1. (a) Answer.

- i. Let A, B be sets. The set A is said to be a subset of the set B if the statement (\dagger) holds: (\dagger): For any object x, if $x \in A$ then $x \in B$.
- ii. Let A, B be sets. The set A is not a subset of the set B iff the statement ($\sim \dagger$) holds:
- $(\sim \dagger)$: There exists some object x_0 such that $x_0 \in A$ and $x_0 \notin B$.

(b) Solution.

Let $A = \{\zeta \in \mathbb{C} : |\zeta - i| < 1\}, B = \{\zeta \in \mathbb{C} : |\zeta + i| < 3\}.$

i. Pick any $\zeta \in A$. We have $|\zeta - i| < 1$ (by the definition of A). By the Triangle Inequality, we have $|\zeta + i| = |\zeta - i + 2i| \le |\zeta - i| + |2i| = |\zeta - i| + 2 < 1 + 2 = 3$. Then $|\zeta + i| < 3$. Therefore, we have $\zeta \in B$ (by the definition of B). It follows that $A \subset B$.

ii. Take $\zeta_0 = 0$. We have $\zeta_0 \in \mathbb{C}$. Note that $|\zeta_0 + i| = |0 + i| = 1 < 3$. Then $\zeta_0 \in B$. We verify that $\zeta_0 \notin A$: • We have $|\zeta_0 - i| = |0 - i| = 1 \ge 1$. Then $\zeta_0 \notin A$. It follows that $B \not\subset A$.

2. (a) **Answer.**

Let A, B be sets.

The union of the sets A, B is defined to be the set $\{x \mid x \in A \text{ or } x \in B\}$.

(b) Solution.

Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$.

Pick any object x.

Suppose $x \in A \cup B$. Then $x \in A$ or $x \in B$.

- (Case 1). Suppose $x \in A$. Then, since $A \subset C$, we have $x \in C$. Therefore $x \in C$ or $x \in D$. Hence $x \in C \cup D$.
- (Case 2). Suppose $x \notin A$. Then $x \in B$. Therefore, since $B \subset D$, we have $x \in D$. Then $x \in C$ or $x \in D$. Hence $x \in C \cup D$.

Hence in any case, we have $x \in C \cup D$. It follows that $A \cup B \subset C \cup D$.

3. ——

4. ——