Math 1010 Week 9

[’Hopital’s Rule, Taylor Series

Theorem 9.1 (Cauchy’s Mean Value Theorem). If f, g : [a,b] — R are functions
which are continuous on |a, b| and differentiable on (a,b), and g(a) # g(b), then
there exists ¢ € (a, b) such that:

f'(e) _ f(b) = f(a)

g(c)  g(b) —g(a)

Proof. Exercise. Apply Rolle’s Theorem to:

W) = f(x)(g(b) — g(a)) — g(x)(f(b) — f(a))

IMAGE

Theorem 9.2 (L'Hopital’s Rule). Let ¢ € R. Let I = (a,b) be an open interval
containing c. Let f, g be functions which are differentiable at every point in (a, ¢)U
(¢,b). Suppose:

e lim f(z) and lim g(x) are both equal to O or both equal to +oc.

xr—C Tr—C

(e g'(x) #Oforallx # cin l.)

Then, /
lim M = lim M

T—C g(x) o g’(x) '

Proof. (Sketch) We consider the special case where:


https://commons.wikimedia.org/wiki/File:Cauchy.svg

e lim f(z) = lim g(z) = 0.

Tr—C Tr—cC

e f and g are continuous at z = c.

For such functions f, g, we have:

Hence:

fla) _ flo) = flo) _ f't)
g(x)  g(x)—glc)  ¢(i)
for some ¢, between c and x by Cauchy’s Mean Value Theorem.
As x approaches c, the element ¢, lying between = and ¢ must also approach

!
Hence, if the limit lim I'(z)
a—c g’ (x)

exists, then intuitively it follows that:

g e ()
0
t=e g'(t)

( Optional Exercise : To prove the above equality rigorously, one could, for
example, apply the | sequential criterion for the limit of a function . ) [

9.1 Indeterminate Forms



https://en.wikipedia.org/wiki/Limit_of_a_function#In_terms_of_sequences

Here, for example, 1°° represents the situation lim f(z)?®) where lim f(z) =

Tr—C Tr—C
1 and lim g(x) = oo.
Tr—C

Hence, the following limit corresponds to the indeterminate form 1°°:

1 xT
lim (1 + —) .
T—00 x

Example 9.3. Use [’Hopital’s rule to evaluate the following limits:

22

x_ —_ _— =
e 1—=x 5

1. lim
z—0 :L'?’

Solution.



Hence, by I’Hopital’s rule,

!
et —1—gp— 2 <€x_1_x_%>
lim i

x—0 I?’ x—0 (;133)/

1
2. lim zi+me
z—0t

Solution. (This limit corresponds to the indeterminate form (0°.)

For x > 0, we have © = ™. Hence,

1 1 : 1
llm xl-{»lnx — llm €(1+lnm)1nz — ehmz%(ﬁ' 1+nl:x

z—0t z—0t

The last equality holds because f(x) = e* is a continuous function.

The limit lim
z—0t 1 +Inx

possible in this case to apply I’Hopital’s rule to help find the limit.

corresponds to the indeterminate form =22. So, it is

Inz) 1
w—0t (L+Inz) a0t £
.z
= lim —
z—0+ T
=1



By I’Hopital’s rule, it now follows that:

. Inz
lim —— =
z—0+ 1 +Inz

Hence,

1 : Inx
llm xrl+hhz — ehmrH0+ 1+lnx
z—0t

= €.

™
i = (5 —ton ')
m T B an - x

T—+00
Solution. (This limit corresponds to the indeterminate form oo - 0.) Rewrite
the limit as follows:

— —tan "z
0
lim x(%—tan_1x> = lim 2 (—> —).

T—+00 r—+00 1
T

Now, compute:

/
(— — tan~! x) L
lim ~2 - = lim —2
T—>+00 (%) T—r—+00 —2
. 7
= lim
z—+oo 1 + 22
li 1
= lim
M )
=1

Hence, by I’Hopital’s rule,

Iim z (g — tan~* :C) =1.

T——+00




4.

