MATH1050 Proof-writing Exercise 8

Advice.

- Study the Handouts Statements with several quantifiers, Dis-proofs (with emphasis on 'wholesale refutation') before answering the questions.
- Besides the handouts mentioned above, Question (7a) of Exercise 7 is also suggestive on what it takes to give a correct argument with wholesale refutation.
- Besides the handouts mentioned above, Question (5a) of Exercise 7 is also suggestive on what it takes to give a correct argument for a uniqueness statement.
- 1. Consider the statement (\star) below.
 - (*) There exists some $z \in \mathbb{C}$ such that |z+3-4i| > |z|+5.
 - (a) Write down the negation of the statement (\star) .
 - (b) Dis-prove the statement (*) by proving the negation of the statement (*), or by obtaining a contradiction from the statement (*) as an assumption.
- 2. Dis-prove the statements below:
 - (a) There exists some $r \in \mathbb{R}$ such that $r < r^5 \leq r^3$.
 - (b) There exists some $t \in \mathbb{R}$ such that (for any $s \in \mathbb{C}$, $|s| \leq t$).
- 3. (a) Dis-prove the statement (\star) :

(*) There exist some positive real numbers x, y such that $(x + y)^2 \le x^2 + y^2$.

- (b) Hence dis-prove the statement $(\star\star)$:
 - (**) There exist some positive real numbers u, v such that $\sqrt{u} + \sqrt{v} \le \sqrt{u+v}$.
- 4. Dis-prove the statement (\star) :

(*) There exists some $k \in \mathbb{N} \setminus \{0, 1\}$ such that for any positive integer n, the number $k^{1/n}$ is an integer.

Remark. You will probably need the Well-ordering Principle for Integers.

5. Let
$$A = \{x \in \mathbb{R} : x = a + b\sqrt{2} \text{ for some } a, b \in \mathbb{Q}\}, B = \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right) \text{ and } C = A \cap B.$$

For each of the statements below, decide whether it is true or false. If it is true, give a proof. If it is false, give a dis-proof.

- (a) C has a least element.
- (b) C has a greatest element.
- 6. Let I be an interval in \mathbb{R} , and $f, g: I \longrightarrow \mathbb{R}$ be functions. Suppose f is strictly increasing on I and g is strictly decreasing on I.

Consider the statement (*) below.

- (*) There is at most one $c \in I$ such that f(c) = g(c).
- (a) Fill in the blanks below in such a way that the resultant statement (*') is a re-formulation of (*): (*') Let $c, c' \in I$. Suppose _____ and ____. Then ____.
- (b) Prove the statement (*), with reference to the definition of *strict monotonicity*.
 Remark. Refer to *Proof-Writing Exercise 2* for the definition of *strict monotonicity*.
- 7. We introduce/recall the notion of *linear independence* (for vectors):
 - Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are pairwise distinct. Then $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are **linearly independent** if the statement (LI) holds: (LI) For any $a_1, a_2, \dots, a_k \in \mathbb{R}$, if $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k = \mathbf{0}$ then $a_1 = a_2 = \dots = a_k = 0$.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{R}^n$. Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are linearly independent.

Prove the statement (\star) , with reference to the definition of *linearly independence*:

(*) For any $\mathbf{v} \in \mathbb{R}^n$, there are at most one $c_1 \in \mathbb{R}$, at most one $c_2 \in \mathbb{R}$, ..., and at most one $c_k \in \mathbb{R}$ such that $\mathbf{v} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k$.