The interested
reader may learn this from Chapter 1 of [Rud86] and prove the proposition by dominated
convergence theorem.

Proposition 2 (Differentiation Under Integral Sign (Measure-Theoretic Version)). Let
X be a space where integration makes sense and I be an open interval. Let f : I ×X be
a function such that ∂

∂t
f(t, x) is well defined for every (t, x) and is integrable for every t.

If there exists g such that
∫
X
g(x)dx is finite and for every (t, x),

∣∣ ∂
∂t
f(t, x)

∣∣ ≤ g(x), then
(1) holds.

A numerical and a theoretical applications are presented below.

Example 3 (Equation (2.1) of [Con]). For every nonnegative integer n,
∫∞
0

e−ttndt = n!
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Proof. This is often proven by repeated application of integration by parts, but we prove
it by differentiation under integral sign for the purpose of illustration.

Note that for x > 0, ∫ ∞
0

e−txdt = 1/x.

Differentiating n times gives

(−1)n
∫ ∞
0

e−txtndt =

∫ ∞
0

∂n

∂xn
e−txdt =

dn

dxn

∫ ∞
0

e−txdt =
dn

dxn
1/x = (−1)n(n!)x−(n+1).

The result follows by putting x = 1.

The theoretical application below concerns approximation of continuous functions by
smooth functions. The analysis of smooth functions is relatively easy, since abundant
tools from differential calculus are available: mean-value theorem, first-order optimality
condition, Taylor expansion, etc. However, the class of smooth functions is in fact very
small. Most continuous functions are not differentiable (Problem 38 of Chapter 7.8 of
[Roy88]) . The following proposition justifies the sufficiency of the study of smooth func-
tions, as it states that every continuous function, despite its nondifferentiability, can be
approximated by smooth ones.

Proposition 4 (Mollification (Theorem 7.ii in Appendix C of [Eva10])). Every continuous
function f : R→ R can be approximated by a sequence of infinitely differentiable functions
fn’s, in the sense that for every x ∈ R, and every positive error allowance ε, if n is
sufficiently large, then |fn(x)− f(x)| < ε.

Corollary 5. Every continuous function f : R→ R can be approximated by a sequence
of infinitely differentiable functions fn’s, in the sense that for every x ∈ R, limn→∞ fn(x) =
f(x).

Proof. Consider ϕ : R→ R.

ϕ(x) =

{
C exp( 1

|x|2−1/2) if |x| < 1/2

0 otherwise
,

where C is a constant such that
∫∞
−∞ ϕ = 1. The following properties of ϕ may be readily

verified.

• ϕ is symmetric

• ϕ ≥ 0

• ϕ(x) = 0 for |x| ≥ 1/2

•
∫∞
−∞ ϕ = 1

• ϕ is infinitely differentiable (even at ±1/2)
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Define

fn(x) =

∫ ∞
−∞

f(x− y)[nϕ(ny)]dy =

∫ ∞
−∞

f(y)[nϕ(n(x− y))]dy,

where the second equality holds by substituting y by x− y. This is called the convolution
of f with nϕ(n·). fn(x) is the nϕ(n·)-weighted average of f(y) with y ∈ B(x, 1/n).

Since dm

dxmfn(x) =
∫∞
−∞ f(x−y) dm

dxm [nϕ(n(x−y))]dy, where dm

dxm [nϕ(n(x−·))] is continuous
and vanishes outside of a bounded set, fn is infinitely differentiable.

It remains to show that fn approximates f in the stated sense.

|fn(x)− f(x)| ≤
∫ ∞
−∞
|f(x)− f(y)|[nϕ(n(x− y))]dy

≤ n

∫
B(x,1/n)

|f(x)− f(y)|ϕ(n(x− y))dy

≤
(

max
z

ϕ(z)
)(

n

∫
B(x,1/n)

|f(x)− f(y)|dy
)
.

Now, since f is continuous, |f(y)− f(x)| < ε
2maxz ϕ(z)

for y ∈ B(x, 1/n) if n is sufficiently

large, and hence the expression in the second bracket is at most n
(
2
n

) (
ε

2maxz ϕ(z)

)
=

ε
maxz ϕ(z)

. The result then follows.
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