MATH1050 Proof-writing Exercise 4

Advice.

- Study the Handout Examples of proofs-by-contradiction before answering the questions.
- Besides the handout mentioned above, Questions (10a), (11a) of Exercise 4 are also suggestive on what it takes to give a correct argument with the proof-by-contradiction method. First and foremost is to remember that the assumptions needed within the argument must be stated clearly.
- When giving an argument, remember to adhere to definition, always.
- 1. Apply proof-by-contradiction to justify the statements below:
 - (a) Let a, b be complex numbers. Suppose $a^4 + a^3b + a^2b^2 + ab^3 + b^4 \neq 0$. Then at least one of a, b is non-zero.
 - (b) Let a, b be real numbers. Suppose ab > 1. Then $a^2 + 4b^2 > 4$.
 - (c) Let ζ be a complex number. Suppose that $|\zeta| < \varepsilon$ for any positive real number ε . Then $\zeta = 0$.
- 2. (a) Explain the phrase *prime number* by giving its appropriate definition.
 - (b) Apply proof-by-contradiction to justify the statement below:
 - Let p,q be prime numbers. Suppose p,q are positive and $p \neq q$. Then p is not divisible by q.
- 3. You may tacitly assume the result (*), stated below:
 - (*) Suppose u, v are rational numbers. Then u + v, u v, uv are rational numbers. Moreover, if $v \neq 0$ then u/v is a rational number.

Apply proof-by-contradiction to justify the statement below, with the help of (*) where appropriate:

- Let x be a positive real number, r be a positive rational number, and n be an integer greater than 1. Suppose x is an irrational number. Then $\sqrt[n]{x+r}$ is an irrational number.
- 4. Apply proof-by-contradiction to justify the statement below:
 - Let a,b be real numbers. Suppose $|a| \le 1$ and $|b| \le 1$. Then $\sqrt{1-a^2} + \sqrt{1-b^2} \le 2\sqrt{1-(a+b)^2/4}$.
- 5. We introduce/recall the definitions on absolute extremum for real-valued functions of one real variable:

Let I be an interval, and $h: I \longrightarrow \mathbb{R}$ be a real-valued function of one real variable.

• h is said to attain absolute maximum on I if there exists some $p \in I$ such that for any $x \in I$, the inequality $h(x) \leq h(p)$ holds.

The number h(p) is called the absolute maximum value of h on I.

• h is said to attain absolute minimum on I if there exists some $p \in I$ such that for any $x \in I$, the inequality $h(x) \ge h(p)$ holds.

The number h(p) is called the absolute minimum value of h on I.

Apply proof-by-contradiction to justify the statements below, with direct reference to the definitions on absolute extremum:

- (a) Suppose $h:[0,1) \longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x) = x^2$ for any $x \in [0,1)$. Then h does not attain absolute maximum on [0,1).
- (b) Suppose $h:[0,+\infty)\longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x)=\sqrt{x}$ for any $x\in[0,+\infty)$. Then h does not attain absolute maximum on $[0,+\infty)$.
- (c) Suppose $h:[0,+\infty) \longrightarrow \mathbb{R}$ is the real-valued function of one real variable defined by $h(x)=\frac{1}{1+x^2}$ for any $x \in [0,+\infty)$. Then h does not attain absolute minimum on $[0,+\infty)$.
- (d) Let a, b be real numbers, with a < b, and $h : (a, b) \longrightarrow \mathbb{R}$ be a real-valued function of one real variable. Suppose h is strictly increasing. Then h does not attain absolute maximum on (a, b).

Remark. You need the definition for strict monotonicity.

- 6. For each $n \in \mathbb{N} \setminus \{0\}$, define $A_n = \sum_{i=1}^n \frac{1}{i}$, $B_n = \sum_{k=1}^n \frac{1}{2k}$, $C_n = \sum_{k=1}^n \frac{1}{2k-1}$.
 - (a) i. Prove that $B_n = \frac{1}{2}A_n$ and $C_n = A_{2n} \frac{1}{2}A_n$ for any $n \in \mathbb{N} \setminus \{0\}$.
 - ii. Prove that $C_n B_n \ge \frac{1}{2}$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
 - (b) By applying proof-by-contradiction, or otherwise, prove that $\{A_n\}_{n=1}^{\infty}$ does not converge in \mathbb{R} . Remark. Take for granted any 'standard' results on limits of sequences, covered in MATH1010.