1. (a) Answer.

There exist some $x, y, z \in \mathbb{N}$ such that x + y, y + z are divisible by 3 and x + z is not divisible by 3.

(b) Solution.

Take x = z = 1, y = 2. We have $x, y, z \in \mathbb{N}$. Note that $x + y = y + z = 3 = 1 \cdot 3$. We have $1 \in \mathbb{Z}$. Then, by definition, x + y, y + z are divisible by 3. Note that x + z = 2. We verify that 2 is not divisible by 3: Suppose 2 were divisible by 3.

Then there would exist some $k \in \mathbb{Z}$ such that 2 = 3k. For the same k, we would have $k = \frac{2}{3}$. Then k is not an integer. Contradiction arises.

- (b) —
- (c) Solution.

Denote by M the statement below:

M: Let *n* be a positive integer, and ζ be a complex number. Suppose ζ is an *n*²-th root of unity. Then ζ^2 is an *n*-th root of unity.

The negation of M reads:

 $\sim M$: There exist some positive integer n and some complex number ζ such that ζ is an n^2 -th root of unity and ζ^2 is not an n-th root of unity.

We verify $\sim M$:

• Take
$$n = 3$$
, $\zeta = \cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)$.
 $\zeta^{3^2} = \zeta^9 = \cos\left(9 \cdot \frac{2\pi}{9}\right) + i\sin\left(9 \cdot \frac{2\pi}{9}\right) = \cos(2\pi) + i\sin(2\pi) = 1$.
Then ζ is a n^2 -th root of unity.
 $\zeta^2 = \cos\left(2 \cdot \frac{2\pi}{9}\right) + i\sin\left(2 \cdot \frac{2\pi}{9}\right) = \cos\left(\frac{4\pi}{9}\right) + i\sin\left(\frac{4\pi}{9}\right)$.
 $(\zeta^2)^3 = \cos\left(3 \cdot \frac{4\pi}{9}\right) + i\sin\left(3 \cdot \frac{4\pi}{9}\right) = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \neq 1$.
Then ζ^2 is not an n -th root of unity.

3. (a) Solution.

Denote by M the statement below:

 $M: \text{ Suppose } A, B, C \text{ be sets. Then } A \backslash (C \backslash B) \subset A \cap B.$

The negation of M reads:

 $\sim M$: There exist some sets A, B, C such that $A \setminus (C \setminus B) \not\subset A \cap B$. We verify $\sim M$:

• Regard 0, 1, 2 as distinct objects. Let $A = \{0, 1\}, B = \{1\}, C = \{2\}.$ We have $A \cap B = B = \{1\}, C \setminus B = C = \{2\}, A \setminus (C \setminus B) = A = \{0, 1\}.$ Note that $0 \in A \setminus (C \setminus B)$ and $0 \notin A \cap B$. Hence $A \setminus (C \setminus B) \notin A \cap B$.

(b) —

4. —

5. —