
Math 1010 Week 9

L’Hôpital’s Rule, Taylor Series

Theorem 9.1 (Cauchy’s Mean Value Theorem). If f, g : [a, b] −→ R are functions
which are continuous on [a, b] and differentiable on (a, b), and g(a) 6= g(b), then
there exists c ∈ (a, b) such that:

f ′(c)

g′(c)
=
f(b)− f(a)
g(b)− g(a)

Proof. Exercise. Apply Rolle’s Theorem to:

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a))

IMAGE

Theorem 9.2 (L’Hôpital’s Rule). Let c ∈ R. Let I = (a, b) be an open interval
containing c. Let f, g be functions which are differentiable at every point in (a, c)∪
(c, b). Suppose:

• lim
x→c

f(x) and lim
x→c

g(x) are both equal to 0 or both equal to ±∞.

• lim
x→c

f ′(x)

g′(x)
exists.

(• g′(x) 6= 0 for all x 6= c in I .)
Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Proof. (Sketch) We consider the special case where:
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• lim
x→c

f(x) = lim
x→c

g(x) = 0.

• f and g are continuous at x = c.

For such functions f, g, we have:

f(c) = g(c) = 0.

Hence:

f(x)

g(x)
=
f(x)− f(c)
g(x)− g(c)

=
f ′(tx)

g′(tx)

for some tx between c and x by Cauchy’s Mean Value Theorem.
As x approaches c, the element tx lying between x and c must also approach

c.

Hence, if the limit lim
x→c

f ′(x)

g′(x)
exists, then intuitively it follows that:

lim
x→c

f(x)

g(x)
= lim

tx→c

f ′(tx)

g′(tx)

= lim
t→c

f ′(t)

g′(t)
.

( Optional Exercise : To prove the above equality rigorously, one could, for
example, apply the sequential criterion for the limit of a function . )

9.1 Indeterminate Forms

• 0
0

• ∞∞
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• 0 · ∞

• ∞−∞

• 00

• ∞0

• 1∞

Here, for example, 1∞ represents the situation lim
x→c

f(x)g(x) where lim
x→c

f(x) =

1 and lim
x→c

g(x) =∞.
Hence, the following limit corresponds to the indeterminate form 1∞:

lim
x→∞

(
1 +

1

x

)x
.

Example 9.3. Use l’Hôpital’s rule to evaluate the following limits:

1. lim
x→0

ex − 1− x− x2

2

x3

Solution.

lim
x→0

(
ex − 1− x− x2

2

)
= 0.

lim
x→0

x3 = 0.
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lim
x→0

(
ex − 1− x− x2

2

)′
(x3)′

= lim
x→0

ex − 1− x
3x2

(
→ 0

0

)
lim
x→0

(ex − 1− x)′

(3x2)′
= lim

x→0

ex − 1

6x

=
1

6
lim
x→0

ex − 1

x

=
1

6

Hence, by l’Hôpital’s rule,

lim
x→0

ex − 1− x− x2

2

x3
= lim

x→0

(
ex − 1− x− x2

2

)′
(x3)′

= lim
x→0

(ex − 1− x)′

(3x2)′

=
1

6

2. lim
x→0+

x
1

1+ln x

Solution. (This limit corresponds to the indeterminate form 00.)

For x > 0, we have x = elnx. Hence,

lim
x→0+

x
1

1+ln x = lim
x→0+

e(
1

1+ln x) lnx = elimx→0+
ln x

1+ln x

The last equality holds because f(x) = ex is a continuous function.

The limit lim
x→0+

lnx

1 + ln x
corresponds to the indeterminate form −∞

−∞ . So, it is

possible in this case to apply l’Hopital’s rule to help find the limit.

lim
x→0+

(lnx)′

(1 + ln x)′
= lim

x→0+

1
x
1
x

= lim
x→0+

x

x

= 1
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By l’Hopital’s rule, it now follows that:

lim
x→0+

lnx

1 + ln x
= 1.

Hence,

lim
x→0+

x
1

1+ln x = elimx→0+
ln x

1+ln x

= e1

= e.

3. lim
x→+∞

x
(π
2
− tan−1 x

)
Solution. (This limit corresponds to the indeterminate form∞· 0.) Rewrite
the limit as follows:

lim
x→+∞

x
(π
2
− tan−1 x

)
= lim

x→+∞

π

2
− tan−1 x

1
x

(
→ 0

0

)
.

