- 1. (a)
 - (b) —
 - (c) Solution.

Let ζ be a complex number. Suppose that $|\zeta| \leq \varepsilon$ for any positive real number ε . Further suppose it were true that $\zeta \neq 0$.

Since $\zeta \neq 0$, we would have $|\zeta| \neq 0$. Then $|\zeta| > 0$.

Define $\varepsilon = \frac{|\zeta|}{2}$. Since $|\zeta| > 0$ and $\frac{1}{2} > 0$, we would have $\varepsilon > 0$.

Then by assumption, $|\zeta| \leq \varepsilon = \frac{|\zeta|}{2}$.

Therefore $\frac{|\zeta|}{2} = |\zeta| - \frac{|\zeta|}{2} \le 0$. Hence $|\zeta| = 2 \cdot \frac{|\zeta|}{2} \le 0$ (because 2 > 0).

Now we have $0 < |\zeta| \le 0$. Contradiction arises.

Hence $\zeta = 0$ in the first place.

2. —

3. Solution.

Let x be a positive real number, r be a positive rational number, and n be an integer greater than 1. Suppose x is an irrational number.

Further suppose it were true that $\sqrt[n]{x+r}$ was a rational number.

Write $y = \sqrt[n]{x+r}$. Note that $y^n - r = x$.

Since y was a rational number, y^n would be a rational number. Moreover, since r is a rational number, $y^n - r$ would be a rational number.

Therefore x would be a rational number. But by assumption x is an irrational number.

Contradiction arises.

Hence the assumption that $\sqrt[n]{x+r}$ was rational is false. So $\sqrt[n]{x+r}$ is an irrational number in the first place.

- 4. ——
- 5. ——

6. ——