1. (a) **Answer.**

For any $z \in \mathbb{C}$, $|z + 3 - 4i| \leq |z| + 5$.

(b) **Solution.**

(We dis-prove the statement (\star) by obtaining a contradiction from it.)

Suppose it were true that there existed some $z \in \mathbb{C}$ such that $|z + 3 - 4i| > |z| + 5$.

Note that $|z| + 5 > 0$.

Then $|z|^2 + 10|z| + 25 = (|z| + 5)^2 < |z + 3 - 4i|^2 = (z + 3 - 4i)(\overline{z} + 3 + 4i) = |z|^2 + (3 + 4i)z + (3 - 4i)\overline{z} + 25 =$ $|z|^2 + 2\text{Re}((3+4i)z) + 25.$

Therefore $10|z| < 2\text{Re}((3+4i)z) \le 2|(3+4i)z| = 2|3+4i||z| = 10|z|$. Contradiction arises.

Hence it is false that there exists some $z \in \mathbb{C}$ such that $|z + 3 - 4i| > |z| + 5$.

Remark. We may simply quote the Triangle Inequality in the argument:

Suppose it were true that there existed some $z \in \mathbb{R}$ such that $|z + 3 - 4i| > |z| + 5$.

By Triangle Inequality, we have $|z + 3 - 4i| \leq |z| + |3 - 4i| = |z| + 5$.

Then $|z+3-4i| \leq |z|+5 < |z+3-4i|$. Contradiction arises.

Hence it is false that there exists some $z \in \mathbb{C}$ such that $|z + 3 - 4i| > |z| + 5$.

Alternative argument:

The negation of the statement (*⋆*) is:

[∼](*⋆*): For any *^z [∈]* ^C, *[|]^z* + 3 *[−]* ⁴*i| ≤ |z[|]* + 5.

We verify the statement *∼*(*⋆*):

Pick any $z \in \mathbb{C}$. We have $|z+3-4i|^2 = \cdots = |z|^2 + 2\text{Re}((3+4i)z) + 25 \le |z|^2 + 2|(3+4i)z| + 25 = \cdots = (|z|+5)^2$. Then $|z + 3 - 4i| \leq |z| + 5$.

Another alternative argument:

The negation of the statement (*⋆*) is:

[∼](*⋆*): For any *^z [∈]* ^C, *[|]^z* + 3 *[−]* ⁴*i| ≤ |z[|]* + 5.

Pick any $z \in \mathbb{C}$. Suppose it were true that $|z + 3 - 4i| > |z| + 5$ for this *z*. Note that $|z| + 5 \ge 0$. Then $|z|^2 + 10|z| + 25 = (|z| + 5)^2 < |z + 3 - 4i|^2 = \cdots = |z|^2 + 2\text{Re}((3+4i)z) + 25$. Then $10|z| < 2\text{Re}((3+4i)z) \leq 2|(3+4i)z| = \cdots = 10|z|$. Contradiction arises. $Hence |z + 3 - 4i| ≤ |z| + 5.$

2. (a) —

(b) **Solution.**

Method (A).

Denote by *N* the statement below:

N: *There exists some* $t \in \mathbb{R}$ *such that (for any* $s \in \mathbb{C}$ *,* $|s| \le t$ *).*

The negation of *N* reads:

[∼]N: For any *^t [∈]* ^R, there exists some *^s [∈]* ^C such that *[|]s[|] > t*.

We verify *∼N*:

• Pick any *^t [∈]* ^R. Take $s = |t| + 1$. By definition, $s \in \mathbb{C}$. Note that *s* is a positive real number. Then $|s| = ||t| + 1 = |t| + 1 > |t| > t$.

Method (B).

(Denote by *N* the statement below:

N: There exists some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \le t$).

We dis-prove the statement *N* by obtaining a contradiction from it.)

Suppose it were true that there existed some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).

For such a real number *t*, the statement 'for any $s \in \mathbb{C}$, $|s| \le t$ ' would be true.

Note that $|t| + 1$ is a complex number.

Then $||t| + 1| \le t$.

Since $|t| + 1$ is a non-negative real number, we have $||t| + 1| = |t| + 1$.

Then we have $|t| + 1 \le t \le |t|$. Therefore $1 \le 0$.

Contradiction arises.

 $3. -$

- 4. ——
- $5.$ —

6. (a) **Answer.**

Let $c, c' \in I$. Suppose $f(c) = g(c)$ and $f(c') = g(c')$. Then $c = c'$.

(b) **Solution.**

Pick any $c, c' \in I$. Suppose $f(c) = g(c)$ and $f(c') = g(c')$. We verify that $c = c'$ by the proof-by-contradiction method:

• Suppose it were true that $c \neq c'$. Without loss of generality, assume $c < c'$. Since *f* is strictly increasing on *I*, we would have $f(c) < f(c')$. Since *g* is strictly decreasing on *I* we would have $g(c) > g(c')$. Recall that $f(c) = g(c)$ and $f(c') = g(c')$. Then $f(c) < f(c') = g(c') < g(c) = f(c)$. Therefore $f(c) < f(c)$. Contradiction arises.

