

Math 3360: Mathematical Imaging

Lecture 19: Anisotropic diffusion of image denoising &

Energy minimization models

Prof. Ronald Lok Ming Lui Department of Mathematics,

The Chinese University of Hong Kong

Isotropic diffusion

Isotropic diffusion

Original image

Sigma = 1.98

Sigma = 4.28

Sigma = 8.24

Anisotropic diffusion

Twenty iterations

Gaussian filter

Noisy image

Gaussian filter/Isotropic diffusion

Noisy image

ROF

Original

Noisy image

Denoised image

Noisy

TV Denoised

Intermediate

final

Original noisy image of Elaine and the one with 20% Guassian noise.

Steady state solutions to the ROF function with λ given by 0.005, 0.010, 0.020 and 0.050.

Top: Image denoising using L2 norm of gradient Bottom: Image denoising using TV/ROF model

 $\ t$

TV/ROF deblurring

Basic

Total Variation (TV)