Now, compute:

lim
x→+∞

(π
2
− tan−1 x

)′
(
1
x

)′ = lim
x→+∞

− 1
1+x2

− 1
x2

= lim
x→+∞

x2

1 + x2

= lim
x→+∞

1(
1 + 1

x2

)
= 1

Hence, by l’Hopital’s rule,

lim
x→+∞

x
(π
2
− tan−1 x

)
= 1.
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4. lim
x→+∞

(ex + x)
1
x

Solution. (This limit corresponds to the indeterminate form∞0.) We have:

lim
x→+∞

(ex + x)
1
x = lim

x→+∞

(
eln(e

x+x)
) 1

x

= lim
x→+∞

e
ln(ex+x)

x

= e
lim

x→+∞
ln(ex+x)

x

The limit lim
x→+∞

ln(ex+x)
x

corresponds to the indeterminate form ∞
∞ .

lim
x→+∞

(ln(ex + x))′

(x)′
= lim

x→+∞

ex + 1

ex + x

= lim
x→+∞

ex
(
1 + 1

ex

)
ex
(
1 + x

ex

)
= lim

x→+∞

1 + 1
ex

1 + x
ex

= 1.

Hence, by l’Hopital’s rule,

lim
x→+∞

ln(ex + x)

x
= lim

x→+∞

(ln(ex + x))′

(x)′

= lim
x→+∞

ex + 1

ex + x

= 1.

It now follows that:

lim
x→+∞

(ex + x)
1
x = e

lim
x→+∞

ln(ex+x)
x = e1 = e.
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5. lim
x→0

1− x cotx
x sinx

Solution. (This limit corresponds to the indeterminate form 0
0
.) Note that

cotx =
cosx

sinx
. Rewrite the limit as follows:

lim
x→0

1− x cotx
x sinx

= lim
x→0

sinx− x cosx
x sin2 x

(
→ 0

0

)
One’s first instinct might be to differentiate both numerator and denomina-
tor right away. But this seems unwise, since, looking further down the road,
we would have to deal with an indeterminate form whose denominator is
(x sin2 x)′ = 2x sinx cosx+sin2 x. Repeating the differentiation of the nu-
merator and denominator would only make the expression more and more
complicated.

A cleverer way would be to rewrite the limit as follows:

lim
x→0

sinx− x cosx
x sin2 x

= lim
x→0

sinx− x cosx
x3

· x2

sin2 x
.

This is motivated by the observation that sin2 x is very close to x2 when x
is close to 0.

First, we have:

lim
x→0

x2

sin2 x
=
(
lim
x→0

x

sinx

)2
= 1.

The limit lim
x→0

sinx− x cosx
x3

corresponds to the indeterminate form 0
0
. Dif-

ferentiating both numerator and denominator, we have:

lim
x→0

(sinx− x cosx)′

(x3)′
= lim

x→0

cosx+ x sinx− cosx

3x2

= lim
x→0

x sinx

3x2

= lim
x→0

sinx

3x

=
1

3
.

Hence, by l’Hopital’s rule we have:

lim
x→0

sinx− x cosx
x3

= lim
x→0

(sinx− x cosx)′

(x3)′
=

1

3
.
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It now follows that:

lim
x→0

1− x cotx
x sinx

= lim
x→0

sinx− x cosx
x3

· lim
x→0

x2

sin2 x

=
1

3
· 1

=
1

3
.

Exercise 9.4. 1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

Important Note. If limx→c f(x) = limx→c g(x) = 0 or ±∞, and lim
x→c

f ′(x)

g′(x)

does not exist, it DOES NOT follow that lim
x→c

f(x)

g(x)
does not exist.

Example 9.5.

lim
x→∞

x+ sinx

x

Definition 9.6. Given a function f which is n times differentiable at a. The n-th
Taylor polynomial of f (centered) at a is:

P (x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.
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Observe that:
P (k)(a) = f (k)(a),

for k = 0, 1, 2, . . . , n.

Example 9.7. The Taylor polynomials at a = 0 for various functions f are as
follows:

f(x) P (x)

cosx 1− x2

2!
+
x4

4!
− · · ·+ (−1)n x2n

(2n)!

sinx x− x3

3!
+
x5

5!
− · · ·+ (−1)n x2n+1

(2n+ 1)!

ex 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

ln(1 + x) x− x2

2
+
x3

3
− · · ·+ (−1)n+1x

n

n
1

1− x
1 + x+ x2 + x3 + · · ·+ xn

Note, for example, that the 5-th and 6-th Taylor polynomials of f(x) = sinx
at x = 0 both have degree 5. Hence, an n-th Taylor polynomial does not neces-
sarily have degree n.

• Taylor polynomials of f(x) = sinx centered at a = 0.

• Taylor polynomials of f(x) = sinx centered at a = π/2.

