- 1. (a)
 - (b) —
 - (c) —
 - (d) Solution.

Suppose s, t are Gaussian integers. By definition, $\operatorname{Re}(s), \operatorname{Im}(s), \operatorname{Re}(t), \operatorname{Im}(t)$ are integers.

- Note that $\bar{s} = \operatorname{Re}(s) i\operatorname{Im}(s) = \operatorname{Re}(s) + i(-\operatorname{Im}(s))$. Note that $\operatorname{Re}(s), -\operatorname{Im}(s)$ are integers. Then, by definition, \bar{s} is a Gaussian integer.
- Note that $s + t = (\operatorname{Re}(s) + \operatorname{Re}(t)) + i(\operatorname{Im}(s) + \operatorname{Im}(t))$. Then $\operatorname{Re}(s + t) = \operatorname{Re}(s) + \operatorname{Re}(t)$. Also, $\operatorname{Im}(s + t) = \operatorname{Im}(s) + \operatorname{Im}(t)$. Since $\operatorname{Re}(s)$, $\operatorname{Re}(t)$, $\operatorname{Im}(s)$, $\operatorname{Im}(t)$ are integers, $\operatorname{Re}(s + t)$ and $\operatorname{Im}(s + t)$ are integers. Hence s + t is a Gaussian integer.
- Note that $st = (\operatorname{Re}(s)\operatorname{Re}(t) \operatorname{Im}(s)\operatorname{Im}(t)) + i(\operatorname{Re}(s)\operatorname{Im}(t) + \operatorname{Im}(s)\operatorname{Re}(t))$. Then $\operatorname{Re}(st) = \operatorname{Re}(s)\operatorname{Re}(t) - \operatorname{Im}(s)\operatorname{Im}(t)$. Also, $\operatorname{Im}(st) = \operatorname{Re}(s)\operatorname{Im}(t) + \operatorname{Im}(s)\operatorname{Re}(t)$. Since $\operatorname{Re}(s)$, $\operatorname{Re}(t)$, $\operatorname{Im}(s)$, $\operatorname{Im}(t)$ are integers, $\operatorname{Re}(st)$ and $\operatorname{Im}(st)$ are integers. Hence st is a Gaussian integer.
- 2. (a)
 - (b) —
 - (c) —
 - (d) Solution.

Let $u, v, w \in \mathbf{G}$. Suppose u is \mathbf{G} -divisible by v and v is \mathbf{G} -divisible by w. Since u is \mathbf{G} -divisible by v, there exists some $s \in \mathbf{G}$ such that u = sv. Since v is \mathbf{G} -divisible by w, there exists some $t \in \mathbf{G}$ such that v = tw. Then u = stw. Since $s, t \in \mathbf{G}$, we have $st \in \mathbf{G}$ by the results in Question (1d). Hence u is \mathbf{G} -divisible by w.