1. Solution.

Acceptable argument (A).

Let r be a real number greater than 1. Denote by P(n) the proposition below:

Suppose a_1, a_2, \dots, a_n are positive real numbers. Then $\log_r \left(\prod_{j=1}^n a_j\right) = \sum_{j=1}^n \log_r(a_j)$.

- Suppose a, b are positive real numbers. Then $\log_r(ab) = \log_r(a) + \log_r(b)$ by (\sharp) . It follows that P(2) is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose P(k) is true. We verify that P(k+1) is true:
 - * Suppose $a_1, a_2, \dots, a_k, a_{k+1}$ are positive real numbers. Since a_1, a_2, \dots, a_k are positive real numbers, $a_1 a_2 \dots a_k$ is a positive real number. Then

$$\log_r \left(\prod_{j=1}^{k+1} a_j\right) = \log_r \left(\left(\prod_{j=1}^k a_j\right) \cdot a_{k+1}\right)$$
$$= \log_r \left(\prod_{j=1}^k a_j\right) + \log_r(a_{k+1}) \qquad (by (\sharp))$$
$$= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad (by P(k))$$
$$= \sum_{j=1}^{k+1} \log_r(a_j)$$

Hence P(k+1) is true.

By the Principle of Mathematical Induction, P(n) is true for any positive integer $n \in \mathbb{N} \setminus \{0, 1\}$.

Acceptable argument (B), but not preferrable.

Let r be a real number greater than 1. Let $\{a_j\}_{j=1}^{\infty}$ be an infinite sequence of positive real numbers. Denote by S(n) the proposition below:

$$\log_r \left(\prod_{j=1}^n a_j\right) = \sum_{j=1}^n \log_r(a_j).$$

- We have $\log_r(a_1a_2) = \log_r(a_1) + \log_r(a_2)$ by (\sharp) . Then S(2) is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose S(k) is true. We verify that S(k+1) is true:
 - * Since a_1, a_2, \dots, a_k are positive real numbers, $a_1 a_2 \dots a_k$ is a positive real number. Then

$$\log_r \left(\prod_{j=1}^{k+1} a_j \right) = \log_r \left(\left(\prod_{j=1}^k a_j \right) \cdot a_{k+1} \right)$$
$$= \log_r \left(\prod_{j=1}^k a_j \right) + \log_r(a_{k+1}) \qquad (by \ (\sharp))$$
$$= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad (by \ S(k))$$
$$= \sum_{j=1}^{k+1} \log_r(a_j)$$

Hence S(k+1) is true.

By the Principle of Mathematical Induction, S(n) is true for any positive integer $n \in \mathbb{N} \setminus \{0, 1\}$.

2. —

3. (a) Solution.

Let A, B be $(m \times m)$ -square matrices with real entries. Suppose A, B are non-singular.

We verify that AB is non-singular:

Pick any $\mathbf{x} \in \mathbb{R}^m$. Suppose $AB\mathbf{x} = \mathbf{0}$. We have $A(B\mathbf{x}) = \mathbf{0}$. Then, since A is non-singular, $B\mathbf{x} = \mathbf{0}$. Then, since B is non-singular, we have $\mathbf{x} = \mathbf{0}$. It follows that AB is non-singular.

(b) i. Answer.

Let n be an integer greater than 1. Let A_1, A_2, \dots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \dots, A_n are non-singular. Then $A_1A_2 \dots A_n$ is non-singular.

ii. Solution.

Denote by P(n) the proposition below:

Let A_1, A_2, \dots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \dots, A_n are non-singular. Then $A_1A_2 \dots A_n$ is non-singular.

- P(2) is true by the result of part (a).
- Let k be an integer greater than 1. Suppose P(k) is true.
 We verify that P(k + 1) is true:

Let $A_1, A_2, \dots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix. Suppose $A_1, A_2, \dots, A_k, A_{k+1}$ is non-singular. Write $C = A_1 A_2 \dots A_k$. By P(k), since A_1, A_2, \dots, A_k are non-singular, the product C is non-singular. Note that $A_1 A_2 \dots A_k A_{k+1} = C A_{k+1}$. Then, by the result of part (a), $A_1 A_2 \dots A_k A_{k+1}$ is non-singular.

By the Principle of Mathematical Induction, P(n) is true for any integer greater than 1.

Alternative 'inductive step'.

Let k be an integer greater than 1. Suppose P(k) is true.
 We verify that P(k + 1) is true:

Let $A_1, A_2, \dots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix.

Suppose $A_1, A_2, \dots, A_k, A_{k+1}$ is non-singular.

By the result in part (a), since A_k, A_{k+1} are non-singular, A_kA_{k+1} is non-singular.

 $A_1, A_2, \dots, A_{k-1}, A_k A_{k+1}$ are non-singular. Then by P(k), the product $A_1 A_2 \dots A_{k-1} A_k A_{k+1}$ is non-singular.

4. —