. " 1

Solution. (This limit corresponds to the indeterminate form oc°.) We have:

1
. 1 . p =
lim (e +xz)r = lim (eln(e ”)) *
T—+00 T—r+00
. In(e® +x)
= lim e =
T—r+00
lim In(e?4x)
— 61—>+oo z
.. . In(e*+x) . . o)
The limit lim ———= corresponds to the indeterminate form 2.

T—+00

T / T
hmwzy e’ +1

im
T—>+00 (;L‘)/ z—+o0 eX + x
e* (14+ L
= lim —( > )
T—+00 % (1 + e%)
1+ 4
= lim £
x—+oo 1 + e%
= 1.
Hence, by I’Hopital’s rule,
In(e” In(e® !
o () (e +0)
r——+00 e Tr—r—+00 (1’)/
. e+ 1
= lim
z—+o0 e* + x
=1.
It now follows that:
1 lim (e +e)
lim (&% +x)s =ermi= * =el =e.

T—+00




5 lim 1 —xcotx

z—0 rsinx
Solution. (This limit corresponds to the indeterminate form %. ) Note that

cos T . o
cot x = ——. Rewrite the limit as follows:
sin x
1 —xzcotx . sinx —xcosx 0
hm —_— = hm - . 2 — =
=0 xsinx z—0 rsin® x 0

One’s first instinct might be to differentiate both numerator and denomina-
tor right away. But this seems unwise, since, looking further down the road,
we would have to deal with an indeterminate form whose denominator is
(rsin®z) = 2w sinz cos z +sin® z. Repeating the differentiation of the nu-
merator and denominator would only make the expression more and more
complicated.

A cleverer way would be to rewrite the limit as follows:
sinx —xcosx . sinx —zxcoszx x?

hm—2 = 11m 3 R P)
z—0 xrsm®x z—0 x sin

-
This is motivated by the observation that sin® x is very close to x> when x
is close to 0.

First, we have:
2

2
lim —— = (lim =) = 1.

z—0 sin” x z—0 sin @
.. .. sinx —xcosx . . .
The limit lim ——————— corresponds to the indeterminate form 8. Dif-
z—0 x

ferentiating both numerator and denominator, we have:

. (sinz —zcosz) .. cosx+awsinz—cosw
lim ; = lim
z—0 (.Z‘3) z—0 32

Hence, by I’Hopital’s rule we have:

. sinx —zcosx . (sinx—zcosz) 1
hm —_  — |IIn ; = —.
z—0 ;U?’ x—0 (x3) 3




It now follows that:

. 1l—xcotx . silnx —xzcosx . x?
lim ——— = lim ~lim —
z—0 gsinzg z—0 3 z—0 sin® x

1

—_.1

3

1

3

Exercise 9.4. 1. WeBWorK

2. WeBWorK
3. WeBWorK
4. WeBWorK
5. WeBWorK
6. WeBWorkK
7. WeBWorK
8. WeBWorK
9. WeBWorK
| o B ()
Important Note. If lim, . f(z) = lim, . g(x) = 0 or £o0, and lim @
Tr—cC g X
does not exist, it DOES NOT follow that lim % does not exist.
Tr—cC g X
Example 9.5.
.z +sinz
lim —
r—00 x

Definition 9.6. Given a function f which is n times differentiable at a. The n-th
Taylor polynomial of f (centered) at a is:
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Observe that:
P®(a) = f*)(a),

fork=0,1,2,...,n.

Example 9.7. The Taylor polynomials at a = 0 for various functions f are as

Jollows:
| fl@) | P(z) |
O e
CoS X 1—5 o + (—1) on)
. P - =l
S R T A T
. ) > a3 "
e +$+E+§+.”+H
x>’ "
In(1 S —1)yrH
n(l+z)| = 5 T3 + (=1 -
1 2 3 n
l+e+2+2"+-- -+
1l—=x

Note, for example, that the 5-th and 6-th Taylor polynomials of f(z) = sinx
at x = 0 both have degree 5. Hence, an n-th Taylor polynomial does not neces-

sarily have degree n.

e Taylor polynomials of f(x) = sinx centered at a = 0.

e Taylor polynomials of f(z) = sinx centered at a = 7 /2.

