MATH1050 Proof-writing Exercise 5

Advice.

- Study the Handout Mathematical induction before answering the questions.
- Besides the handout mentioned above, Question (7a) of Exercise 4 is also suggestive on what it takes to give a correct argument with mathematical induction.
- 1. In this question, take for granted the validity of the statement below:
 - (\sharp) For any $t, u, v \in \mathbb{R}$, if t > 0, u > 0, v > 0 and $t \neq 1$ then $\log_t(uv) = \log_t(u) + \log_t(v)$.

Apply mathematical induction to prove the statement below:

Let $n \in \mathbb{N}\setminus\{0,1\}$, and r be a real number greater than 1. Suppose a_1, a_2, \dots, a_n are positive real numbers. Then

$$\log_r\left(\prod_{j=1}^n a_j\right) = \sum_{j=1}^n \log_r(a_j).$$

2. (a) Verify the statements below:

1

i. Let $a, b \in \mathbb{R}$. Suppose $0 \le a < b$. Then $\frac{a}{1+a} \le \frac{b}{1+b}$. ii. Let $a, b \in \mathbb{R}$. Suppose a, b are non-negative. Then $\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}$.

(b) Apply mathematical induction to prove the statement below:

Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose x_1, x_2, \dots, x_n are non-negative real numbers. Then

$$\frac{x_1 + x_2 + \dots + x_n}{1 + x_1 + x_2 + \dots + x_n} \le \sum_{j=1}^n \frac{x_j}{1 + x_j}$$

3. We introduce/recall the definition for the notion of *non-singularity* for square matrices with real entries:

Let A be an $(m \times m)$ -square matrix with real entries. The matrix A is said to be **non-singular** if the statement (NS) holds:

- (NS) For any $\mathbf{x} \in \mathbb{R}^m$, if $A\mathbf{x} = \mathbf{0}$ then $\mathbf{x} = \mathbf{0}$.
- (a) Prove the statement below, with reference to the definition:

Let A, B be $(m \times m)$ -square matrices with real entries. Suppose A, B are non-singular. Then AB is non-singular.

- (b) Consider the statement (*):
 - (*) The product of any two or more non-singular $(m \times m)$ -square matrices with real entries is non-singular.
 - i. Fill in the blanks below in such a way that the resultant statement (*') is a re-formulation of (*):
 - (*') Let n be an integer greater than 1. Let _____ be $(m \times m)$ -square matrices with real entries. Suppose _____. Then _____.
 - ii. Apply mathematical induction to prove the statement (*).Remark. You may take the result in part (a) for granted.
- 4. Consider the statement (\star) :
 - (\star) Every integer greater than 1 is a prime number or a product of at least two prime numbers.
 - (a) Fill in the blanks below in such a way that the resultant statement (\star') is a re-formulation of (\star) : (\star') Let n ______. For any integer m between ___ and n, the integer m is a prime number or

(b) Apply mathematical induction to justify the statement (*).Remark. You need to recall the definitions for *divisibility* and for *prime numbers*.