1. **Solution.**

Acceptable argument (A).

Let *r* be a real number greater than 1. Denote by $P(n)$ the proposition below:

Suppose a_1, a_2, \dots, a_n are positive real numbers. Then \log_r $\sqrt{ }$ $\left(\prod_{i=1}^n\right]$ *j*=1 *aj* \setminus $= \sum_{n=1}^{n}$ *j*=1 $\log_r(a_j)$.

- Suppose *a*, *b* are positive real numbers. Then $\log_r(ab) = \log_r(a) + \log_r(b)$ by (#). It follows that $P(2)$ is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose $P(k)$ is true. We verify that $P(k+1)$ is true:
	- *∗* Suppose *a*1*, a*2*, · · · , ak, ak*+1 are positive real numbers. Since a_1, a_2, \dots, a_k are positive real numbers, $a_1 a_2 \cdots a_k$ is a positive real number. Then

$$
\log_r \left(\prod_{j=1}^{k+1} a_j \right) = \log_r \left(\left(\prod_{j=1}^k a_j \right) \cdot a_{k+1} \right)
$$

$$
= \log_r \left(\prod_{j=1}^k a_j \right) + \log_r(a_{k+1}) \qquad \text{(by (#))}
$$

$$
= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad \text{(by } P(k))
$$

$$
= \sum_{j=1}^{k+1} \log_r(a_j)
$$

Hence $P(k+1)$ is true.

By the Principle of Mathematical Induction, $P(n)$ is true for any positive integer $n \in \mathbb{N} \setminus \{0, 1\}$.

Acceptable argument (B), but not preferrable.

Let *r* be a real number greater than 1. Let $\{a_j\}_{j=1}^{\infty}$ be an infinite sequence of positive real numbers. Denote by $S(n)$ the proposition below:

$$
\log_r \left(\prod_{j=1}^n a_j \right) = \sum_{j=1}^n \log_r(a_j).
$$

- We have $\log_r(a_1a_2) = \log_r(a_1) + \log_r(a_2)$ by (#). Then $S(2)$ is true.
- Let $k \in \mathbb{N} \setminus \{0, 1\}$. Suppose $S(k)$ is true. We verify that $S(k+1)$ is true:
	- *** Since a_1, a_2, \cdots, a_k are positive real numbers, $a_1 a_2 \cdots a_k$ is a positive real number. Then

$$
\log_r \left(\prod_{j=1}^{k+1} a_j \right) = \log_r \left(\left(\prod_{j=1}^k a_j \right) \cdot a_{k+1} \right)
$$

$$
= \log_r \left(\prod_{j=1}^k a_j \right) + \log_r(a_{k+1}) \qquad \text{(by (#))}
$$

$$
= \sum_{j=1}^k \log_r(a_j) + \log_r(a_{k+1}) \qquad \text{(by S(k))}
$$

$$
= \sum_{j=1}^{k+1} \log_r(a_j)
$$

Hence $S(k+1)$ is true.

By the Principle of Mathematical Induction, $S(n)$ is true for any positive integer $n \in \mathbb{N}\setminus\{0,1\}$.

 $2. -$

3. (a) **Solution.**

Let A, B be $(m \times m)$ -square matrices with real entries. Suppose A, B are non-singular.

We verify that AB is non-singular:

Pick any $\mathbf{x} \in \mathbb{R}^m$. Suppose $AB\mathbf{x} = \mathbf{0}$. We have $A(Bx) = 0$. Then, since *A* is non-singular, $Bx = 0$. Then, since *B* is non-singular, we have $\mathbf{x} = \mathbf{0}$. It follows that *AB* is non-singular.

(b) i. **Answer.**

Let *n* be an integer greater than 1. Let A_1, A_2, \cdots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \cdots, A_n are non-singular. Then $A_1A_2 \cdots A_n$ is non-singular.

ii. **Solution.**

Denote by $P(n)$ the proposition below:

Let A_1, A_2, \cdots, A_n be $(m \times m)$ -square matrices. Suppose A_1, A_2, \cdots, A_n are non-singular. Then $A_1 A_2 \cdots A_n$ is non-singular.

- $P(2)$ is true by the result of part (a).
- Let *k* be an integer greater than 1. Suppose $P(k)$ is true. We verify that $P(k + 1)$ is true:

Let $A_1, A_2, \cdots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix. Suppose $A_1, A_2, \cdots, A_k, A_{k+1}$ is non-singular. Write $C = A_1 A_2 \cdots A_k$. By $P(k)$, since A_1, A_2, \cdots, A_k are non-singular, the product *C* is non-singular. Note that $A_1A_2 \cdots A_kA_{k+1} = CA_{k+1}$. Then, by the result of part (a), $A_1A_2 \cdots A_kA_{k+1}$ is non-singular.

By the Principle of Mathematical Induction, *P*(*n*) is true for any integer greater than 1.

Alternative 'inductive step'.

• Let k be an integer greater than 1. Suppose $P(k)$ is true. We verify that $P(k + 1)$ is true:

Let $A_1, A_2, \cdots, A_k, A_{k+1}$ be $(m \times m)$ -square matrix.

Suppose $A_1, A_2, \cdots, A_k, A_{k+1}$ is non-singular.

By the result in part (a), since A_k , A_{k+1} are non-singular, $A_k A_{k+1}$ is non-singular.

 $A_1, A_2, \cdots, A_{k-1}, A_k A_{k+1}$ are non-singular. Then by $P(k)$, the product $A_1 A_2 \cdots A_{k-1} A_k A_{k+1}$ is nonsingular.

 $4. -$