Theorem 9.8 (Taylor’s Formula). Let n be a positive integer, and a € R. Let f be
a function which is n + 1 times differentiable on an open interval I containing a.

Let:

(n)
PO
be the n-th Taylor polynomial of f at a. Then, for any x € I, we have:
f(z) = Pu(z) + Ru(x),

9


https://www.desmos.com/calculator/02r0dupos7
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where the remainder term R, (x) is equal to:

f(n+1)(c)

(n+1)! ™

(z —
for some c between a and .

Note that the special case n = 0 is equivalent to (Lagrange’s) Mean Value Theo-
rem.

Proof. Recall that P,Ek)(a) = f®)(a) for k = 0,1,2,...,n. Moreover, observe

that ¥ = 0 for k > n, since P, is a polynomial of degree at most n.
Let:

F(z) = f(z) = Pu(z), G(a) = (z—a)"".

Then, F'(a) = G(a) = 0, and by Cauchy’s Mean Value Theorem ( Cauchy’s Mean
Value Theorem. ), we have:

f(@) = Po(x) _ F(x) — Fa)
(x —a)"t  G(z) - G(a)
_ (@)
G'(21)

for some z; between a and x.
Now let:

Fi(z) = F'(z) = f'(z) = (),
Gi(z) =G'(z) = (n+1)(x —a)".
Repeating the same procedure carried out before, we have:
) = Bye) _ Fi(e) [P (w2) — P ()
(n+1)(z; —a)"  G(z) (n+ Dn(zy —a)"?

for some x5 between a and ;. Repeating this process n + 1 times, we have:

10
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fl@) = Pu(x)  f(1) = Py(a)
(x —a)rtt (n+1)(xy —a)”
_ O (w) — PP (@)
(n+ Dn(xy —a)nt

_ ") = P ()

C (n+Dnn—1)---2(z, —a)
_ SO (@041) = 0

B (n+1)!

for some x,, 1 between a and z. Letting ¢ = x,,.1, the theorem follows. [

Definition 9.9. Given a function f which is infinitely differentiable at a (i.e.
f%)(a) is defined for k = 0,1,2,3,...). The Taylor series of f (centered) at
a is the power series:

o £ (g
(@)= 3 D - ay

f¥(a)
R

f(a) + Fa)x —a) + fQ_@(x RS

(x—a)*+---

In general, for any power series of the form S(z) = Z ar(r — a)¥, the value

k=0
of S at any given ¢ € R is by definition the limit:

S(c) := lim Zak(c— a).
k=0

Note that this limit does not necessarily exist. If it does exist, we say that the
power series S converges at = = c, otherwise we say that it diverges at x = c.

Example 9.10. The Taylor series at a = 0 for various functions f are as follows:

11



< L 2
cos T Z(— ) k)]
i@ézo a2
sin (—=1)
— (2k+1)!
‘ k!
k=0
In(1 + ) Z(-MHZ
b=l
1 ka
1—= —

Theorem 9.11 (Binomial Series). For o € R, |z| < 1,

= —1
(1+;]j)a:z(Z)xk:1—|—a$+—a(a2' )372"_"‘7
k=0 '

where:

(2) _a<a—1)(a—213!---(a—k+1)

Example 9.12. In particular, for |x| < 1, we have:

Vi4zx= (1+a:)1/2

:1+%$—|— (1/2)(12{2—1)142+ (1/2)(1/2 —3!1)<1/2—2>$3+

Example 9.13. The Taylor T'(x) series of f(x) = e* at a = 0 converges every-
where. Moreover, for each x € R, we do have:

o0 1 .
T(x)zzgxk:e.
k=0

Similarly, for all x € R, we have:

|
Zko 2k + 1)

(=DF o _
Z (2]{])' T = COSXT

[e.e]

k=0
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However,
The Taylor series of f(z) = In(1 + ) ata = 0 is:

i k+1
=1
which converges only for z € (—1,1].
For such x we do have:
T(z) = f(z)
In particular, we have:
k+1 1

> 1
In2 = 1In(1+1) Z 5+3
=1

by
4

Remark. There are functions whose Taylor series converge everywhere, but not
to the functions themselves.
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