MATH1050 Proof-writing Exercise 4

Advice.

- Study the Handout *Examples of proofs-by-contradiction* before answering the questions.
- Besides the handout mentioned above, Questions (10a), (11a) of Exercise 4 are also suggestive on what it takes to give a correct argument with the proof-by-contradiction method. First and foremost is to remember that the assumptions needed within the argument must be stated clearly.
- When giving an argument, remember to adhere to definition, always.
- 1. Apply proof-by-contradiction to justify the statements below:
	- (a) Let a, b be complex numbers. Suppose $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Then at least one of a, b is non-zero.
	- (b) Let a, b be real numbers. Suppose $ab > 1$. Then $a^2 + 4b^2 > 4$.
	- (c) Let ζ be a complex number. Suppose that $|\zeta| \leq \varepsilon$ for any positive real number ε . Then $\zeta = 0$.
- 2. (a) Explain the phrase *prime number* by giving its appropriate definition.
	- (b) Apply proof-by-contradiction to justify the statement below:
		- Let p, q be prime numbers. Suppose p, q are positive and $p \neq q$. Then p is not divisible by q.
- 3. *You may tacitly assume the result* (*∗*)*, stated below:*
	- $(*)$ *Suppose* u, v are rational numbers. Then $u + v, u v, uv$ are rational numbers. Moreover, if $v \neq 0$ then u/v is a *rational number.*

Apply proof-by-contradiction to justify the statement below, with the help of (*∗*) where appropriate:

- *• Let x be a positive real number, r be a positive rational number, and n be an integer greater than* 1*. Suppose x* is an irrational number. Then $\sqrt[n]{x+r}$ is an irrational number.
- 4. Apply proof-by-contradiction to justify the statement below:
	- Let *a, b* be real numbers. Suppose $|a| \leq 1$ and $|b| \leq 1$. Then $\sqrt{1-a^2} + \sqrt{1-a^2}$ $\sqrt{1-b^2} \leq 2\sqrt{1-(a+b)^2/4}.$
- 5. We introduce/recall the definitions on *absolute extremum* for real-valued functions of one real variable:

Let I be an interval, and $h: I \longrightarrow \mathbb{R}$ be a real-valued function of one real variable.

- *h* is said to **attain absolute maximum on** *I* if there exists some $p \in I$ such that for any $x \in I$, the *inequality* $h(x) \leq h(p)$ *holds.*
	- *The number* $h(p)$ *is called the* **absolute maximum value of** h **on** I *.*
- *h* is said to **attain absolute minimum on** *I* if there exists some $p \in I$ such that for any $x \in I$, the *inequality* $h(x) \geq h(p)$ *holds.* The number $h(p)$ is called the **absolute minimum value of** h **on** I *.*

Apply proof-by-contradiction to justify the statements below, with direct reference to the definitions on absolute extremum:

- (a) Suppose $h : [0, 1) \longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x) = x^2$ for any $x \in [0, 1)$. *Then h does not attain absolute maximum on* [0*,* 1)*.*
- (b) Suppose $h : [0, +\infty) \longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x) = \sqrt{x}$ for any $x \in [0, +\infty)$. Then *h* does not attain absolute maximum on $[0, +\infty)$.
- (c) Suppose $h : [0, +\infty) \longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x) = \frac{1}{1+x^2}$ for any $x \in [0, +\infty)$. Then *h* does not attain absolute minimum on $[0, +\infty)$.
- (d) *Let a, b be real numbers, with a < b, and h* : (*a, b*) *−→* R *be a real-valued function of one real variable. Suppose h is strictly increasing. Then h does not attain absolute maximum on* (*a, b*)*.* **Remark.** You need the definition for strict monotonicity.

6. For each $n \in \mathbb{N} \setminus \{0\}$, define $A_n = \sum_{n=1}^n$ *j*=1 1 $\frac{1}{j}, B_n = \sum_{k=1}^{n}$ *k*=1 1 $\frac{1}{2k}$, $C_n = \sum_{k=1}^{n}$ *k*=1 1 $\frac{1}{2k-1}$

- (a) i. Prove that $B_n = \frac{1}{2}$ $\frac{1}{2}A_n$ and $C_n = A_{2n} - \frac{1}{2}$ $\frac{1}{2}A_n$ for any $n \in \mathbb{N}\backslash\{0\}.$ ii. Prove that $C_n - B_n \geq \frac{1}{2}$ $\frac{1}{2}$ for any $n \in \mathbb{N} \setminus \{0, 1\}.$
- (b) By applying proof-by-contradiction, or otherwise, prove that $\{A_n\}_{n=1}^{\infty}$ does not converge in R. **Remark.** Take for granted any 'standard' results on limits of sequences, covered in MATH1010.