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The relationship between the Laplacian operator, harmonic functions and mean-value
property on R2 is discussed. Recall that the Laplacian operator is defined by

∆ =
∑
i

∂ii,

and on R2,
∆ = ∂xx + ∂yy.

Harmonic functions are functions u that vanish identically when acted upon by the Lapla-
cian operator, in symbols,

∆u ≡ 0.

For instance, u(x, y) = log
√
x2 + y2 may be readily verified to be harmonic. Chapter

2.2 of [Eva10] and Chapter 2 of [GS98] are good references for the theory of harmonic
functions.

1 Results from Differential Calculus

Two results about the Laplacian operator and harmonic functions obtainable by differ-
ential calculus are highlighted below. They will serve as the starting point of the investi-
gation below. Their details and implications may be found in the appendix. They were
discussed in the tutorial in MATH2010 in semester 2 of 2017-2018.

discretization ∆u(x) = limh→0
2n
h2

[(
1
2n

∑
σ∈{1,−1}
1≤i≤n

u(x+ σhei)
)
− u(x)

]
weak maximum principle Suppose u is harmonic on the unit ball and is continuous

up to the boundary. Then u attains its maximum on the boundary, i.e. there exists
an x0 on the boundary such that for every x ∈ B(0, 1), u(x) ≤ u(x0).

uniqueness for boundary value problem Two harmonic functions on the unit ball
that are continuous up to the boundary are equal if they agree on the boundary.

Note that weak maximum principle does not rule out the possibility that the maximum is
attained in the interior as well. Indeed, the maximum is attained everywhere for constant
functions, which are harmonic.

2 Interpretation of the Laplacian Operator and Mean-

Value Property

This section is based on a technical lemma derived with Green’s Theorem. The discretiza-
tion shows that the Laplacian operator is basically the average deviation u(x) from u(x0),
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with the deviation measured along coordinate axes. Corollary 2 will rephrase this idea
without the use of coordinate exes. This interpretation allows handling the Laplacian,
and hence harmonicity, by considering the mean-value of the function on discs or circum-
ferences. In particular, Corollary 3 shows a smooth function is harmonic iff its function
value is the mean-value on discs. Two further consequences are then derived. Below,
integral with a horizontal bar means average, i.e. integrate and then divide by the size of
the domain.

Lemma 1. For a C2 function u on R2,
ffl
B(x,r)

∆udA = 2
r
d
dρ

∣∣
ρ=r

ffl
∂B(x,ρ)

uds. (integral with

a bar means average, i.e. integrate and then divide by the size of the domain)

Proof. Observe that ∆u = ∇ · ∇u. Then by Green’s theorem,

ˆ
B(x,r)

∆udA =

ˆ
B(x,r)

∇ · ∇udA

=

ˆ
∂B(x,r)

∇u · νds (Green’s Theorem, ν is the normal)

=

ˆ
∂B(x,r)

∂νuds

=

ˆ 2π

0

∂νu(x+ r

[
cos θ
sin θ

]
)rdθ

=

ˆ 2π

0

∂ρ|ρ=ru(x+ ρ

[
cos θ
sin θ

]
)rdθ (since ν =

[
cos θ
sin θ

]
)

= ∂ρ|ρ=r
ˆ 2π

0

u(x+ ρ

[
cos θ
sin θ

]
)rdθ

= ∂ρ|ρ=r
ˆ
∂B(x,r)

uds

The result then follows from dividing both sides by πr2.

This lemma gives an interpretation of the Laplacian as the second order instantaneous
rate of change of the mean values on spheres, and neglecting the second-order scaling
factor, it is the average deviation from the function value. More precisely, we have the
following corollary.

Corollary 2. Let u be a C2 function u on R2, and fix x ∈ R2. Define

f(r) =

 
∂B(x,r)

u.

Then f is twice-differentiable at r = 0, with f(0) = u(x), f ′(0) = 0 and f ′′(0) = 1
2
∆u(x).

Proof. Upon passing to limit, the lemma above shows 1
2
∆u(x) = limr→0+

1
r
f ′(r). Since

the limit exists, limr→0+ f
′(r) = 0, and hence by mean-value theorem, f ′(0) = 0. Then

1
2
∆u(x) = limr→0+

1
r
(f ′(r)− f ′(0)), which by definition is f ′′(0).

Corollary 3. Let u be a C2 function u on R2. The followings are equivalent.
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• u is harmonic (resp subharmonic, superharmonic).

• u(x) = (resp ≤,≥)
ffl
∂B(x,r)

uds.

• u(x) = (resp ≤,≥)
ffl
B(x,r)

udA.

Proof. The first equivalence follows from Lemma 1. Mean-value property on circumfer-
ences implies that on discs via integration. Differentiating gives a local converse, which
by Corollary 2, implies u is harmonic.