Theorem 9.8 (Taylor’s Formula). Let n be a positive integer, and a ∈ R. Let f be
a function which is n+ 1 times differentiable on an open interval I containing a.
Let:

Pn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) + f (2)(a)

2!
(x− a)2 + f (3)(a)

3!
(x− a)3

+ . . .+
f (n)(a)

n!
(x− a)n

be the n-th Taylor polynomial of f at a. Then, for any x ∈ I , we have:

f(x) = Pn(x) +Rn(x),
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where the remainder term Rn(x) is equal to:

f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

Note that the special case n = 0 is equivalent to (Lagrange’s) Mean Value Theo-
rem.

Proof. Recall that P (k)
n (a) = f (k)(a) for k = 0, 1, 2, . . . , n. Moreover, observe

that P (k)
n = 0 for k > n, since Pn is a polynomial of degree at most n.

Let:
F (x) = f(x)− Pn(x), G(x) = (x− a)n+1.

Then, F (a) = G(a) = 0, and by Cauchy’s Mean Value Theorem ( Cauchy’s Mean
Value Theorem. ), we have:

f(x)− Pn(x)
(x− a)n+1

=
F (x)− F (a)
G(x)−G(a)

=
F ′(x1)

G′(x1)

=
f ′(x1)− P ′n(x1)
(n+ 1)(x1 − a)n

for some x1 between a and x.
Now let:

F1(x) = F ′(x) = f ′(x)− P ′n(x),
G1(x) = G′(x) = (n+ 1)(x− a)n.

Repeating the same procedure carried out before, we have:

f ′(x1)− P ′n(x1)
(n+ 1)(x1 − a)n

=
F ′1(x)

G′1(x)
=

f (2)(x2)− P (2)
n (x2)

(n+ 1)n(x2 − a)n−1

for some x2 between a and x1. Repeating this process n+ 1 times, we have:
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f(x)− Pn(x)
(x− a)n+1

=
f ′(x1)− P ′n(x1)
(n+ 1)(x1 − a)n

=
f (2)(x2)− P (2)

n (x2)

(n+ 1)n(x2 − a)n−1
...

=
f (n)(xn)− P (n)

n (xn)

(n+ 1)n(n− 1) · · · 2(xn − a)

=
f (n+1)(xn+1)− 0

(n+ 1)!

for some xn+1 between a and x. Letting c = xn+1, the theorem follows.

Definition 9.9. Given a function f which is infinitely differentiable at a (i.e.
f (k)(a) is defined for k = 0, 1, 2, 3, . . .). The Taylor series of f (centered) at
a is the power series:

T (x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k + · · ·

In general, for any power series of the form S(x) =
∞∑
k=0

ak(x− a)k, the value

of S at any given c ∈ R is by definition the limit:

S(c) := lim
n→∞

n∑
k=0

ak(c− a)k.

Note that this limit does not necessarily exist. If it does exist, we say that the
power series S converges at x = c, otherwise we say that it diverges at x = c.

Example 9.10. The Taylor series at a = 0 for various functions f are as follows:
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f(x) T (x)

cosx
∞∑
k=0

(−1)k x
2k

(2k)!

sinx
∞∑
k=0

(−1)k x2k+1

(2k + 1)!

ex
∞∑
k=0

xk

k!

ln(1 + x)
∞∑
k=1

(−1)k+1x
k

k

1

1− x

∞∑
k=0

xk

Theorem 9.11 (Binomial Series). For α ∈ R, |x| < 1,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk = 1 + αx+

α(α− 1)

2!
x2 + · · · ,

where: (
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!

Example 9.12. In particular, for |x| < 1, we have:
√
1 + x = (1 + x)1/2

= 1 +
1

2
x+

(1/2)(1/2− 1)

2!
x2 +

(1/2)(1/2− 1)(1/2− 2)

3!
x3 + · · ·

Example 9.13. The Taylor T (x) series of f(x) = ex at a = 0 converges every-
where. Moreover, for each x ∈ R, we do have:

T (x) =
∞∑
k=0

1

k!
xk = ex.

Similarly, for all x ∈ R, we have:

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = sinx

∞∑
k=0

(−1)k

(2k)!
x2k = cosx
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However,
The Taylor series of f(x) = ln(1 + x) at a = 0 is:

T (x) =
∞∑
k=1

(−1)k+1

k
xk,

which converges only for x ∈ (−1, 1].
For such x we do have:

T (x) = f(x).

In particular, we have:

ln 2 = ln(1 + 1) =
∞∑
k=1

(−1)k+1

k
1k = 1− 1

2
+

1

3
− 1

4
+ · · ·

Remark. There are functions whose Taylor series converge everywhere, but not
to the functions themselves.
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