1. (a) **Answer.**

There exist some $x, y, z \in \mathbb{N}$ such that $x + y, y + z$ are divisible by 3 and $x + z$ is not divisible by 3.

(b) **Solution.**

Take $x = z = 1, y = 2$. We have $x, y, z \in \mathbb{N}$. Note that $x + y = y + z = 3 = 1 \cdot 3$. We have $1 \in \mathbb{Z}$. Then, by definition, $x + y$, $y + z$ are divisible by 3. Note that $x + z = 2$. We verify that 2 is not divisible by 3: Suppose 2 were divisible by 3.

Then there would exist some $k \in \mathbb{Z}$ such that $2 = 3k$. For the same k, we would have $k = \frac{2}{3}$ $\frac{2}{3}$. Then *k* is not an integer. Contradiction arises.

2. (a)
$$
\underline{\qquad}
$$

- (b) —
- (c) **Solution.**

Denote by *M* the statement below:

M: Let *n* be a positive integer, and ζ be a complex number. Suppose ζ is an n^2 -th root of unity. Then ζ^2 is an *n*-th root of unity.

The negation of *M* reads:

 $∼M$: There exist some positive integer *n* and some complex number *ζ* such that *ζ* is an *n*²-th root of unity and *ζ*² is not an *n*-th root of unity.

We verify *∼M*:

• Take
$$
n = 3
$$
, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i \sin\left(\frac{2\pi}{9}\right)$.
\n
$$
\zeta^{3^2} = \zeta^9 = \cos\left(9 \cdot \frac{2\pi}{9}\right) + i \sin\left(9 \cdot \frac{2\pi}{9}\right) = \cos(2\pi) + i \sin(2\pi) = 1.
$$
\nThen ζ is a n^2 -th root of unity.
\n
$$
\zeta^2 = \cos\left(2 \cdot \frac{2\pi}{9}\right) + i \sin\left(2 \cdot \frac{2\pi}{9}\right) = \cos\left(\frac{4\pi}{9}\right) + i \sin\left(\frac{4\pi}{9}\right).
$$
\n
$$
(\zeta^2)^3 = \cos\left(3 \cdot \frac{4\pi}{9}\right) + i \sin\left(3 \cdot \frac{4\pi}{9}\right) = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \neq 1.
$$
\nThen ζ^2 is not an *n*-th root of unity.

3. (a) **Solution.**

Denote by *M* the statement below:

M: Suppose *A, B, C* be sets. Then $A \setminus (C \setminus B) \subset A \cap B$.

The negation of *M* reads:

∼M: There exist some sets *A, B, C* such that *A*(*C\B*) *⊂/ A ∩ B*.

We verify *∼M*:

• Regard 0*,* 1*,* 2 as distinct objects. Let $A = \{0, 1\}, B = \{1\}, C = \{2\}.$ We have $A \cap B = B = \{1\}$, $C \setminus B = C = \{2\}$, $A \setminus (C \setminus B) = A = \{0, 1\}$. Note that $0 \in A \setminus (C \setminus B)$ and $0 \notin A \cap B$. Hence $A \setminus (C \setminus B) \not\subset A \cap B$.

 (b) —

 $4.$

5. ——