These characterisations are called mean-value properties / equation / inequalities. Two
consequences consequences are shown below.

Proposition 4 (Strong Maximum Principle). Suppose Ω is bounded connected open set.
If a nonconstant u ∈ C(Ω̄) satisfies the mean-value inequality for subharmonic functions,
then it attains its maximum and only on the boundary.

Proof. Since the function is continuous and Ω is bounded, the maximum is attained. It
suffices to show that the maximum is not attained in the interior. Suppose, for contra-
diction, that it does at some interior x. Then maxu = u(x) ≤

ffl
∂B(x,r)

uds ≤ maxu,

and hence the average over the circumference is maxu. Then it is impossible that u has
values strictly smaller than maxu on the circumference. Letting the radius vary, this
implies u(y) = maxu on B(x, r) whenever B(x, r) ⊆ Ω. By connectedness, repeating this
with points on the boundary of balls playing the role of the centers shows u = maxu
everywhere.

Remark. The strong maximum principle is stronger than the weak maximum principle
because it rules out the possibility that the maximum is attained in the interior, unless
the function is constant.

Specialising to harmonic functions, this equivalence for harmonic functions holds even in
the class of continuous functions.

Theorem 5. If a continuous function satisfies mean-value property for harmonic func-
tions, then it is smooth, and hence harmonic.

Proof. Let ϕε be a mollifier1 supported on B(0, ε) that is symmetric in the sense that
ϕε(x) = ψε(|x|). Mean-value property implies u = u ∗ϕε on Ωε = {x ∈ Ω : d(x,ΩC) > ε},

1see Tutorial Note 6
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and hence u is smooth everywhere. More precisely,

(u ∗ ϕε)(x) =

ˆ
B(0,ε)

u(x+ y)ϕε(−y)dy

=

ˆ ε

0

ˆ 2π

0

u(x+ r

[
cos θ
sin θ

]
)ϕε(−r

[
cos θ
sin θ

]
)rdθdr

=

ˆ ε

0

ˆ 2π

0

u(x+ r

[
cos θ
sin θ

]
)dθψε(r)rdr (symmetry)

= u(x)

ˆ ε

0

ˆ 2π

0

dθψε(r)rdr

= u(x)

ˆ
B(0,ε)

ϕε(y)dy

= u(x)

3 Appendix: Details of Results about the Laplacian

Operator from Differential Calculus

Proposition 6.

∆u(x) = lim
h→0

2n

h2
[( 1

2n

∑
σ∈{1,−1}
1≤i≤n

u(x+ σhei)
)
− u(x)

]

Proof. It suffices to show the equivalent expression

∆u(x) = lim
h→0

1

h2

∑
[(u(x+ hei)− u(x)) + (u(x− hei)− u(x))]

By the definition of partial deriviatives, this boils down to showing the following equation
for single-variable functions v

v′′(x) = lim
h→0

1

h2
[(v(x+ h)− u(x)) + (u(x− h)− u(x))]

which indeed holds by L’Hopital’s rule.

Theorem 7. [Weak Maximum Principle] Suppose u is harmonic on B(0, 1) and is con-
tinuous up to the boundary. Then u attains its maximum on the boundary, i.e. there
exists an x0 on the boundary such that for every x ∈ B(0, 1), u(x) ≤ u(x0).

Proof. By single-variable calculus, the proposition is true if ”harmonic” is replaced by
”functions with strictly positive Laplacian”, because the second derivative along each
coordinate axis direction at an internal maximum is nonpositive, and hence so is their
sum. (Try to write out the details of the paragraph.)
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Now, suppose u is harmonic. Since ∆|x|2 = 2n (n is the dimension of the space), for ε > 0,
uε(x) = u(x) + ε|x|2 has a strictly positive Laplacian, and hence it attains its maximum
on the boundary. Let M and Mε be the maxima of u and uε on the boundary. It suffices
to show M is the maximum of u on B(0, 1). Since |y|2 = 1 for y on the boundary, for x
in the interior, u(x) ≤ uε(x) ≤ Mε = M + ε. Letting ε→ 0, u(x) ≤ M . The result then
follows.

Corollary 8. Suppose u is harmonic on B(0, 1) and is continuous up to the boundary.
If u vanishes on the boundary, then it is identically 0.

Proof. Maximum principle implies the maximum is attained on the boundary, and hence
the maximum is 0. However, the same argument applied on −u shows the minimum is
−0 = 0. Therefore, u is identically 0.

Corollary 9 (Uniqueness for Boundary Value Problem). Let f : B(0, 1) → R and φ :
∂B(0, 1)→ R be given. Then the following equation has at most one solution.{

∆u = f on Ω
u = φ on ∂Ω

Proof. Let u and v be two solutions, it suffices to show that u = v. then u−v is harmonic
on Ω and vanishes on the boundary. The above theorem shows u − v = 0, and hence
u = v.
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