Advice.

- Study the Handouts Image sets and pre-image sets, Image sets and pre-image sets under 'nice' real-valued functions of one real variable, Theoretical results involving image sets and pre-image sets, Characterization of surjectivity with image sets, pre-image sets, Relations, functions and 'well-defined-ness' for functions before answering the questions.
- Besides the handouts mentioned above, Question (17) of Exercise 9 is also relevant.
- 1. Let $f : \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = \frac{i\overline{z}}{z}$ for any $z \in \mathbb{C} \setminus \{0\}$.

Let $H = \{z \in \mathbb{C} : \mathsf{Re}(z) > 0\}$, and $S = \{w \in \mathbb{C} : |w| = 1\}$.

- (a) Prove that $f(H) \subset S \setminus \{-i\}$, with reference to the definition of *image sets*.
- (b) Prove that $S \setminus \{-i\} \subset f(H)$, with reference to the definition of *image sets*.
- 2. (a) Is the statement (\$\$) true? Justify your answer with reference to the definition of pre-image sets:
 (\$\$) Let A, B be sets, and f : A → B be a function. Let U, V be subsets of B. Suppose U ⊂ V. Then f⁻¹(U) ⊂ f⁻¹(V).
 - (b) Is the statement (b) true? Justify your answer with reference to the definition of *pre-image sets*:
 - (b) Let A, B be sets, and $f : A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $f^{-1}(U) \subset f^{-1}(V)$. Then $U \subset V$.
- (a) Is the statement (♯) true? Justify your answer with reference to the definitions of *image sets* and *pre-image sets*:

(\sharp) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subset S of A, $S \subset f^{-1}(f(S))$.

(b) Is the statement (b) true? Justify your answer with reference to the definitions of *image sets* and *pre-image sets*:

(b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. For any subset S of A, $f^{-1}(f(S)) \subset S$.

- 4. Let $C = \{(x, y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R} \text{ and } 9x^2 + 16y^2 = 144\}.$
 - (a) Let A = [0, 4], B = [0, 3], and $F = C \cap (A \times B)$. Define f = (A, B, F). Verify that f is a function.
 - (b) Let A = [2,3], B = [-1,4], and $F = C \cap (A \times B)$. Define f = (A, B, F). Is f a function? Justify your answer.
 - (c) Let A = [1, 4], B = [0, 5/2], and $F = C \cap (A \times B)$. Define f = (A, B, F). Is f a function? Justify your answer.